
CSE696 Week 3: Diagonalization and Reductions and RelativizationsCSE696 Week 3: Diagonalization and Reductions and Relativizations

Structure of ReductionsStructure of Reductions

Two more "structural" complexity notions will build a framework for reducibility relations.Two more "structural" complexity notions will build a framework for reducibility relations.

Definition 1Definition 1: The : The joinjoin of two langauges of two langauges and and is is ..AA BB A0 A0 ∪∪ B1 B1 == x0x0 :: xx ∈∈ AA ∪∪ y1y1 :: yy ∈∈ BB{{ }} {{ }}

Often the join is written Often the join is written although that can confuse with exclusive-or for the symmetric difference although that can confuse with exclusive-or for the symmetric difference AA⊕⊕BB
of of and and (which, however, I prefer to write as (which, however, I prefer to write as). It is immediate that). It is immediate that and and AA BB A A △△ B B A A ≤≤ A A⊕⊕BBrr

 for basically any reducibility relation for basically any reducibility relation , because all we have to do is tack on a , because all we have to do is tack on a or a or a B B ≤≤ A A⊕⊕BBrr ≤≤ rr 00 11

to the string to the string given in the reduction. The key fact about the join is: given in the reduction. The key fact about the join is:xx

Lemma 1Lemma 1: For basically any reducibility : For basically any reducibility , not just , not just or or , if , if are any languages such are any languages such ≤≤ rr ≤≤
pp
mm ≤≤

pp
TT AA,, BB,, CC

that that and and , then , then ..A A ≤≤ C Crr B B ≤≤ C Crr AA⊕⊕B B ≤≤ C Crr

ProofProof: Given any string : Given any string , if , if then we know then we know , so we apply the presumed fixed action, so we apply the presumed fixed action xx x x == 𝜖 𝜖 x x ∉∉ A A⊕⊕BB
of the reduction when we know the given string is not in the source language. Otherwise, eitherof the reduction when we know the given string is not in the source language. Otherwise, either

 and belongs to and belongs to if and only if if and only if , or , or and belongs to and belongs to if and only if if and only if x x == y0 y0 AA⊕⊕BB y y ∈∈ A A x x == y1 y1 AA⊕⊕BB
. In the former case, we apply the reduction from . In the former case, we apply the reduction from to to ; in the latter case, we apply the; in the latter case, we apply the y y ∈∈ B B AA CC

reduction from reduction from to to . For basically any . For basically any , the code managing the two potential applications of a, the code managing the two potential applications of a BB CC ≤≤ rr

 reduction belongs to the same class of functions or (oracle) machines that defines reduction belongs to the same class of functions or (oracle) machines that defines to begin to begin ≤≤ rr ≤≤ rr

with. So we get with. So we get . . AA⊕⊕B B ≤≤ C Crr ☒☒

The upshot is that The upshot is that is a least upper bound for the reductions: it reduces to anything that both is a least upper bound for the reductions: it reduces to anything that both AA⊕⊕BB AA
and and reduce to. Technically speaking, this makes the partially ordered structure of (equivalence reduce to. Technically speaking, this makes the partially ordered structure of (equivalence BB
classes of) languages under classes of) languages under into an into an upper semi-latticeupper semi-lattice. Put another way: given any decidable. Put another way: given any decidable ≤≤ rr

languages languages and and , there is always a language , there is always a language such that such that and and , and whenever , and whenever is a is a AA BB JJ A A ≤≤ J Jrr B B ≤≤ J Jrr CC
language such that language such that and and , we have , we have . The language . The language can always be taken as can always be taken as A A ≤≤ C Crr B B ≤≤ C Crr J J ≤≤ C Crr JJ
the join of the join of and and .. AA BB

Now here is a mirror-image question:Now here is a mirror-image question:

Research QuestionResearch Question: Given any decidable languages : Given any decidable languages and and , is there always a language , is there always a language such that such that AA BB II

 and and , and whenever , and whenever is a language such that is a language such that and and , we have, we have I I ≤≤ A Arr I I ≤≤ B Brr CC C C ≤≤ A Arr C C ≤≤ B Brr

??C C ≤≤ I Irr

Such a language Such a language , if it exists, could be called an "infimum" of , if it exists, could be called an "infimum" of and and . Well, for many known. Well, for many known II AA BB
reducibilities, this is known to fail. But can you define a reasonable reducibilities, this is known to fail. But can you define a reasonable so that it holds? And even for so that it holds? And even for ≤≤ rr

polynomial-time many-one reductions polynomial-time many-one reductions , the cases of , the cases of that lack an infimum are somewhat that lack an infimum are somewhat ≤≤
pp
mm AA,, BB

specialized. Let's try a natural case:specialized. Let's try a natural case:

Question'Question': Do SAT and TAUT have an infimum under : Do SAT and TAUT have an infimum under ??≤≤

pp
mm

In this case, any language In this case, any language such that such that and and belongs to belongs to NPNP co-NPco-NP. And. And II I I ≤≤ SAT SATpp

mm II ≤≤ TAUT TAUTpp
mm ∩∩

every language every language in in NPNP co-NPco-NP has that property. So this is equivalent to asking whether has that property. So this is equivalent to asking whether NPNP co-co-CC ∩∩ ∩∩

NPNP includes a language includes a language such that for every such that for every in in NPNP co-NPco-NP, , . In other words:. In other words:II CC ∩∩ C C ≤≤ I Ipp
mm

Proposition 2Proposition 2: : SAT and TAUT have an infimum under SAT and TAUT have an infimum under if and only if if and only if NPNP co-NP co-NP has a completehas a complete ≤≤
pp
mm ∩∩

set under set under ..≤≤
pp
mm

[Now, there are oracles [Now, there are oracles relative to which relative to which co-co- does not have complete sets, but does not have complete sets, but XX NPNPXX ∩∩ NPNPXX NPNPXX

always has a complete set underalways has a complete set under (where the reduction function does not need to consult (where the reduction function does not need to consult). It). It ≤≤
pp
mm XX

follows that this set and its complement do not have an infimum underfollows that this set and its complement do not have an infimum under . But this is trying to fly. But this is trying to fly ≤≤
pp
mm

AA
BB

CC

JJ

??
II

The geometrical analogyThe geometrical analogy
for diagramming many-onefor diagramming many-one
reductions suggests thatreductions suggests that
the infimum (called a "meet"the infimum (called a "meet"
in lattice theory) shouldin lattice theory) should
always exist, but there arealways exist, but there are
cases where it does not.cases where it does not.

before we can jump---it will take a few weeks before we define and use "SATbefore we can jump---it will take a few weeks before we define and use "SAT " for arbitrary oracles " for arbitrary oracles .. XX XX
This does warn that This does warn that Question' Question' has "barriers" to being answered, but maybe the flexibility to seek anhas "barriers" to being answered, but maybe the flexibility to seek an
inspired formulation of inspired formulation of makes the " makes the "Research QuestionResearch Question" fair game.]" fair game.]≤≤ rr

The second notion is a language that reduces to The second notion is a language that reduces to but is not an infimum. My name and notation but is not an infimum. My name and notation AA⊕⊕BB
are not standard, but the concept underlies the strongest "silly" results.are not standard, but the concept underlies the strongest "silly" results.

Definition 2Definition 2: The : The splicesplice of two languages of two languages and and by a third language by a third language , which we'll write as, which we'll write as AA BB EE

, is the language , is the language .. EE|||| AA,, BB(()) A A ∩∩ E E ∪∪ B B ∩∩ ∼∼ EE (()) (())

The intent of The intent of is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub- is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub-EE

linear time) but "extremely gappy". Having linear time) but "extremely gappy". Having makes the splice makes the splice -reduce to -reduce to . "Gappy". "Gappy" E E ∈∈ PP ≤≤
pp
mm AA⊕⊕BB

means that there are long intervals of lengths means that there are long intervals of lengths on which on which has no strings---and long intervals has no strings---and long intervals nn …… nn00 11 EE
on which it includes every string. That makes on which it includes every string. That makes imitate imitate for long intervals of lengths for long intervals of lengths EE|||| AA,, BB(()) AA
alternately with imitating alternately with imitating . If . If is easy but is easy but is hard, then is hard, then will also be hard---but the long will also be hard---but the long BB AA BB EE|||| AA,, BB(())

intervals where it looks like intervals where it looks like will make it difficult to prove that it is not a finite variation of will make it difficult to prove that it is not a finite variation of , which, which AA AA
would make it easy after all.would make it easy after all.

Diagonalization and Ladner's TheoremDiagonalization and Ladner's Theorem

The following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and itsThe following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and its
sequels. I tweaked it a little to become the following, called the "Uniform Diagonalization Theorem"sequels. I tweaked it a little to become the following, called the "Uniform Diagonalization Theorem"
(UDT):(UDT):

Theorem 3Theorem 3: Let : Let and and be r.p. c.f.v. classes, and let be r.p. c.f.v. classes, and let be decidable languages such that be decidable languages such that CC11 CC22 AA,, BB

 and and . Then we can find . Then we can find such that such that is in neither is in neither not not A A ∉∉ CC11 B B ∉∉ CC22 E E ∈∈ DTIMEDTIME nn ++ 11[[]] EE|||| AA,, BB(()) CC11

..CC22

Before proving it, let's show how the conclusion of Before proving it, let's show how the conclusion of Ladner's TheoremLadner's Theorem follows: Suppose follows: Suppose .. PP ≠≠ NPNP

Then Then does not belong to does not belong to and and does not belong to does not belong to . Then the. Then the A A == SAT SAT CC == PP11 B B == ∅ ∅ CC == NPCNPC22

language language is neither in is neither in nor nor -complete, but it -complete, but it reduces to reduces to , so it, so it D D == E E|||| AA,, BB(()) PP NPNP ≤≤
pp
mm SAT SAT ⊕⊕ ∅ ∅

belongs to belongs to . Hence . Hence is is -intermediate.-intermediate.NPNP DD NPNP

ProofProof: We will first describe a process while "looking forward", then we will view the same process: We will first describe a process while "looking forward", then we will view the same process
"looking back." Let "looking back." Let be the presentation of be the presentation of and and that of that of . We begin in "accepting mode". We begin in "accepting mode" QQ[[jj]] CC11 RR[[kk]] CC22

by looking for the least string by looking for the least string such that such that . By . By there must be such an there must be such an ,, yy11 AA yy ≠≠ Q Q yy((11)) 11((11)) A A ∉∉ CC11 yy11

indeed by indeed by also being c.f.v., there must be infinitely many. We also keep count of the number also being c.f.v., there must be infinitely many. We also keep count of the number of of CC11 tt11

steps until such steps until such is found. At that moment, a "genie" defines is found. At that moment, a "genie" defines to include all strings of length up to include all strings of length up yy EE
through through . Then we switch over to "rejecting mode" and seek the first . Then we switch over to "rejecting mode" and seek the first of length of length or higher or higher tt11 zz11 tt ++ 1111

such that such that . Again there must be one, and we take . Again there must be one, and we take to be the total elapsed number of to be the total elapsed number of BB zz ≠≠ R R zz((11)) 11((11)) t't'11
steps upon finding and verifying it. Then the genie defines all strings of length steps upon finding and verifying it. Then the genie defines all strings of length through through to be to be tt ++ 1111 t't'11

non-members of non-members of , i.e., members of , i.e., members of . Then we switch back to "accepting mode" in order to seek. Then we switch back to "accepting mode" in order to seek EE ∼∼ EE
 of length of length or higher such that or higher such that and lake and lake to be the timestamp upon finding to be the timestamp upon finding yy22 t't' ++ 1111 AA yy ≠≠ Q Q yy((22)) 22((22)) tt22

and verifying it. Then the search for and verifying it. Then the search for such that such that is commenced from length is commenced from length .. zz22 BB zz ≠≠ R R zz((22)) 22((22)) tt ++ 1122

This process proceeds alternating forever. The language This process proceeds alternating forever. The language it creates is such that it creates is such that EE
 preserves all differences from every preserves all differences from every and and machine, so the language machine, so the language E E ∩∩ A A ∪∪ ∼∼ E E ∩∩ B B(()) (()) QQjj RRkk DD

is not in is not in .. CC ∪∪ CC11 22

To tell the complexity of To tell the complexity of , now we do the looking back: On any input , now we do the looking back: On any input , take , take and run the and run the EE xx n n == ||xx||

forward process for forward process for steps. If the process is in accepting mode at step steps. If the process is in accepting mode at step , then accept , then accept , else reject , else reject .. nn nn xx xx
This takes This takes steps and defines the same language steps and defines the same language , because of how the "genie" extends the, because of how the "genie" extends the nn ++ 11 EE
same accept mode or reject mode to include all string lengths out to the number same accept mode or reject mode to include all string lengths out to the number or or of steps at the of steps at the ttii t't'ii
end of the stage in the process that includes time end of the stage in the process that includes time . Thus, the complexity is as stated. . Thus, the complexity is as stated. nn ☒☒

Now we can play more tricks. Let's start with what we get from Ladner's Theorem:Now we can play more tricks. Let's start with what we get from Ladner's Theorem:

We can continue in merry fashion: We can make as many mutually incomparable languagesWe can continue in merry fashion: We can make as many mutually incomparable languages

 as we wish between as we wish between and and . We can apply Ladner's Theorem to place other. We can apply Ladner's Theorem to place other DD ,, DD ,, DD ,, ……33 44 55 AA BB
languages properly between these and the endpoints languages properly between these and the endpoints and and . Slightly more subtle ways of defining. Slightly more subtle ways of defining AA BB

 and and at each stage can create any desired finite pattern of which languages reduce to and from a at each stage can create any desired finite pattern of which languages reduce to and from a CC11 CC22

new language new language and which don't (provided this is consistent with the pre-existing relations). The and which don't (provided this is consistent with the pre-existing relations). The D''D''
upshot is a "general nonsense" noted by lots of people circa 1980:upshot is a "general nonsense" noted by lots of people circa 1980:

Theorem 4Theorem 4: For any reasonable and effective reducibility relation : For any reasonable and effective reducibility relation , every countable partial order , every countable partial order ≤≤ rr OO

can be embedded into the equivalence classes of languages under can be embedded into the equivalence classes of languages under . If . If has the join property has the join property ≡≡ rr OO

AA

BB

DD

AA

BB

DD

We can hence define We can hence define
r.p. c.f.v. classes r.p. c.f.v. classes CC11

and and that set up the that set up the CC22

conditions for applying conditions for applying
the UDT again: the UDT again: AA ∉∉ CC11

and and . We get . We get BB ∉∉ CC22

 so that so thatD' D' ∉∉ CC ∪∪CC11 22

. . D' D' ≤≤ A A⊕⊕B B ≡≡ B Brr rr

The lines mean strictThe lines mean strict
reducibility: reducibility: does not does notBB
reduce back to reduce back to , nor, norDD
does does reduce to reduce to ..DD AA

CC11

CC22

BB

AA

DD D'D'

By By D' D' ∉∉ CC ∪∪CC11 22

we get that we get that is isD'D'
incomparableincomparable
with with . Finally,. Finally,DD

 because becauseA A ≤≤ D' D'rr

D' D' == E E|||| AA,, BB(())

so if so if we map we mapxx ∈∈ EE
 to itself, else we to itself, else wexx

apply the reductionapply the reduction
from from to to on on . . AA BB xx

 then the image of this then the image of this ∀∀aa∀∀bb ∃∃cc ∀∀dd aa ≤≤ cc ∧∧ bb ≤≤ cc ∧∧ aa ≤≤ dd ∧∧ bb ≤≤ dd ⟶⟶ c c ≤≤ dd(())(())(())[[rr rr (())]]

embedding also has that property (i.e., is an embedding also has that property (i.e., is an upper semi-latticeupper semi-lattice too). too). ♣♣

[Can you embed every [Can you embed every full latticefull lattice among languages such that every pair has a greatest lower bound? among languages such that every pair has a greatest lower bound?
Klaus Ambos-Spies investigated that. I forget how far the answer goes---we all soon realized it wouldKlaus Ambos-Spies investigated that. I forget how far the answer goes---we all soon realized it would
not go as far as resolving not go as far as resolving versus versus .].]PP NPNP

This also proves that a nontrivial difference of r.p. classes is generally not r.p. For example:This also proves that a nontrivial difference of r.p. classes is generally not r.p. For example:

Theorem 5Theorem 5: If : If , then , then is not recursively presentable. is not recursively presentable.NP NP ≠≠ P P NP NP ⧵⧵ P P

Proof:Proof: Else, with Else, with , , , , , , we will get a language we will get a language CC == NP NP ⧵⧵ P P 11 AA == ∅ ∅11 CC == PP22 AA == SAT SAT22

 that reduces to that reduces to , a contradiction. , a contradiction. D D ∉∉ CC ∪∪CC11 22 SATSAT ☒☒

There is only one theorem of this kind that I proved that could be regarded as surprising beforehand.There is only one theorem of this kind that I proved that could be regarded as surprising beforehand.

Definition 3Definition 3: Given a recursive enumeration of languages : Given a recursive enumeration of languages define their "infinite join" define their "infinite join" AA ,, AA ,, AA ,, ……11 22 33

(we also said "completion") to be (we also said "completion") to be .. AA == ⟨⟨xx,, kk⟩⟩ :: x x ∈∈ A A𝜔𝜔 {{ kk }}

For example, TQBF is basically the infinite join of the languages For example, TQBF is basically the infinite join of the languages which are complete for the which are complete for the BBkk

respective levels of the polynomial hierarchy. This is the sense in which we said that respective levels of the polynomial hierarchy. This is the sense in which we said that is the " is the "PSPACEPSPACE

-completion" of the polynomial hierarchy. The intuition seems fine there, but can be misleading in-completion" of the polynomial hierarchy. The intuition seems fine there, but can be misleading in 𝜔𝜔

other cases: For each other cases: For each , define , define to be the language of undirected graphs that have a vertex cover to be the language of undirected graphs that have a vertex cover kk VCVCkk

of size of size . Then each language . Then each language belongs to belongs to (where the " (where the " " hides a factor" hides a factor kk VCVCkk DTIMEDTIME OO nn[[(())]] OO
proportional to proportional to), but their completion is the), but their completion is the -complete Vertex Cover problem. Likewise CLIQUE-complete Vertex Cover problem. Likewise CLIQUE 22kk NPNP

and DOMINATING SET and many other and DOMINATING SET and many other -complete problems break down this way.-complete problems break down this way. NPNP

The other notion needed to formulate the infinite case of the UDT is that of a "recursive presentation ofThe other notion needed to formulate the infinite case of the UDT is that of a "recursive presentation of
infinitely many recursive presentations" but that is readily left to the imagination.infinitely many recursive presentations" but that is readily left to the imagination.

Theorem 6Theorem 6: If : If is a recursive presentation of r.p. c.f.v. classes and is a recursive presentation of r.p. c.f.v. classes and is a is a CC ,,CC ,,CC ,, ……11 22 33 AA ,, AA ,, AA ,, ……11 22 33

recursive enumeration of decidable languages such that for each recursive enumeration of decidable languages such that for each , , , then (for any, then (for any kk AA ∉∉ CCkk kk

reasonable effective reducibility reasonable effective reducibility) we can build a language) we can build a language such that such that .. ≤≤ rr D D ∉∉ ∪∪ CCkk kk D D ≤≤ A Arr 𝜔𝜔

The proof is a moderately straightforward extension of that of the UDT: instead of alternating "acceptThe proof is a moderately straightforward extension of that of the UDT: instead of alternating "accept
mode" and "reject mode", we alternate being "like mode" and "reject mode", we alternate being "like " for a sequence of " for a sequence of that could go 1-2-1-2-3-2-1-2- that could go 1-2-1-2-3-2-1-2-AAkk kk
3-4-3-2-1-2-3-4-5-4-3... So long as every 3-4-3-2-1-2-3-4-5-4-3... So long as every comes up infinitely often, we make comes up infinitely often, we make different from the different from the kk DD
languages of all the machines presenting languages of all the machines presenting . By "looking back", we can arrange that the mapping . By "looking back", we can arrange that the mapping CCkk hh
from a string from a string of length of length to the " to the " " that is in effect after " that is in effect after steps of the process is computable in linear steps of the process is computable in linear xx nn kk nn
time. The language we get is then the simple "infinite splice"time. The language we get is then the simple "infinite splice"

,,D D == xx :: x x ∈∈ AA where k where k == h h xx{{ kk (())}}

which basically reduces to which basically reduces to via via and the pairing function. The next corollary applies only the fact and the pairing function. The next corollary applies only the fact AA𝜔𝜔 hh
that for every decidable language that for every decidable language , the class of languages that are finite variations of , the class of languages that are finite variations of is r.p. is r.p.AA AA

Corollary 7Corollary 7 (surprising?): It is impossible to define a recursive presentation (surprising?): It is impossible to define a recursive presentation of of SS ,, SS ,, SS ,, ……11 22 33 PSPACEPSPACE

without there being without there being such that such that is a finite variation of the language is a finite variation of the language above. Likewise, every above. Likewise, every kk LL SS ((kk)) BBkk

recursive presentation recursive presentation of of has has such that such that is a finite variation of the language is a finite variation of the language . This. This NN[[kk]] NPNP kk LL NN((kk)) VCVCkk

snags you no matter how you define the formal encoding of the languages snags you no matter how you define the formal encoding of the languages and and , etc., etc.BBkk VCVCkk

ProofProof: With : With as the finite variations of as the finite variations of for each for each , denying the conclusion sets up the condition, denying the conclusion sets up the condition CCkk LL SS((kk)) kk

. The language . The language that pops out thus diagonalizes out of that pops out thus diagonalizes out of , but it reduces to, but it reduces to BB ∉∉ CCkk kk DD PSPACEPSPACE

, so it stays in , so it stays in . . BB ≡≡ TQBF TQBF𝜔𝜔 rr PSPACEPSPACE ☒☒

Are there further interesting applications? It can be molded into a kind of fixed-point theorem "up toAre there further interesting applications? It can be molded into a kind of fixed-point theorem "up to
finite variations" but I didn't find anything concrete from it. It is like an all-carbs, no-protien diet.finite variations" but I didn't find anything concrete from it. It is like an all-carbs, no-protien diet.

The one route to greater significance that I can map out is to formulate and prove plausible generalThe one route to greater significance that I can map out is to formulate and prove plausible general
conditions under which the languages conditions under which the languages cannot be cannot be downward self reducible downward self reducible in the way that in the way that is: is: DD SATSAT

. Note that when we apply Ladner's situation. Note that when we apply Ladner's situation 𝜙 𝜙 ∈∈ SAT SAT ⟺⟺ 𝜙 𝜙 xx == 00 ∈∈ SAT SAT ∨∨ 𝜙 𝜙 xx == 11 ∈∈ SATSAT[[11]] [[11]]

with with , the language , the language will have vastly long intervals where will have vastly long intervals where , where whether, where whether A A ∈∈ PP DD xx ∈∈ D D ⟺⟺ x x ∈∈ AA
 is in the interval (i.e., whether is in the interval (i.e., whether is in the easy splicing language is in the easy splicing language) is decidable in) is decidable in time. On time. On xx xx EE OO ||xx||(())

these intervals, these intervals, is as easy as is as easy as and and together. When together. When is chosen to be is chosen to be , the long intervals are, the long intervals are DD AA EE AA ∅∅

empty, so that empty, so that is mega-"gappy", but we should allow for is mega-"gappy", but we should allow for to be any language in to be any language in . Then let us say:. Then let us say: DD AA PP

"" masquerades as a language in masquerades as a language in for vast intervals of instance lengths." for vast intervals of instance lengths."DD PP

QuestionQuestion: Can we prove that : Can we prove that implies that implies that cannot masquerade as a language in cannot masquerade as a language in for for NP NP ≠≠ P P SATSAT PP

vast intervals of instance lengths?vast intervals of instance lengths?

Note that Note that has many easy instances. However, it is also believed to have hard instances has many easy instances. However, it is also believed to have hard instances of "all" of "all" SATSAT 𝜙𝜙

input lengths under natural encodings. At least one of the self-reduction step-downs input lengths under natural encodings. At least one of the self-reduction step-downs 𝜙𝜙 == 𝜙 𝜙 xx == 0000 [[11]]

and and from such a from such a must also be an almost-as-hard instance. What happens when must also be an almost-as-hard instance. What happens when 𝜙𝜙 == 𝜙 𝜙 xx == 1111 [[11]] 𝜙𝜙
further step-downs hit a vast easy interval of instance lengths? The intuition says they cannot withoutfurther step-downs hit a vast easy interval of instance lengths? The intuition says they cannot without

 becoming easy, but the mechanics are trickier. The reason for further interest is that there are becoming easy, but the mechanics are trickier. The reason for further interest is that there are 𝜙𝜙

theorems to the effect that if theorems to the effect that if is not provable in certin logical theories (that "cheat", IMHO), is not provable in certin logical theories (that "cheat", IMHO), NP NP ≠≠ P P

then then must masquerade as a language in must masquerade as a language in for vast intervals of instance lengths. So this would for vast intervals of instance lengths. So this would SATSAT PP

argue for argue for to be (quasi-)provable, to be (quasi-)provable, or falseor false.. NP NP ≠≠ P P

The obstacle to the question, however, is that in "relativized worlds The obstacle to the question, however, is that in "relativized worlds " " we can prove we can prove via via BB NPNP ≠≠ P PBB BB

languages languages that are mega-gappy. Now we hook up with Arora-Barak, section 3.5. that are mega-gappy. Now we hook up with Arora-Barak, section 3.5.LLBB

The Lazy Separating OracleThe Lazy Separating Oracle

Theorem 7Theorem 7: We can build arbitrarily sparse decidable languages : We can build arbitrarily sparse decidable languages such that such that ..BB NPNP ≠≠ P PBB BB

ProofProof: We can take a single recursive presentation : We can take a single recursive presentation of polynomial-time bounded oracle TMs such of polynomial-time bounded oracle TMs such PP[[kk]]

that for all languages that for all languages , , . For any language . For any language , define the "oracle-dependent, define the "oracle-dependent BB LL PP == PPBB
kk

BB BB

language"language"

..LL == 00 :: ∃∃yy ∈∈ BB ||yy|| == nnBB nn (())

This is a This is a tally languagetally language---that is, a subset of ---that is, a subset of ---and always belongs to ---and always belongs to , indeed to , indeed to . To. To 00** NPNPBB NPNP BB[[]]

show show , we build , we build in stages so that for each in stages so that for each , , . We can handle the OTMs. We can handle the OTMs NPNP ≠≠ P PBB BB BB kk LL ≠≠ L L PPBB BB
kk

 one at a time "with arbitrary leisure": Let one at a time "with arbitrary leisure": Let be the polynomial running time of be the polynomial running time of . Then . Then is is PPkk pp nnkk(()) PPkk pp nnkk(())

also a limit on the number of different query strings also a limit on the number of different query strings of length of length that that can submit on input can submit on input , for, for yy nn PPCC
kk 00nn

any oracle any oracle , and is also a bound on the length of any query at all. So suppose , and is also a bound on the length of any query at all. So suppose the construction the construction CC C C ==

of the language of the language thus far, having included at most thus far, having included at most strings to diagonalize against the OTMs strings to diagonalize against the OTMs BB kk -- 11 PP11

through through . Take . Take large enough so that large enough so that and and is greater than the length of any query is greater than the length of any query PPk-1k-1 nn pp nn ≪≪ 2 2kk(()) nn nn
at a previous stage. Indeed, take at a previous stage. Indeed, take as vastly large as we wish... as vastly large as we wish...nn

Once having settled on a choice, run the computation Once having settled on a choice, run the computation . If it accepts, do nothing---leave . If it accepts, do nothing---leave as it as it PP 00CC

kk
nn CC

was, so that the language was, so that the language will have no strings of length will have no strings of length . This will ensure that for the final oracle . This will ensure that for the final oracle ,, BB nn BB

. If it rejects, then by . If it rejects, then by there must be some string there must be some string of length of length that was not that was not LL ≠≠ L L PPBB BB
kk pp nn ≪≪ 2 2kk(()) nn yy nn

queried. Adding queried. Adding to to then does not change the oracle computation, but it makes the "reject" answer then does not change the oracle computation, but it makes the "reject" answer yy BB

false. So again we will have false. So again we will have . We thus bring this about for all . We thus bring this about for all , so the final oracle , so the final oracle ---for---for LL ≠≠ L L PPBB BB
kk kk BB

which we can make both which we can make both and and mega-gappy---gives mega-gappy---gives . Thus we get . Thus we get . . BB LLBB LL ∉∉ PPBB BB NPNP ≠≠ P PBB BB ☒☒

Combined with Combined with this says that this says that versus versus "relativizes both ways." There are many such "relativizes both ways." There are many such NPNP == P PAA AA NPNP PP

results in complexity theory, and in my diet analogy, they are "sugars." Much of this course will,results in complexity theory, and in my diet analogy, they are "sugars." Much of this course will,
however, gain concreteness from the idea of making an "oracle" more active in the role of a however, gain concreteness from the idea of making an "oracle" more active in the role of a prover prover inin
interactions with machines.interactions with machines.

Relativizing Circuits and SATRelativizing Circuits and SAT

Boolean circuits can also be relativized to oracle languages Boolean circuits can also be relativized to oracle languages , where wlog. , where wlog. . An . An -gate-gate AA A A ⊆⊆ 00,, 11{{ }}** AA
has some number has some number of input wires and outputs of input wires and outputs iff the string iff the string held by the wires belongs held by the wires belongs mm 11 u u ∈∈ 00,, 11{{ }}mm

to to . Now we want to verify that the bedrock simulation of time . Now we want to verify that the bedrock simulation of time bounded TMs bounded TMs by by --AA tt nn(()) MM OO tt nn(())22

sized circuits carries over to OTMs and oracle circuits. [This is short of asking about thesized circuits carries over to OTMs and oracle circuits. [This is short of asking about the
-sized simulation.]-sized simulation.] OO tt nn tt nn(((())loglog (())))

It is convenient to consider It is convenient to consider to be physically a 1-tape TM but to interleave a virtual oracle tape with its to be physically a 1-tape TM but to interleave a virtual oracle tape with its MM
regular tape(s). Let us also suppose that cell regular tape(s). Let us also suppose that cell is reserved to hold the result of the oracle call and is reserved to hold the result of the oracle call and 00 MM
always scans that cell when entering its query state. The query always scans that cell when entering its query state. The query is determined to be the longest is determined to be the longest yy
binary contents of cells binary contents of cells (terminated by a blank cell or whatever). The output (terminated by a blank cell or whatever). The output is is 22,, 44,, 66,, 88,, …… AA uu(())

written to cell written to cell while the other even-numbered cells are unchanged. while the other even-numbered cells are unchanged. 00

[Footnote 1: This convention does not run afoul of the problem with allowing the query string to be[Footnote 1: This convention does not run afoul of the problem with allowing the query string to be
preserved on the oracle tape. That issue comes when preserved on the oracle tape. That issue comes when can append a bit to can append a bit to and re-submit the new and re-submit the new MM yy
string string in the next step. For example, you could have the oracle in the next step. For example, you could have the oracle y'y'

.. SAT' SAT' == 𝜙𝜙,, aa aa ,, ⋯⋯ aa :: 𝜙 𝜙 xx aa ,, xx aa ,, …… ,, xx aa ∈∈ SAT SAT11 22 ii 11 ←← 11 22 ←← 22 ii ←← ii

This oracle can be used to construct a satisfying assignment to This oracle can be used to construct a satisfying assignment to whenever whenever is is 𝜙𝜙 xx ,, …… ,, xx((11 nn)) 𝜙𝜙

satisfiable. If the query portion satisfiable. If the query portion is preserved at each query step, then the OTM would run in is preserved at each query step, then the OTM would run in aa ⋯⋯ aa11 ii

time time , thus seeming to give a linear-time reduction from search to , thus seeming to give a linear-time reduction from search to . But a linear-time. But a linear-time OO nn(()) SAT'SAT'

algorithm for algorithm for in place of the oracle would not yield a linear-time algorithm for computing the in place of the oracle would not yield a linear-time algorithm for computing the SAT'SAT'
assignment. IMHO, if one defines "linear-time Turing reducibility" then it should preserve linear timeassignment. IMHO, if one defines "linear-time Turing reducibility" then it should preserve linear time
computability from oracle to target function. The only way I know to do this is to erase the query aftercomputability from oracle to target function. The only way I know to do this is to erase the query after
every call, or position the head where the query cannot be elongated.]every call, or position the head where the query cannot be elongated.]

Footnote 2: Historically, this issue is dwarfed by that of whether the oracle tape should count againstFootnote 2: Historically, this issue is dwarfed by that of whether the oracle tape should count against
the space bound.]the space bound.]

This easily brings the oracle into the relation This easily brings the oracle into the relation between IDs. We can program fixed circuitry between IDs. We can program fixed circuitry II ⊢⊢ I It-1t-1 MMAA tt

for this relation including an for this relation including an -gate with output to cell -gate with output to cell . The . The -gate physically needs -gate physically needs input wires input wires AA 00 AA 𝛩𝛩 tt(())

at step at step since the query could be that long---we may suppose that shorter queries are terminated by since the query could be that long---we may suppose that shorter queries are terminated by tt
recognizable blanks. We need not arrange recognizable blanks. We need not arrange to be oblivious in order to use the "bedrock" simulation: if to be oblivious in order to use the "bedrock" simulation: if MM
step step is not a query step then the is not a query step then the -gate just gives the identity function (in cell -gate just gives the identity function (in cell and overall). and overall). tt AA 00

∧∧

II xx00(())

⋮⋮

IIff

∧∧

∧∧

⋮⋮ ⋮⋮ ⋮⋮ ⋮⋮ ⋮⋮

∧∧
qq
∧∧

11
or 0 for a rejecting computationor 0 for a rejecting computation

__ __ __ __ __ __ss
xx11

xx22 xx33

xxn-1n-1 xxnn

…… …… ……

……

𝛿𝛿

ss
xx11

xx22 xx33

yy22yy11 yy33

……

…………

yy44
……qq??

∧∧

𝛿𝛿

AA yy(())

∧∧

Thus we can simulate Thus we can simulate on inputs on inputs of length of length via via -sized oracle circuits -sized oracle circuits , where, where MM xxAA(()) xx nn OO tt nn(())22 CC[[nn]]

each each has has input "gates" (each of which can branch into multiple input input "gates" (each of which can branch into multiple input wireswires) and is otherwise) and is otherwise CCnn nn
composed of binary NAND gates and composed of binary NAND gates and -ary -ary -gates. If -gates. If is verifying the relation is verifying the relation defining a defining a tt AA MMAA RR xx,, yyAA(())

language in language in ---which equals ---which equals ---then each ---then each has has input gates input gates and also and also input input NPNPAA NPNP PPAA CCnn nn xx ,, …… xx11 nn pp

gates gates for the potential witness string for the potential witness string . We have proved:. We have proved:yy ,, …… ,, yy11 pp yy

TheoremTheorem: For all oracles : For all oracles , every language , every language in in has polynomial-sized circuits has polynomial-sized circuits of simple of simple AA LL PPAA CCnn

Boolean gates and Boolean gates and -gates, such that for all -gates, such that for all , , , with , with . Moreover,. Moreover, AA xx x x ∈∈ L L ⟺⟺ C C xx == 1 1AA
nn (()) n n == ||xx||

the function from the function from to to is computable in polynomial time (depending on the polynomial running time is computable in polynomial time (depending on the polynomial running time nn CCnn

of a single-tape OTM accepting of a single-tape OTM accepting).). LL

The latter clause is called The latter clause is called polynomial-time uniformitypolynomial-time uniformity and sinply gives another way of defining and sinply gives another way of defining .. PPAA

Without the clause, we have the notation Without the clause, we have the notation for languages accepted by circuit families for languages accepted by circuit families PP // polypoly CC[[nn]]∞∞n=1n=1

where the where the have size have size . For not-necessarily-uniform oracle circuits the notation is . For not-necessarily-uniform oracle circuits the notation is ..CCnn nnOO 11(()) PP // polypolyAA

Now to translate the circuit into a Boolean formula, for each output wire Now to translate the circuit into a Boolean formula, for each output wire of a NAND gate with inputs of a NAND gate with inputs ww

 we get the equation we get the equationuu,, vv

w w == NAND NAND uu,, vv(())

and for an and for an -gate with output wires -gate with output wires connecting from cell connecting from cell , we get, we getAA vvoo 00

..vv == A A uu ,, …… ,, uuoo ((11 mm))

The collection of these "equational clauses", together with The collection of these "equational clauses", together with for the output wire for the output wire , defines the, defines the ww((oo)) wwoo

corresponding instance of corresponding instance of . We can use . We can use in equations in equationsSATSATAA vvoo

w w == NAND NAND uu,, vv ≡≡ u u ∨∨ w w ∧∧ vv ∨∨ w w ∧∧ ∨∨ ∨∨ ..((oo)) (()) ((oo)) ((uu⏨⏨ vv⏨⏨oo ww⏨⏨))

 An alternate style of relativizing An alternate style of relativizing is to treat is to treat as a literal in clauses, as a literal in clauses, vizviz.:.:SATSAT AA uu ,, …… ,, uu((11 mm))

u u ∨∨ w w ∧∧ AA uu ,, …… ,, uu ∨∨ w w ∧∧ ∨∨ ∨∨ ..(()) ((((11 mm)))) uu⏨⏨ AA uu ,, …… ,, uu⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨((11 mm)) ww⏨⏨

This avoids having to treat equations separately but creates double-decker literals in clauses. I will goThis avoids having to treat equations separately but creates double-decker literals in clauses. I will go
completely the other way: I will prefer to regard completely the other way: I will prefer to regard as a problem about logical equations (which will as a problem about logical equations (which will SATSAT
be broadened to algebraic equations and then to equations from quantum circuits). Then it is mostbe broadened to algebraic equations and then to equations from quantum circuits). Then it is most
natural to keep the potential oracle calls natural to keep the potential oracle calls as equations. Having thus implicitly as equations. Having thus implicitly vv == A A uu ,, …… ,, uuoo ((11 mm))

settled on a definition of "relativized settled on a definition of "relativized ", that is, the language ", that is, the language for any language for any language , we can, we can SATSAT SATSATAA AA
state the relativized Cook-Levin theorem and some corollaries.state the relativized Cook-Levin theorem and some corollaries.

TheoremTheorem: For all languages : For all languages , , is complete for is complete for under under ..AA SATSATAA NPNPAA
≤≤

pp
mm

ProofProof: : is in is in since we can use since we can use to evaluate the equations with to evaluate the equations with . Let any. Let any SATSATAA NPNPAA AA AA ⋯⋯(())

 be given, then there is a relation be given, then there is a relation with associated length-bounding polynomial with associated length-bounding polynomial L L ∈∈ NPNPAA RR xx,, yy ∈∈ PP(()) AA

 such that for all such that for all , , . As detailed above, we can take a single-tape OTM. As detailed above, we can take a single-tape OTM pp nn(()) xx x x ∈∈ L L ⟺⟺ ∃∃ yy RR xx,, yypp (())

 deciding deciding in polynomial time with oracle in polynomial time with oracle and simulate and simulate by a uniform family of oracle by a uniform family of oracle MM RR xx,, yy(()) AA MM

circuits circuits . Then for each . Then for each we get a formula we get a formula such that when the bits of such that when the bits of are substituted for the are substituted for the CC[[nn]] nn 𝜙𝜙AA
nn xx

variables variables , there is an assignment to the variables , there is an assignment to the variables and the other wire variables and the other wire variables xx ,, …… ,, xx11 nn yy ,, …… yy11 pp |x||x|(())

that satisfies every equation including that satisfies every equation including for the output wire, if and only if for the output wire, if and only if , which is if, which is if ww == 1 1oo CC xx == 1 1nn(())

and only if and only if . The mapping from . The mapping from to to is computable in time is computable in time without recourse to without recourse to , since, since x x ∈∈ L L xx 𝜙𝜙AA
nn nnOO nn(()) AA

the equations the equations as part of as part of are just syntax. Thus are just syntax. Thus . . vv == A A uu ,, …… ,, uuoo ((11 mm)) 𝜙𝜙AA
nn L L ≤≤ SAT SATpp

mm
AA ☒☒

CorollaryCorollary: For all : For all , the language , the language is complete for is complete for under under , and the language , and the language of of k k ≥≥ 1 1 BBkk ∑∑

pp

kk
≤≤

pp
mm B'B'kk

true true propositional sentences if complete for propositional sentences if complete for under under .. 𝛱𝛱kk ∏∏

pp

kk
≤≤

pp
mm

ProofProof: We have : We have for all for all by the polynomial hierarchy by the polynomial hierarchy == NPNP == NPNP == NP NP B'B'∑∑

pp

kk
BBk-1k-1 B'B'k-1k-1 [[k-1k-1]] kk

theorem. Thus, theorem. Thus, is complete for is complete for by the relativized Cook-Levin theorem. Is saying that by the relativized Cook-Levin theorem. Is saying that SATSATB'B'k-1k-1 ∑∑

pp

kk

 is equivalent to is equivalent to an acceptable handwave...? [Maybe full rigor requires unwinding the an acceptable handwave...? [Maybe full rigor requires unwinding the SATSATB'B'k-1k-1 BBkk

details of the proof of the polynomial hierarchy theorem again. Anyway, details of the proof of the polynomial hierarchy theorem again. Anyway,]] ☒☒

CorollaryCorollary: Whenever : Whenever , we can construct languages in , we can construct languages in that are not that are not --NPNP ≠≠ PPAA AA NPNP ⧵⧵ PPAA AA NPNPAA

complete; indeed, we can embed every countable upper semiliattice between complete; indeed, we can embed every countable upper semiliattice between and and using only using only SATSATAA ∅∅

"gappy" subsets of "gappy" subsets of .. SATSATAA

It also follows that there is a single It also follows that there is a single universaluniversal countable upper semilattice, namely the one formed by the countable upper semilattice, namely the one formed by the
structure of decidable languages under structure of decidable languages under to begin with. In this sense, universality is "a dime a to begin with. In this sense, universality is "a dime a ≤≤

pp
mm

dozen."dozen."

[There was a question during the lecture about heat loss in computing functions[There was a question during the lecture about heat loss in computing functions

, to which I noted that the expanded function of , to which I noted that the expanded function of arguments argumentsff xx ,, …… ,, xx == yy ,, …… ,, yy((11 nn)) ((11 mm)) mm ++ nn

,,FF xx ,, …… ,, xx ,, aa ,, …… ,, aa == xx ,, …… ,, xx ,, aa ⊕⊕ yy ,, …… ,, aa ⊕⊕ yy((11 nn 11 mm)) ((11 nn 11 11 mm mm))

is invertible. This is the basic idea of is invertible. This is the basic idea of reversible computationreversible computation and will be a main ingredient of quantum and will be a main ingredient of quantum
computing.]computing.]

The Karp-Lipton TheoremThe Karp-Lipton Theorem

What happens if What happens if itself has polynomial-sized circuits itself has polynomial-sized circuits ? We can relativize this question, too, to? We can relativize this question, too, to SATSAT CC[[nn]]

any oracle any oracle . The fact and proof become a nice exercise in transposing a . The fact and proof become a nice exercise in transposing a logical definition into a logical definition into a AA 𝛱𝛱22

 one. one.𝛴𝛴22

TheoremTheorem: If : If then then = = (so (so collapses to collapses to).).SAT SAT ∈∈ PP // polypoly ∑∑

pp

22
∏∏

pp

22
PHPH ∑∑

pp

22
∩∩ ∏∏

pp

22

This is an example of a theorem of the kind that Avi Wigderson lampooned as "if pigs can whistle, thenThis is an example of a theorem of the kind that Avi Wigderson lampooned as "if pigs can whistle, then
horses can fly." Neither side of the implication is believed. However, they can be rescued from beinghorses can fly." Neither side of the implication is believed. However, they can be rescued from being
counterfactual by relativizing them:counterfactual by relativizing them:

Theorem'Theorem': For all oracle languages : For all oracle languages , if , if then then = = ..AA SAT SAT ∈∈ PP // polypolyAA ∑∑

p,Ap,A

22
∏∏

p,Ap,A

22

We will prove the unrelativized form, but it becomes a straightforward exercise to see that the proofWe will prove the unrelativized form, but it becomes a straightforward exercise to see that the proof
relativizesrelativizes. A key point is that we don't suppose the ability to . A key point is that we don't suppose the ability to findfind for each for each the circuit the circuit that solves that solves ss CCss

 instances of size instances of size , else we would have , else we would have , which of course collapses the hierarchy all, which of course collapses the hierarchy all SATSAT ss SAT SAT ∈∈ PP

the way to the way to . Rather the hypothesis is that among the exponentially many possible circuits of a given. Rather the hypothesis is that among the exponentially many possible circuits of a given PP

size size , a circuit , a circuit that is correct on size- that is correct on size- instances instances existsexists. We still need to spend a . We still need to spend a quantifier to quantifier to ss CCss ss ∀∀
verifyverify this circuit in order to fixate its usability. this circuit in order to fixate its usability.

The second key point is not counterfactual at all. The self-reducibility of The second key point is not counterfactual at all. The self-reducibility of gives every supposed gives every supposed SATSAT
decider decider for it a "self-proving" property. If we want to prove that for it a "self-proving" property. If we want to prove that really signifies that really signifies that is is CCss CC 𝜓𝜓 == 1 1ss(()) 𝜓𝜓

satisfiable, then we can run satisfiable, then we can run on on and and . For self-consistency at. For self-consistency at CCss 𝜓𝜓 == 𝜓 𝜓 xx == 0 000 [[11]] 𝜓𝜓 == 𝜓 𝜓 xx == 1 111 [[11]]

least one of least one of and and must give must give , and we can choose it and recurse as in the self-reduction, and we can choose it and recurse as in the self-reduction CC 𝜓𝜓ss((00)) CC 𝜓𝜓ss((11)) 11

procedure. If procedure. If is correct, then at the end we get a satisfying assignment for is correct, then at the end we get a satisfying assignment for . We therefore need. We therefore need CCss 𝜓𝜓

no further quantification. Thus we will be able to switch a no further quantification. Thus we will be able to switch a quantification defining an arbitrary quantification defining an arbitrary ∀∃∀∃

language in language in into into form, which gives the conclusion. form, which gives the conclusion.∏∏

pp

22
∃∀∃∀

ProofProof: Let any : Let any predicate predicate be given. This gives us a polynomial-time be given. This gives us a polynomial-time 𝛱𝛱22 QQ xx == ∀∀ yy∃∃ zRzR xx,, yy,, zz(()) pp pp (())

computable function computable function such that such that . Given . Given of length of length ff xx,, yy == 𝜙 𝜙(()) x,yx,y 𝜙𝜙 ∈∈ SAT SAT ⟺⟺ ∃∃ zz RR xx,, yy,, zzx,yx,y
pp (()) xx

, there is a polynomial limit , there is a polynomial limit on the size of on the size of , and we may conveniently suppose that all , and we may conveniently suppose that all in the in the nn ss nn(()) 𝜙𝜙x,yx,y 𝜙𝜙

range of range of over over of length of length and and of length (up to) of length (up to) have size have size . Then:. Then:ff xx,, yy(()) xx nn yy pp nn(()) s s == s s nn(())

,,QQ xx ⟺⟺ ∃∃CC ∀∀𝜓𝜓 CC 𝜙𝜙 == 1 1 ∧∧ CC 𝜓𝜓 == 1 1 ⟷⟷ SR SR CC ,,𝜓𝜓 satisfies 𝜓 satisfies 𝜓(()) ((ss))(())[[ss((x,yx,y)) [[ss(()) ((ss))]]]]

where where is the self-reduction procedure described just above. This gives a is the self-reduction procedure described just above. This gives a -definition of -definition of , and, and SRSR 𝛴𝛴22 QQ xx(())

the conclusion follows. the conclusion follows. ☒☒

