
CSE610C, Fall 2021 Problem Set 5 (Take-Home Final) Due Mon. Dec. 20

(1) (30 pts.)

Consider the 2 × 2 Hadamard matrix together with its three rotated forms—for fun, let’s
call them all the “Damhard” matrices:

H =

[
1 1
1 −1

]
; H2 =

[
1 1
−1 1

]
; H3 =

[
−1 1
1 1

]
; H4 =

[
1 −1
1 1

]
.

Begin a quantum circuit C with 2 qubits by placing an Hadamard gate on line 1 followed by
CNOT with control on 1 and target on line 2. Now add to line 1 a “black box” in which Alice
has placed one of the four Damhard matrices. Your task is to finish C with some gates so
that by measuring both qubits, Bob can learn exactly which one Alice used.

For a footnote relating to lecture, it is not possible to learn exactly in the case of the four
matrices in Deutsch’s problem, even if we added a third qubit to the circuit that could be
entangled with the others and kept by “Bob.” The reason is that those four matrices are not
linearly independent: UI + UX = UT + Uf . Thus if you have any vector u, the four vectors
v1 = UIu, v2 = UXu, v3 = UTu, and v4 = UFu resulting from them are linearly dependent.
Hence the vectors w1, w2, w3, w4 you would get from later stages of the circuit are also linearly
dependent. This means in particular that their nonzero entries must overlap in some indices,
and any such overlap prevents 100% certainty that a single measurement will distinguish
them. However, the Damhard matrices are linearly independent. Try combining them with
H and/or the Pauli matrices, remembering also that multiplication by a scalar unit constant
such as −1 or i never changes any measurement, so you can disregard it.

(2) (18 + 12 = 30 pts.)

Define |µ〉 = 1
2
[1,−1,−1, 1]T and A = π |µ〉 〈µ|. The π is not a typo—so A is not a density

matrix but it remains Hermitian. Find a 4× 4 unitary matrix U such that U = eiA. (Possibly
up to multiplying by a unit scalar, U is a matrix seen in the course.) Verify your calculation
by showing how if U were given, one can obtain A.

Now for an exercise in the other direction, take U = 1
2


−1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 1 1

 . Find a Hermi-

tian matrix A such that U = eiA. (Note that U is not symmetric, so the procedure in section
18.1 will introduce complex entries even though U has none. The latter matrix U comes from
the recent Nature paper Markiewicz et al. in E.R.’s presentation on interferometers, but this
exercise is not directly connected to the paper. It is also “yucky” but only 12 pts.)

(3) (9 + 6 + 9 + 6 = 30 pts.)

Consider the 4-cycle graph G with edges (1, 2), (2, 3), (3, 4), and (1, 4). Construct the
corresponding graph state |ΦG〉 without the second bank of Hadamard gates. Call the nodes
Alice, Bob, Charlie, and Donna in that order (Donna = 4).

https://www.nature.com/articles/s41598-021-95005-7


(a) Construct the density matrix ρG. Then show the result of tracing out nodes 3 and 4. Is
the result a completely mixed state of two qubits? Is it pure?

(b) Now let Charlie and Donna each apply a single-qubit Hadamard gate locally and then
post-select on 0. Show the calculations for the state Alice and Bob are left with, as well
as verifying it on Quirk. Are Alice and Bob entangled?

(c) Now trace out nodes 2 and 4 instead. Are Alice and Charlie left with the completely
mixed state in this case?

(d) Now instead of traciong out Donna and Bob, let them each apply a single-qubit
Hadamard gate locally and then post-select on 0. Are Alice and Charlie left entan-
gled? (This has some of the flavor of S.W.’s presentation.)

(4) (12 + 18 = 30 pts.)

Let G be the five-node graph with edges (u1, u2), (u2, u3), (u2, u4), (u3, u4), (u3, u5), and
(u4, u5). With the inputs and outputs of the corresponding graph-state circuit CG fixed to 05,
the polynomial q in I.J.’s presentation becomes simply the sum of uiuj over all edges (ui, uj).
Evaluating the polynomial on an argument w ∈ {0, 1}n with arithmetic modulo 2 gives the
same answer as counting the (parity of the) number of black-black edges in the coloring that
corresponds to w (with 0 for white, 1 for black).

(a) Show that 〈05|CG|05〉 = 0, i.e., the graph is “net-zero.” (Going thru the colorings may
be tedious, but less so IMHO than using matrices or a maze diagram with 32 rows. And
see the next part.)

(b) Compute all the points w where ∂q
∂ui

(w) = 0 (mod 2) for each i. (They correspond to
colorings in which each node has an even number of black neighbors, but IMHO it is
easier to solve this one arithmetically.) Then verify that the amplitude summed only
over those points is zero—as it should be under the theorem about the least action
principle in the paper presented by I.J.

(5) (24 + 6 = 30 pts.)

Let Alice and Bob play the CHSH game portion of the Ekert 1991 QKD protocol, begun
by Alice sending Bob half of the entangled state 1√

2
(|00〉+ |11〉). Consider a play where Alice

uses angle 0 to mean “yes” and Bob uses π/8 to mean “yes,” so that they win if their answers
agree. Suppose the eavesdropper Eve intercepts the qubit transmitted by Alice to Bob and
measures it at angle π/6 first. Compute the win expectation for Alice and Bob in this case.
For the last 6 pts., do the case where Bob uses 3π/8 to mean “yes,” so that now he and Alice
win if their answers disagree, keeping Eve at π/6 which is almost midway between them. Does
this change the expectation? (This makes 150 total points.)


