
CSE696 Week 3: Diagonalization and Reductions and RelativizationsCSE696 Week 3: Diagonalization and Reductions and Relativizations
  
Structure of ReductionsStructure of Reductions
  
Two more "structural" complexity notions will build a framework for reducibility relations.Two more "structural" complexity notions will build a framework for reducibility relations.
  
Definition 1Definition 1: The : The joinjoin of two langauges  of two langauges  and  and  is  is ..AA BB A0 A0 ∪∪  B1  B1 ==   x0x0 :: xx ∈∈ AA   ∪∪   y1y1 :: yy ∈∈ BB{{ }} {{ }}
  
Often the join is written Often the join is written  although that can confuse with exclusive-or for the symmetric difference although that can confuse with exclusive-or for the symmetric difference  AA⊕⊕BB
of of  and  and  (which, however, I prefer to write as  (which, however, I prefer to write as ).  It is immediate that ).  It is immediate that  and and  AA BB A A △△  B B A A ≤≤  A A⊕⊕BBrr

 for basically any reducibility relation  for basically any reducibility relation , because all we have to do is tack on a , because all we have to do is tack on a  or a  or a   B B ≤≤  A A⊕⊕BBrr ≤≤ rr 00 11

to the string to the string  given in the reduction.  The key fact about the join is: given in the reduction.  The key fact about the join is:xx
  

Lemma 1Lemma 1: For basically any reducibility : For basically any reducibility , not just , not just  or  or , if , if  are any languages such are any languages such  ≤≤ rr ≤≤
pp
mm ≤≤

pp
TT AA,, BB,, CC

that that  and  and , then , then ..A A ≤≤  C Crr B B ≤≤  C Crr AA⊕⊕B B ≤≤  C Crr

  
ProofProof: Given any string : Given any string , if , if  then we know  then we know , so we apply the presumed fixed action, so we apply the presumed fixed action  xx x x ==  𝜖 𝜖 x x ∉∉  A A⊕⊕BB
of the reduction when we know the given string is not in the source language.  Otherwise, eitherof the reduction when we know the given string is not in the source language.  Otherwise, either  

 and belongs to  and belongs to  if and only if  if and only if , or , or  and belongs to  and belongs to  if and only if if and only if  x x ==  y0 y0 AA⊕⊕BB y y ∈∈  A A x x ==  y1 y1 AA⊕⊕BB
.  In the former case, we apply the reduction from .  In the former case, we apply the reduction from  to  to ; in the latter case, we apply the; in the latter case, we apply the  y y ∈∈  B B AA CC

reduction from reduction from  to  to .  For basically any .  For basically any , the code managing the two potential applications of a, the code managing the two potential applications of a  BB CC ≤≤ rr

 reduction belongs to the same class of functions or (oracle) machines that defines  reduction belongs to the same class of functions or (oracle) machines that defines  to begin to begin  ≤≤ rr ≤≤ rr

with.  So we get with.  So we get . . AA⊕⊕B B ≤≤  C Crr ☒☒
  
The upshot is that The upshot is that  is a least upper bound for the reductions: it reduces to anything that both  is a least upper bound for the reductions: it reduces to anything that both   AA⊕⊕BB AA
and and  reduce to.  Technically speaking, this makes the partially ordered structure of (equivalence reduce to.  Technically speaking, this makes the partially ordered structure of (equivalence  BB
classes of) languages under classes of) languages under  into an  into an upper semi-latticeupper semi-lattice.  Put another way: given any decidable.  Put another way: given any decidable  ≤≤ rr

languages languages  and  and , there is always a language , there is always a language  such that  such that  and  and , and whenever , and whenever  is a is a  AA BB JJ A A ≤≤  J Jrr B B ≤≤  J Jrr CC
language such that language such that  and  and , we have , we have .  The language .  The language  can always be taken as can always be taken as  A A ≤≤  C Crr B B ≤≤  C Crr J J ≤≤  C Crr JJ
the join of the join of  and  and ..    AA BB
  
  

  

  



  
  
Now here is a mirror-image question:Now here is a mirror-image question:
  
Research QuestionResearch Question: Given any decidable languages : Given any decidable languages  and  and , is there always a language , is there always a language  such that such that  AA BB II

 and  and , and whenever , and whenever  is a language such that  is a language such that  and  and , we have, we have  I I ≤≤  A Arr I I ≤≤  B Brr CC C C ≤≤  A Arr C C ≤≤  B Brr

??C C ≤≤  I Irr

  
Such a language Such a language , if it exists, could be called an "infimum" of , if it exists, could be called an "infimum" of  and  and .  Well, for many known.  Well, for many known  II AA BB
reducibilities, this is known to fail.  But can you define a reasonable reducibilities, this is known to fail.  But can you define a reasonable  so that it holds?  And even for so that it holds?  And even for  ≤≤ rr

polynomial-time many-one reductions polynomial-time many-one reductions , the cases of , the cases of  that lack an infimum are somewhat that lack an infimum are somewhat  ≤≤
pp
mm AA,, BB

specialized.  Let's try a natural case:specialized.  Let's try a natural case:
  
Question'Question': Do SAT and TAUT have an infimum under : Do SAT and TAUT have an infimum under ??≤≤

pp
mm

  
In this case, any language In this case, any language  such that  such that  and  and  belongs to  belongs to NPNP    co-NPco-NP.  And.  And  II I I ≤≤  SAT SATpp

mm II ≤≤  TAUT TAUTpp
mm ∩∩

every language every language  in  in NPNP    co-NPco-NP has that property.  So this is equivalent to asking whether  has that property.  So this is equivalent to asking whether NPNP    co-co-CC ∩∩ ∩∩

NPNP  includes a language includes a language  such that for every  such that for every  in  in NPNP    co-NPco-NP, , .  In other words:.  In other words:II CC ∩∩ C C ≤≤  I Ipp
mm

  

Proposition 2Proposition 2: : SAT and TAUT have an infimum under SAT and TAUT have an infimum under  if and only if  if and only if NPNP    co-NP co-NP has a completehas a complete  ≤≤
pp
mm ∩∩

set under set under ..≤≤
pp
mm

  
[Now, there are oracles [Now, there are oracles  relative to which  relative to which     co-co-  does not have complete sets, but  does not have complete sets, but   XX NPNPXX ∩∩ NPNPXX NPNPXX

always has a complete set underalways has a complete set under  (where the reduction function does not need to consult  (where the reduction function does not need to consult ).  It).  It  ≤≤
pp
mm XX

follows that this set and its complement do not have an infimum underfollows that this set and its complement do not have an infimum under .  But this is trying to fly.  But this is trying to fly  ≤≤
pp
mm
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JJ
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The geometrical analogyThe geometrical analogy
for diagramming many-onefor diagramming many-one
reductions suggests thatreductions suggests that
the infimum (called a "meet"the infimum (called a "meet"
in lattice theory) shouldin lattice theory) should
always exist, but there arealways exist, but there are
cases where it does not.cases where it does not.



before we can jump---it will take a few weeks before we define and use "SATbefore we can jump---it will take a few weeks before we define and use "SAT " for arbitrary oracles " for arbitrary oracles ..      XX XX
This does warn that This does warn that Question' Question' has "barriers" to being answered, but maybe the flexibility to seek anhas "barriers" to being answered, but maybe the flexibility to seek an  
inspired formulation of inspired formulation of  makes the " makes the "Research QuestionResearch Question" fair game.]" fair game.]≤≤ rr

  
The second notion is a language that reduces to The second notion is a language that reduces to  but is not an infimum.  My name and notation but is not an infimum.  My name and notation  AA⊕⊕BB
are not standard, but the concept underlies the strongest "silly" results.are not standard, but the concept underlies the strongest "silly" results.
  
Definition 2Definition 2: The : The splicesplice of two languages  of two languages  and  and  by a third language  by a third language , which we'll write as, which we'll write as  AA BB EE

, is the language , is the language ..    EE|||| AA,, BB(( )) A A ∩∩  E E   ∪∪   B B ∩∩ ∼∼ EE   (( )) (( ))
  
The intent of The intent of  is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub- is to be an "easy" langauge (not just in polynomial or linear time but even notions of sub-EE

linear time) but "extremely gappy".  Having linear time) but "extremely gappy".  Having  makes the splice  makes the splice -reduce to -reduce to .  "Gappy".  "Gappy"  E E ∈∈   PP ≤≤
pp
mm AA⊕⊕BB

means that there are long intervals of lengths means that there are long intervals of lengths  on which  on which  has no strings---and long intervals has no strings---and long intervals  nn …… nn00 11 EE
on which it includes every string.  That makes on which it includes every string.  That makes  imitate  imitate  for long intervals of lengths for long intervals of lengths  EE|||| AA,, BB(( )) AA
alternately with imitating alternately with imitating .  If .  If  is easy but  is easy but  is hard, then  is hard, then  will also be hard---but the long will also be hard---but the long  BB AA BB EE|||| AA,, BB(( ))

intervals where it looks like intervals where it looks like  will make it difficult to prove that it is not a finite variation of  will make it difficult to prove that it is not a finite variation of , which, which  AA AA
would make it easy after all.would make it easy after all.
  
  
Diagonalization and Ladner's TheoremDiagonalization and Ladner's Theorem
  
The following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and itsThe following theorem was proved by Uwe Schöning as a generalization of Ladner's Theorem and its  
sequels.  I tweaked it a little to become the following, called the "Uniform Diagonalization Theorem"sequels.  I tweaked it a little to become the following, called the "Uniform Diagonalization Theorem"  
(UDT):(UDT):
  
Theorem 3Theorem 3: Let : Let  and  and  be r.p. c.f.v. classes, and let  be r.p. c.f.v. classes, and let  be decidable languages such that be decidable languages such that  CC11 CC22 AA,, BB

 and  and .  Then we can find .  Then we can find  such that  such that  is in neither  is in neither  not not  A A ∉∉   CC11 B B ∉∉   CC22 E E ∈∈   DTIMEDTIME nn ++ 11[[ ]] EE|||| AA,, BB(( )) CC11

..CC22

  
Before proving it, let's show how the conclusion of  Before proving it, let's show how the conclusion of  Ladner's TheoremLadner's Theorem follows: Suppose  follows: Suppose ..    PP  ≠≠   NPNP

Then Then  does not belong to  does not belong to  and  and  does not belong to  does not belong to .  Then the.  Then the  A A ==  SAT SAT CC   ==   PP11 B B ==  ∅ ∅ CC   ==   NPCNPC22

language language  is neither in  is neither in  nor  nor -complete, but it -complete, but it  reduces to  reduces to , so it, so it  D D ==  E E|||| AA,, BB(( )) PP NPNP ≤≤
pp
mm SAT SAT ⊕⊕  ∅ ∅

belongs to belongs to .  Hence .  Hence  is  is -intermediate.-intermediate.NPNP DD NPNP

  
ProofProof: We will first describe a process while "looking forward", then we will view the same process: We will first describe a process while "looking forward", then we will view the same process  
"looking back."  Let "looking back."  Let  be the presentation of  be the presentation of  and  and  that of  that of .  We begin in "accepting mode".  We begin in "accepting mode"  QQ[[ jj]] CC11 RR[[ kk]] CC22

by looking for the least string by looking for the least string  such that  such that .  By .  By  there must be such an  there must be such an ,,  yy11 AA yy   ≠≠  Q Q yy(( 11)) 11(( 11)) A A ∉∉   CC11 yy11

indeed by indeed by  also being c.f.v., there must be infinitely many.  We also keep count of the number  also being c.f.v., there must be infinitely many.  We also keep count of the number  of of  CC11 tt11

steps until such steps until such  is found.  At that moment, a "genie" defines  is found.  At that moment, a "genie" defines  to include all strings of length up to include all strings of length up  yy EE
through through .  Then we switch over to "rejecting mode" and seek the first .  Then we switch over to "rejecting mode" and seek the first  of length  of length  or higher or higher  tt11 zz11 tt ++ 1111

such that such that .  Again there must be one, and we take .  Again there must be one, and we take  to be the total elapsed number of to be the total elapsed number of  BB zz   ≠≠  R R zz(( 11)) 11(( 11)) t't'11
steps upon finding and verifying it.  Then the genie defines all strings of length steps upon finding and verifying it.  Then the genie defines all strings of length  through  through  to be to be  tt ++ 1111 t't'11

  

  



non-members of non-members of , i.e., members of , i.e., members of .  Then we switch back to "accepting mode" in order to seek.  Then we switch back to "accepting mode" in order to seek  EE ∼∼ EE
 of length  of length  or higher such that  or higher such that  and lake  and lake  to be the timestamp upon finding to be the timestamp upon finding  yy22 t't' ++ 1111 AA yy   ≠≠  Q Q yy(( 22)) 22(( 22)) tt22

and verifying it.  Then the search for and verifying it.  Then the search for  such that  such that  is commenced from length  is commenced from length ..    zz22 BB zz   ≠≠  R R zz(( 22)) 22(( 22)) tt ++ 1122

This process proceeds alternating forever.  The language This process proceeds alternating forever.  The language  it creates is such that it creates is such that  EE
 preserves all differences from every  preserves all differences from every  and  and  machine, so the language  machine, so the language   E E ∩∩  A A   ∪∪   ∼∼ E E ∩∩  B B(( )) (( )) QQjj RRkk DD

is not in is not in ..    CC   ∪∪   CC11 22

  
To tell the complexity of To tell the complexity of , now we do the looking back: On any input , now we do the looking back: On any input , take , take  and run the and run the  EE xx n n ==   ||xx||

forward process for forward process for  steps.  If the process is in accepting mode at step  steps.  If the process is in accepting mode at step , then accept , then accept , else reject , else reject ..    nn nn xx xx
This takes This takes  steps and defines the same language  steps and defines the same language , because of how the "genie" extends the, because of how the "genie" extends the  nn ++ 11 EE
same accept mode or reject mode to include all string lengths out to the number same accept mode or reject mode to include all string lengths out to the number  or  or  of steps at the of steps at the  ttii t't'ii
end of the stage in the process that includes time end of the stage in the process that includes time .  Thus, the complexity is as stated. .  Thus, the complexity is as stated. nn ☒☒
  
Now we can play more tricks.  Let's start with what we get from Ladner's Theorem:Now we can play more tricks.  Let's start with what we get from Ladner's Theorem:
  

  
We can continue in merry fashion: We can make as many mutually incomparable languagesWe can continue in merry fashion: We can make as many mutually incomparable languages  

 as we wish between  as we wish between  and  and .  We can apply Ladner's Theorem to place other.  We can apply Ladner's Theorem to place other  DD ,, DD ,, DD ,, ……33 44 55 AA BB
languages properly between these and the endpoints languages properly between these and the endpoints  and  and .  Slightly more subtle ways of defining.  Slightly more subtle ways of defining  AA BB

 and  and  at each stage can create any desired finite pattern of which languages reduce to and from a at each stage can create any desired finite pattern of which languages reduce to and from a  CC11 CC22

new language new language  and which don't (provided this is consistent with the pre-existing relations).  The and which don't (provided this is consistent with the pre-existing relations).  The  D''D''
upshot is a "general nonsense" noted by lots of people circa 1980:upshot is a "general nonsense" noted by lots of people circa 1980:
  
Theorem 4Theorem 4: For any reasonable and effective reducibility relation : For any reasonable and effective reducibility relation , every countable partial order , every countable partial order   ≤≤ rr OO

can be embedded into the equivalence classes of languages under can be embedded into the equivalence classes of languages under . If . If  has the join property has the join property  ≡≡ rr OO
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We can hence define We can hence define 
r.p. c.f.v. classes r.p. c.f.v. classes CC11

and and  that set up the  that set up the CC22

conditions for applying conditions for applying 
the UDT again: the UDT again: AA ∉∉ CC11

and and .  We get .  We get BB ∉∉ CC22

 so that so thatD' D' ∉∉   CC ∪∪CC11 22

.  .  D' D' ≤≤  A A⊕⊕B B ≡≡  B Brr rr

The lines mean strictThe lines mean strict
reducibility: reducibility:  does not does notBB
reduce back to reduce back to , nor, norDD
does does  reduce to  reduce to ..DD AA

CC11

CC22

BB

AA

DD D'D'

By By D' D' ∉∉   CC ∪∪CC11 22

we get that we get that  is isD'D'
incomparableincomparable
with with .  Finally,.  Finally,DD

 because becauseA A ≤≤  D' D'rr

D' D' ==  E E|||| AA,, BB(( ))

so if so if  we map we mapxx ∈∈ EE
 to itself, else we to itself, else wexx

apply the reductionapply the reduction
from from  to  to  on  on . . AA BB xx



 then the image of this then the image of this  ∀∀aa∀∀bb ∃∃cc ∀∀dd aa ≤≤   cc  ∧∧   bb  ≤≤   cc  ∧∧   aa  ≤≤   dd  ∧∧   bb  ≤≤   dd  ⟶⟶  c c  ≤≤   dd(( ))(( ))(( ))[[ rr rr (( ))]]

embedding also has that property (i.e., is an embedding also has that property (i.e., is an upper semi-latticeupper semi-lattice too).   too).  ♣♣
  
[Can you embed every [Can you embed every full latticefull lattice among languages such that every pair has a greatest lower bound? among languages such that every pair has a greatest lower bound?    
Klaus Ambos-Spies investigated that.  I forget how far the answer goes---we all soon realized it wouldKlaus Ambos-Spies investigated that.  I forget how far the answer goes---we all soon realized it would  
not go as far as resolving not go as far as resolving  versus  versus .].]PP NPNP

  
This also proves that a nontrivial difference of r.p. classes is generally not r.p.  For example:This also proves that a nontrivial difference of r.p. classes is generally not r.p.  For example:
  
Theorem 5Theorem 5: If : If , then , then  is not recursively presentable. is not recursively presentable.NP NP ≠≠  P P NP NP ⧵⧵  P P
  
Proof:Proof: Else, with  Else, with , , , , , ,  we will get a language we will get a language  CC   == NP NP ⧵⧵  P P  11 AA   ==  ∅ ∅11 CC   == PP22 AA   ==  SAT SAT22

 that reduces to  that reduces to , a contradiction. , a contradiction. D D ∉∉   CC ∪∪CC11 22 SATSAT ☒☒
  
There is only one theorem of this kind that I proved that could be regarded as surprising beforehand.There is only one theorem of this kind that I proved that could be regarded as surprising beforehand.    
  
Definition 3Definition 3: Given a recursive enumeration of languages : Given a recursive enumeration of languages  define their "infinite join" define their "infinite join"  AA ,, AA ,, AA ,, ……11 22 33

(we also said "completion") to be (we also said "completion") to be ..    AA   ==   ⟨⟨xx,, kk⟩⟩ ::  x  x ∈∈  A A𝜔𝜔 {{ kk }}
  
For example, TQBF is basically the infinite join of the languages For example, TQBF is basically the infinite join of the languages  which are complete for the which are complete for the  BBkk

respective levels of the polynomial hierarchy.  This is the sense in which we said that respective levels of the polynomial hierarchy.  This is the sense in which we said that  is the " is the "PSPACEPSPACE

-completion" of the polynomial hierarchy.  The intuition seems fine there, but can be misleading in-completion" of the polynomial hierarchy.  The intuition seems fine there, but can be misleading in  𝜔𝜔

other cases: For each other cases: For each , define , define  to be the language of undirected graphs that have a vertex cover to be the language of undirected graphs that have a vertex cover  kk VCVCkk

of size of size .  Then each language .  Then each language  belongs to  belongs to  (where the " (where the " " hides a factor" hides a factor  kk VCVCkk DTIMEDTIME OO nn[[ (( ))]] OO
proportional to proportional to ), but their completion is the ), but their completion is the -complete Vertex Cover problem.  Likewise CLIQUE-complete Vertex Cover problem.  Likewise CLIQUE  22kk NPNP

and DOMINATING SET and many other and DOMINATING SET and many other -complete problems break down this way.-complete problems break down this way.    NPNP

  
The other notion needed to formulate the infinite case of the UDT is that of a "recursive presentation ofThe other notion needed to formulate the infinite case of the UDT is that of a "recursive presentation of  
infinitely many recursive presentations" but that is readily left to the imagination.infinitely many recursive presentations" but that is readily left to the imagination.
  
Theorem 6Theorem 6: If : If  is a recursive presentation of r.p. c.f.v. classes and  is a recursive presentation of r.p. c.f.v. classes and  is a is a  CC ,,CC ,,CC ,, ……11 22 33 AA ,, AA ,, AA ,, ……11 22 33

recursive enumeration of decidable languages such that for each recursive enumeration of decidable languages such that for each , , , then (for any, then (for any  kk AA   ∉∉   CCkk kk

reasonable effective reducibility reasonable effective reducibility ) we can build a language ) we can build a language  such that  such that ..    ≤≤ rr D D ∉∉ ∪∪ CCkk kk D D ≤≤  A Arr 𝜔𝜔

  
The proof is a moderately straightforward extension of that of the UDT: instead of alternating "acceptThe proof is a moderately straightforward extension of that of the UDT: instead of alternating "accept  
mode" and "reject mode", we alternate being "like mode" and "reject mode", we alternate being "like " for a sequence of " for a sequence of  that could go 1-2-1-2-3-2-1-2- that could go 1-2-1-2-3-2-1-2-AAkk kk
3-4-3-2-1-2-3-4-5-4-3...  So long as every 3-4-3-2-1-2-3-4-5-4-3...  So long as every  comes up infinitely often, we make  comes up infinitely often, we make  different from the different from the  kk DD
languages of all the machines presenting languages of all the machines presenting .  By "looking back", we can arrange that the mapping .  By "looking back", we can arrange that the mapping   CCkk hh
from a string from a string  of length  of length  to the " to the " " that is in effect after " that is in effect after  steps of the process is computable in linear steps of the process is computable in linear  xx nn kk nn
time.  The language we get is then the simple "infinite splice"time.  The language we get is then the simple "infinite splice"  
  

,,D D ==   xx ::  x x ∈∈ AA  where k  where k ==  h h xx{{ kk (( ))}}

  

  



  
which basically reduces to which basically reduces to  via  via  and the pairing function.  The next corollary applies only the fact and the pairing function.  The next corollary applies only the fact  AA𝜔𝜔 hh
that for every decidable language that for every decidable language , the class of languages that are finite variations of , the class of languages that are finite variations of  is r.p. is r.p.AA AA
  
Corollary 7Corollary 7 (surprising?): It is impossible to define a recursive presentation  (surprising?): It is impossible to define a recursive presentation  of  of   SS ,, SS ,, SS ,, ……11 22 33 PSPACEPSPACE

without there being without there being  such that  such that is a finite variation of the language is a finite variation of the language  above.  Likewise, every above.  Likewise, every  kk LL SS   (( kk)) BBkk

recursive presentation recursive presentation  of  of  has  has  such that  such that  is a finite variation of the language  is a finite variation of the language .  This.  This  NN[[ kk]] NPNP kk LL NN(( kk)) VCVCkk

snags you no matter how you define the formal encoding of the languages snags you no matter how you define the formal encoding of the languages  and  and , etc., etc.BBkk VCVCkk

  
ProofProof: With : With  as the finite variations of  as the finite variations of  for each  for each , denying the conclusion sets up the condition, denying the conclusion sets up the condition  CCkk LL SS(( kk)) kk

.  The language .  The language  that pops out thus diagonalizes out of  that pops out thus diagonalizes out of , but it reduces to, but it reduces to  BB   ∉∉   CCkk kk DD PSPACEPSPACE

, so it stays in , so it stays in .  .  BB   ≡≡  TQBF TQBF𝜔𝜔 rr PSPACEPSPACE ☒☒
  
Are there further interesting applications?  It can be molded into a kind of fixed-point theorem "up toAre there further interesting applications?  It can be molded into a kind of fixed-point theorem "up to  
finite variations" but I didn't find anything concrete from it.  It is like an all-carbs, no-protien diet.finite variations" but I didn't find anything concrete from it.  It is like an all-carbs, no-protien diet.    
  
The one route to greater significance that I can map out is to formulate and prove plausible generalThe one route to greater significance that I can map out is to formulate and prove plausible general  
conditions under which the languages conditions under which the languages  cannot be  cannot be downward self reducible downward self reducible in the way that in the way that  is: is:  DD SATSAT

.  Note that when we apply Ladner's situation.  Note that when we apply Ladner's situation  𝜙 𝜙 ∈∈  SAT  SAT ⟺⟺  𝜙 𝜙 xx == 00 ∈∈ SAT SAT ∨∨  𝜙 𝜙 xx == 11 ∈∈ SATSAT[[ 11 ]] [[ 11 ]]

with with , the language , the language  will have vastly long intervals where  will have vastly long intervals where , where whether, where whether  A A ∈∈   PP DD xx ∈∈ D D ⟺⟺  x x ∈∈ AA
 is in the interval (i.e., whether  is in the interval (i.e., whether  is in the easy splicing language  is in the easy splicing language ) is decidable in ) is decidable in  time.  On time.  On  xx xx EE OO ||xx||(( ))

these intervals, these intervals,  is as easy as  is as easy as  and  and  together.  When  together.  When  is chosen to be  is chosen to be , the long intervals are, the long intervals are  DD AA EE AA ∅∅

empty, so that empty, so that  is mega-"gappy", but we should allow for  is mega-"gappy", but we should allow for  to be any language in  to be any language in .  Then let us say:.  Then let us say:  DD AA PP

""  masquerades as a language in  masquerades as a language in  for vast intervals of instance lengths." for vast intervals of instance lengths."DD PP

  
QuestionQuestion: Can we prove that : Can we prove that  implies that  implies that  cannot masquerade as a language in  cannot masquerade as a language in  for for  NP NP ≠≠  P P SATSAT PP

vast intervals of instance lengths?vast intervals of instance lengths?
  
Note that Note that  has many easy instances.  However, it is also believed to have hard instances  has many easy instances.  However, it is also believed to have hard instances  of "all" of "all"  SATSAT 𝜙𝜙

input lengths under natural encodings.  At least one of the self-reduction step-downs input lengths under natural encodings.  At least one of the self-reduction step-downs   𝜙𝜙   ==  𝜙 𝜙 xx == 0000 [[ 11 ]]

and and  from such a  from such a  must also be an almost-as-hard instance.  What happens when must also be an almost-as-hard instance.  What happens when  𝜙𝜙   ==  𝜙 𝜙 xx == 1111 [[ 11 ]] 𝜙𝜙
further step-downs hit a vast easy interval of instance lengths?  The intuition says they cannot withoutfurther step-downs hit a vast easy interval of instance lengths?  The intuition says they cannot without  

 becoming easy, but the mechanics are trickier.  The reason for further interest is that there are becoming easy, but the mechanics are trickier.  The reason for further interest is that there are  𝜙𝜙

theorems to the effect that if theorems to the effect that if  is not provable in certin logical theories (that "cheat", IMHO), is not provable in certin logical theories (that "cheat", IMHO),  NP NP ≠≠  P P

then then  must masquerade as a language in  must masquerade as a language in  for vast intervals of instance lengths.  So this would for vast intervals of instance lengths.  So this would  SATSAT PP

argue for argue for  to be (quasi-)provable,  to be (quasi-)provable, or falseor false..    NP NP ≠≠  P P
  
The obstacle to the question, however, is that in "relativized worlds The obstacle to the question, however, is that in "relativized worlds " " we can prove we can prove  via via  BB NPNP   ≠≠  P PBB BB

languages languages  that are mega-gappy.  Now we hook up with Arora-Barak, section 3.5. that are mega-gappy.  Now we hook up with Arora-Barak, section 3.5.LLBB

  
  
  

  

  



The Lazy Separating OracleThe Lazy Separating Oracle
  
Theorem 7Theorem 7: We can build arbitrarily sparse decidable languages : We can build arbitrarily sparse decidable languages  such that  such that ..BB NPNP   ≠≠  P PBB BB

  
ProofProof: We can take a single recursive presentation : We can take a single recursive presentation  of polynomial-time bounded oracle TMs such of polynomial-time bounded oracle TMs such  PP[[ kk]]

that for all languages that for all languages , , .  For any language .  For any language , define the "oracle-dependent, define the "oracle-dependent  BB LL PP   ==   PPBB
kk

BB BB

language"language"
  

..LL   ==   00 ::   ∃∃yy ∈∈ BB ||yy|| == nnBB nn (( ))

  
This is a This is a tally languagetally language---that is, a subset of ---that is, a subset of ---and always belongs to ---and always belongs to , indeed to , indeed to .  To.  To  00** NPNPBB NPNP BB[[ ]]

show show , we build , we build  in stages so that for each  in stages so that for each , , .  We can handle the OTMs.  We can handle the OTMs  NPNP   ≠≠  P PBB BB BB kk LL   ≠≠  L L PPBB BB
kk

 one at a time "with arbitrary leisure": Let  one at a time "with arbitrary leisure": Let  be the polynomial running time of  be the polynomial running time of .  Then .  Then  is is  PPkk pp nnkk(( )) PPkk pp nnkk(( ))

also a limit on the number of different query strings also a limit on the number of different query strings  of length  of length  that  that  can submit on input  can submit on input , for, for  yy nn PPCC
kk 00nn

any oracle any oracle , and is also a bound on the length of any query at all.  So suppose , and is also a bound on the length of any query at all.  So suppose  the construction the construction  CC C C ==

of the language of the language  thus far, having included at most  thus far, having included at most  strings to diagonalize against the OTMs  strings to diagonalize against the OTMs   BB kk -- 11 PP11

through through .  Take .  Take  large enough so that  large enough so that  and  and  is greater than the length of any query is greater than the length of any query  PPk-1k-1 nn pp nn   ≪≪  2 2kk(( )) nn nn
at a previous stage.  Indeed, take at a previous stage.  Indeed, take  as vastly large as we wish... as vastly large as we wish...nn
  
Once having settled on a choice, run the computation Once having settled on a choice, run the computation .  If it accepts, do nothing---leave .  If it accepts, do nothing---leave  as it as it  PP 00CC

kk
nn CC

was, so that the language was, so that the language  will have no strings of length  will have no strings of length .  This will ensure that for the final oracle .  This will ensure that for the final oracle ,,  BB nn BB

.  If it rejects, then by .  If it rejects, then by  there must be some string  there must be some string  of length  of length  that was not that was not  LL   ≠≠  L L PPBB BB
kk pp nn   ≪≪  2 2kk(( )) nn yy nn

queried.  Adding queried.  Adding  to  to  then does not change the oracle computation, but it makes the "reject" answer then does not change the oracle computation, but it makes the "reject" answer  yy BB

false.  So again we will have false.  So again we will have .  We thus bring this about for all .  We thus bring this about for all , so the final oracle , so the final oracle ---for---for  LL   ≠≠  L L PPBB BB
kk kk BB

which we can make both which we can make both  and  and  mega-gappy---gives  mega-gappy---gives .  Thus we get .  Thus we get .  .  BB LLBB LL   ∉∉   PPBB BB NPNP   ≠≠  P PBB BB ☒☒
  
Combined with Combined with  this says that  this says that  versus  versus  "relativizes both ways."  There are many such "relativizes both ways."  There are many such  NPNP   ==  P PAA AA NPNP PP

results in complexity theory, and in my diet analogy, they are "sugars."  Much of this course will,results in complexity theory, and in my diet analogy, they are "sugars."  Much of this course will,  
however, gain concreteness from the idea of making an "oracle" more active in the role of a however, gain concreteness from the idea of making an "oracle" more active in the role of a prover prover inin  
interactions with machines.interactions with machines.    
  
  
Relativizing Circuits and SATRelativizing Circuits and SAT      
  
Boolean circuits can also be relativized to oracle languages Boolean circuits can also be relativized to oracle languages , where wlog. , where wlog. .  An .  An -gate-gate  AA A A ⊆⊆   00,, 11{{ }}** AA
has some number has some number  of input wires and outputs  of input wires and outputs  iff the string  iff the string  held by the wires belongs held by the wires belongs  mm 11 u u ∈∈   00,, 11{{ }}mm

to to .  Now we want to verify that the bedrock simulation of time .  Now we want to verify that the bedrock simulation of time  bounded TMs  bounded TMs  by  by --AA tt nn(( )) MM OO tt nn(( ))22

sized circuits carries over to OTMs and oracle circuits.  [This is short of asking about thesized circuits carries over to OTMs and oracle circuits.  [This is short of asking about the  
-sized simulation.]-sized simulation.]    OO tt nn tt nn(( (( ))loglog (( ))))

  

  



  
It is convenient to consider It is convenient to consider  to be physically a 1-tape TM but to interleave a virtual oracle tape with its to be physically a 1-tape TM but to interleave a virtual oracle tape with its  MM
regular tape(s).  Let us also suppose that cell regular tape(s).  Let us also suppose that cell  is reserved to hold the result of the oracle call and  is reserved to hold the result of the oracle call and   00 MM
always scans that cell when entering its query state.  The query always scans that cell when entering its query state.  The query  is determined to be the longest is determined to be the longest  yy
binary contents of cells binary contents of cells (terminated by a blank cell or whatever).  The output (terminated by a blank cell or whatever).  The output  is is  22,, 44,, 66,, 88,, …… AA uu(( ))

written to cell written to cell  while the other even-numbered cells are unchanged. while the other even-numbered cells are unchanged.    00
  
[Footnote 1: This convention does not run afoul of the problem with allowing the query string to be[Footnote 1: This convention does not run afoul of the problem with allowing the query string to be  
preserved on the oracle tape.  That issue comes when preserved on the oracle tape.  That issue comes when  can append a bit to  can append a bit to  and re-submit the new and re-submit the new  MM yy
string string  in the next step.  For example, you could have the oracle in the next step.  For example, you could have the oracle  y'y'

..    SAT' SAT' ==   𝜙𝜙,, aa aa ,, ⋯⋯ aa ::  𝜙 𝜙 xx aa ,, xx aa ,, …… ,, xx aa   ∈∈  SAT SAT11 22 ii 11 ←← 11 22 ←← 22 ii ←← ii

This oracle can be used to construct a satisfying assignment to This oracle can be used to construct a satisfying assignment to  whenever  whenever  is is  𝜙𝜙 xx ,, …… ,, xx(( 11 nn)) 𝜙𝜙

satisfiable.  If the query portion satisfiable.  If the query portion  is preserved at each query step, then the OTM would run in is preserved at each query step, then the OTM would run in  aa ⋯⋯ aa11 ii

time time , thus seeming to give a linear-time reduction from search to , thus seeming to give a linear-time reduction from search to .  But a linear-time.  But a linear-time  OO nn(( )) SAT'SAT'

algorithm for algorithm for  in place of the oracle would not yield a linear-time algorithm for computing the in place of the oracle would not yield a linear-time algorithm for computing the  SAT'SAT'
assignment.  IMHO, if one defines "linear-time Turing reducibility" then it should preserve linear timeassignment.  IMHO, if one defines "linear-time Turing reducibility" then it should preserve linear time  
computability from oracle to target function.  The only way I know to do this is to erase the query aftercomputability from oracle to target function.  The only way I know to do this is to erase the query after  
every call, or position the head where the query cannot be elongated.]every call, or position the head where the query cannot be elongated.]
  
Footnote 2: Historically, this issue is dwarfed by that of whether the oracle tape should count againstFootnote 2: Historically, this issue is dwarfed by that of whether the oracle tape should count against  
the space bound.]the space bound.]
  
This easily brings the oracle into the relation This easily brings the oracle into the relation  between IDs.  We can program fixed circuitry between IDs.  We can program fixed circuitry  II   ⊢⊢  I It-1t-1 MMAA tt

for this relation including an for this relation including an -gate with output to cell -gate with output to cell .  The .  The -gate physically needs -gate physically needs  input wires input wires  AA 00 AA 𝛩𝛩 tt(( ))

at step at step  since the query could be that long---we may suppose that shorter queries are terminated by since the query could be that long---we may suppose that shorter queries are terminated by  tt
recognizable blanks.  We need not arrange recognizable blanks.  We need not arrange  to be oblivious in order to use the "bedrock" simulation: if to be oblivious in order to use the "bedrock" simulation: if  MM
step step  is not a query step then the  is not a query step then the -gate just gives the identity function (in cell -gate just gives the identity function (in cell  and overall). and overall).    tt AA 00
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Thus we can simulate Thus we can simulate  on inputs  on inputs  of length  of length  via  via -sized oracle circuits -sized oracle circuits , where, where  MM xxAA(( )) xx nn OO tt nn(( ))22 CC[[ nn]]

each each  has  has  input "gates" (each of which can branch into multiple input  input "gates" (each of which can branch into multiple input wireswires) and is otherwise) and is otherwise  CCnn nn
composed of binary NAND gates and composed of binary NAND gates and -ary -ary -gates.  If -gates.  If  is verifying the relation  is verifying the relation  defining a defining a  tt AA MMAA RR xx,, yyAA(( ))

language in language in ---which equals ---which equals ---then each ---then each  has  has  input gates  input gates  and also  and also  input input  NPNPAA NPNP PPAA CCnn nn xx ,, …… xx11 nn pp

gates gates  for the potential witness string  for the potential witness string .  We have proved:.  We have proved:yy ,, …… ,, yy11 pp yy
  
TheoremTheorem: For all oracles : For all oracles , every language , every language  in  in  has polynomial-sized circuits  has polynomial-sized circuits  of simple of simple  AA LL PPAA CCnn

Boolean gates and Boolean gates and -gates, such that for all -gates, such that for all , , , with , with .  Moreover,.  Moreover,  AA xx x x ∈∈  L  L ⟺⟺  C C xx   ==  1 1AA
nn (( )) n n ==   ||xx||

the function from the function from  to  to  is computable in polynomial time (depending on the polynomial running time is computable in polynomial time (depending on the polynomial running time  nn CCnn

of a single-tape OTM accepting of a single-tape OTM accepting ).).    LL
  
The latter clause is called The latter clause is called polynomial-time uniformitypolynomial-time uniformity and sinply gives another way of defining  and sinply gives another way of defining ..    PPAA

Without the clause, we have the notation Without the clause, we have the notation  for languages accepted by circuit families  for languages accepted by circuit families   PP // polypoly CC[[ nn]]∞∞n=1n=1

where the where the  have size  have size .  For not-necessarily-uniform oracle circuits the notation is .  For not-necessarily-uniform oracle circuits the notation is ..CCnn nnOO 11(( )) PP // polypolyAA

  
Now to translate the circuit into a Boolean formula, for each output wire Now to translate the circuit into a Boolean formula, for each output wire  of a NAND gate with inputs of a NAND gate with inputs  ww

 we get the equation we get the equationuu,, vv
  
w w ==  NAND NAND uu,, vv(( ))
  
and for an and for an -gate with output wires -gate with output wires  connecting from cell  connecting from cell , we get, we getAA vvoo 00
  

..vv   ==  A A uu ,, …… ,, uuoo (( 11 mm))
  
The collection of these "equational clauses", together with The collection of these "equational clauses", together with  for the output wire  for the output wire , defines the, defines the  ww(( oo)) wwoo

corresponding instance of corresponding instance of .   We can use .   We can use  in equations in equationsSATSATAA vvoo

  
w w ==  NAND NAND uu,, vv       ≡≡         u u ∨∨  w w   ∧∧   vv   ∨∨  w w   ∧∧     ∨∨     ∨∨   ..(( oo)) (( )) (( oo )) ((uu⏨⏨ vv⏨⏨oo ww⏨⏨))

  
 An alternate style of relativizing  An alternate style of relativizing  is to treat  is to treat  as a literal in clauses,  as a literal in clauses, vizviz.:.:SATSAT AA uu ,, …… ,, uu(( 11 mm))
  

u u ∨∨  w w   ∧∧   AA uu ,, …… ,, uu   ∨∨  w w   ∧∧     ∨∨   ∨∨     ..(( )) (( (( 11 mm)) )) uu⏨⏨ AA uu ,, …… ,, uu⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨⏨(( 11 mm)) ww⏨⏨

  
This avoids having to treat equations separately but creates double-decker literals in clauses.  I will goThis avoids having to treat equations separately but creates double-decker literals in clauses.  I will go  
completely the other way: I will prefer to regard completely the other way: I will prefer to regard  as a problem about logical equations (which will as a problem about logical equations (which will  SATSAT
be broadened to algebraic equations and then to equations from quantum circuits).  Then it is mostbe broadened to algebraic equations and then to equations from quantum circuits).  Then it is most  
natural to keep the potential oracle calls natural to keep the potential oracle calls  as equations.  Having thus implicitly as equations.  Having thus implicitly  vv   ==  A A uu ,, …… ,, uuoo (( 11 mm))

settled on a definition of "relativized settled on a definition of "relativized ", that is, the language ", that is, the language  for any language  for any language , we can, we can  SATSAT SATSATAA AA
state the relativized Cook-Levin theorem and some corollaries.state the relativized Cook-Levin theorem and some corollaries.

  

  



  

TheoremTheorem: For all languages : For all languages , ,  is complete for  is complete for  under  under ..AA SATSATAA NPNPAA
≤≤

pp
mm

  
ProofProof: :  is in  is in  since we can use  since we can use  to evaluate the equations with  to evaluate the equations with .  Let any.  Let any  SATSATAA NPNPAA AA AA ⋯⋯(( ))

 be given, then there is a relation  be given, then there is a relation  with associated length-bounding polynomial with associated length-bounding polynomial  L L ∈∈   NPNPAA RR xx,, yy   ∈∈   PP(( )) AA

 such that for all  such that for all , , .  As detailed above, we can take a single-tape OTM.  As detailed above, we can take a single-tape OTM  pp nn(( )) xx x x ∈∈  L  L ⟺⟺   ∃∃ yy RR xx,, yypp (( ))

 deciding  deciding  in polynomial time with oracle  in polynomial time with oracle  and simulate  and simulate  by a uniform family of oracle by a uniform family of oracle  MM RR xx,, yy(( )) AA MM

circuits circuits .  Then for each .  Then for each  we get a formula  we get a formula  such that when the bits of  such that when the bits of  are substituted for the are substituted for the  CC[[ nn]] nn 𝜙𝜙AA
nn xx

variables variables , there is an assignment to the variables , there is an assignment to the variables  and the other wire variables and the other wire variables  xx ,, …… ,, xx11 nn yy ,, …… yy11 pp |x||x|(( ))

that satisfies every equation including that satisfies every equation including  for the output wire, if and only if  for the output wire, if and only if , which is if, which is if  ww   ==  1 1oo CC xx   ==  1 1nn(( ))

and only if and only if .  The mapping from .  The mapping from  to  to  is computable in time  is computable in time  without recourse to  without recourse to , since, since  x x ∈∈  L L xx 𝜙𝜙AA
nn nnOO nn(( )) AA

the equations the equations  as part of  as part of  are just syntax.  Thus  are just syntax.  Thus .  .  vv   ==  A A uu ,, …… ,, uuoo (( 11 mm)) 𝜙𝜙AA
nn L L ≤≤  SAT SATpp

mm
AA ☒☒

  

CorollaryCorollary: For all : For all , the language , the language  is complete for  is complete for  under  under , and the language , and the language  of of  k k ≥≥  1 1 BBkk ∑∑
  

pp

kk
≤≤

pp
mm B'B'kk

true true  propositional sentences if complete for  propositional sentences if complete for  under  under ..    𝛱𝛱kk ∏∏
  

pp

kk
≤≤

pp
mm

  

ProofProof: We have : We have  for all  for all  by the polynomial hierarchy by the polynomial hierarchy    ==   NPNP   ==   NPNP   ==  NP NP B'B'∑∑
  

pp

kk
BBk-1k-1 B'B'k-1k-1 [[ k-1k-1]] kk

theorem.  Thus, theorem.  Thus,  is complete for  is complete for  by the relativized Cook-Levin theorem.  Is saying that by the relativized Cook-Levin theorem.  Is saying that  SATSATB'B'k-1k-1 ∑∑
  

pp

kk

 is equivalent to  is equivalent to  an acceptable handwave...?  [Maybe full rigor requires unwinding the an acceptable handwave...?  [Maybe full rigor requires unwinding the  SATSATB'B'k-1k-1 BBkk

details of the proof of the polynomial hierarchy theorem again.  Anyway, details of the proof of the polynomial hierarchy theorem again.  Anyway, ]]        ☒☒
  
CorollaryCorollary: Whenever : Whenever , we can construct languages in , we can construct languages in  that are not  that are not --NPNP   ≠≠   PPAA AA NPNP   ⧵⧵   PPAA AA NPNPAA

complete; indeed, we can embed every countable upper semiliattice between complete; indeed, we can embed every countable upper semiliattice between  and  and  using only using only  SATSATAA ∅∅

"gappy" subsets of "gappy" subsets of ..    SATSATAA

  
It also follows that there is a single It also follows that there is a single universaluniversal countable upper semilattice, namely the one formed by the countable upper semilattice, namely the one formed by the  
structure of decidable languages under structure of decidable languages under  to begin with.  In this sense, universality is "a dime a to begin with.  In this sense, universality is "a dime a  ≤≤

pp
mm

dozen."dozen."
  
  
[There was a question during the lecture about heat loss in computing functions[There was a question during the lecture about heat loss in computing functions  

, to which I noted that the expanded function of , to which I noted that the expanded function of  arguments argumentsff xx ,, …… ,, xx   ==   yy ,, …… ,, yy(( 11 nn)) (( 11 mm)) mm ++ nn
  

,,FF xx ,, …… ,, xx ,, aa ,, …… ,, aa   ==   xx ,, …… ,, xx ,, aa ⊕⊕ yy ,, …… ,, aa ⊕⊕ yy(( 11 nn 11 mm)) (( 11 nn 11 11 mm mm))
  
is invertible.  This is the basic idea of is invertible.  This is the basic idea of reversible computationreversible computation and will be a main ingredient of quantum and will be a main ingredient of quantum  
computing.]computing.]

  

  

  



  
  
The Karp-Lipton TheoremThe Karp-Lipton Theorem
  
What happens if What happens if  itself has polynomial-sized circuits  itself has polynomial-sized circuits ?  We can relativize this question, too, to?  We can relativize this question, too, to  SATSAT CC[[ nn]]

any oracle any oracle .  The fact and proof become a nice exercise in transposing a .  The fact and proof become a nice exercise in transposing a  logical definition into a logical definition into a  AA 𝛱𝛱22

 one. one.𝛴𝛴22

  

TheoremTheorem: If : If  then  then  =  =  (so  (so  collapses to  collapses to     ).).SAT SAT ∈∈   PP // polypoly ∑∑
  

pp

22
∏∏

  
pp

22
PHPH ∑∑

  
pp

22
∩∩ ∏∏

  
pp

22

  
This is an example of a theorem of the kind that Avi Wigderson lampooned as "if pigs can whistle, thenThis is an example of a theorem of the kind that Avi Wigderson lampooned as "if pigs can whistle, then  
horses can fly."  Neither side of the implication is believed.  However, they can be rescued from beinghorses can fly."  Neither side of the implication is believed.  However, they can be rescued from being  
counterfactual by relativizing  them:counterfactual by relativizing  them:
  

Theorem'Theorem': For all oracle languages : For all oracle languages , if , if  then  then  =  = ..AA SAT SAT ∈∈   PP // polypolyAA ∑∑
  

p,Ap,A

22
∏∏

  
p,Ap,A

22

  
We will prove the unrelativized form, but it becomes a straightforward exercise to see that the proofWe will prove the unrelativized form, but it becomes a straightforward exercise to see that the proof  
relativizesrelativizes.  A key point is that we don't suppose the ability to .  A key point is that we don't suppose the ability to findfind for each  for each  the circuit  the circuit  that solves that solves  ss CCss

 instances of size  instances of size , else we would have , else we would have , which of course collapses the hierarchy all, which of course collapses the hierarchy all  SATSAT ss SAT SAT ∈∈   PP

the way to the way to .  Rather the hypothesis is that among the exponentially many possible circuits of a given.  Rather the hypothesis is that among the exponentially many possible circuits of a given  PP

size size , a circuit , a circuit  that is correct on size- that is correct on size-  instances  instances existsexists.  We still need to spend a .  We still need to spend a  quantifier to quantifier to  ss CCss ss ∀∀
verifyverify this circuit in order to fixate its usability. this circuit in order to fixate its usability.    
  
The second key point is not counterfactual at all.  The self-reducibility of The second key point is not counterfactual at all.  The self-reducibility of  gives every supposed gives every supposed  SATSAT
decider decider  for it a "self-proving" property.  If we want to prove that  for it a "self-proving" property.  If we want to prove that  really signifies that  really signifies that  is is  CCss CC 𝜓𝜓   ==  1 1ss(( )) 𝜓𝜓

satisfiable, then we can run satisfiable, then we can run  on  on  and  and .  For self-consistency at.  For self-consistency at  CCss 𝜓𝜓   ==  𝜓 𝜓 xx   ==  0 000 [[ 11 ]] 𝜓𝜓   ==  𝜓 𝜓 xx   ==  1 111 [[ 11 ]]

least one of least one of  and  and  must give  must give , and we can choose it and recurse as in the self-reduction, and we can choose it and recurse as in the self-reduction  CC 𝜓𝜓ss(( 00)) CC 𝜓𝜓ss(( 11)) 11

procedure.  If procedure.  If  is correct, then at the end we get a satisfying assignment for  is correct, then at the end we get a satisfying assignment for .  We therefore need.  We therefore need  CCss 𝜓𝜓

no further quantification.  Thus we will be able to switch a no further quantification.  Thus we will be able to switch a  quantification defining an arbitrary quantification defining an arbitrary  ∀∃∀∃

language in language in  into  into  form, which gives the conclusion. form, which gives the conclusion.∏∏
  

pp

22
∃∀∃∀

  
ProofProof: Let any : Let any  predicate  predicate  be given.  This gives us a polynomial-time be given.  This gives us a polynomial-time  𝛱𝛱22 QQ xx   ==   ∀∀ yy∃∃ zRzR xx,, yy,, zz(( )) pp pp (( ))

computable function computable function  such that  such that .  Given .  Given  of length of length  ff xx,, yy   ==  𝜙 𝜙(( )) x,yx,y 𝜙𝜙   ∈∈  SAT  SAT ⟺⟺   ∃∃ zz RR xx,, yy,, zzx,yx,y
pp (( )) xx

, there is a polynomial limit , there is a polynomial limit  on the size of  on the size of , and we may conveniently suppose that all , and we may conveniently suppose that all  in the in the  nn ss nn(( )) 𝜙𝜙x,yx,y 𝜙𝜙

range of range of  over  over  of length  of length  and  and  of length (up to)  of length (up to)  have size  have size .   Then:.   Then:ff xx,, yy(( )) xx nn yy pp nn(( )) s s ==  s s nn(( ))
  

,,QQ xx   ⟺⟺   ∃∃CC ∀∀𝜓𝜓 CC 𝜙𝜙   ==  1  1 ∧∧   CC 𝜓𝜓   ==  1  1 ⟷⟷  SR SR CC ,,𝜓𝜓  satisfies 𝜓 satisfies 𝜓(( )) (( ss))(( ))[[ ss(( x,yx,y)) [[ ss(( )) (( ss )) ]]]]

  
where where  is the self-reduction procedure described just above.  This gives a  is the self-reduction procedure described just above.  This gives a -definition of -definition of , and, and  SRSR 𝛴𝛴22 QQ xx(( ))

the conclusion follows.  the conclusion follows.      ☒☒

  

  

    

  

  


