
CSE696 Spring 2021, Week 5: Bounded-Error Probabilistic ClassesCSE696 Spring 2021, Week 5: Bounded-Error Probabilistic Classes

The matrix example makes the probability easy to figure, but it does not show a difference betweenThe matrix example makes the probability easy to figure, but it does not show a difference between
"polynomial" and "exponential". This is enshrined in the definitions of the complexity classes "polynomial" and "exponential". This is enshrined in the definitions of the complexity classes , , ,, BPPBPP RPRP

and and co-co- . It is convenient to think of polynomial-time computable predicates . It is convenient to think of polynomial-time computable predicates where where ranges ranges RPRP RR xx,, yy(()) yy

over over with equal length rather than say with equal length rather than say (with (with as usual). Then as usual). Then is a is a 00,, 11{{ }}pp nn(()) ||yy|| ≤≤ p p nn(()) n n == ||xx|| yy

sequence of sequence of coin-flips. coin-flips. pp nn(())

Definition 1Definition 1: A language : A language belongs to belongs to if there is a polynomial if there is a polynomial and a polynomial-time decidable and a polynomial-time decidable AA BPPBPP pp

predicate predicate such that for all such that for all and and of length of length ::RR xx,, yy(()) nn xx nn

;;x x ∈∈ A A ⟹⟹ RR xx,, yy >> 3 3 // 44PrPr|y|=p|y|=p nn(())[[(())]]

..x x ∉∉ A A ⟹⟹ RR xx,, yy << 1 1 // 44PrPr|y|=p|y|=p nn(())[[(())]]

If the second probability is always If the second probability is always then then is in is in ; if instead the first probability is always ; if instead the first probability is always then then is is 00 AA RPRP 00 AA

in in co-co- ; together these cases are called having ; together these cases are called having one-sided errorone-sided error. Note that the first probability being. Note that the first probability being RPRP

always always is equivalent to saying it is always is equivalent to saying it is always for the complementary predicate for the complementary predicate , which is where, which is where 11 00 xx,, yyRR(())

 and and co-co- start to get confusing. The same ability to flip between start to get confusing. The same ability to flip between and its negation tells right and its negation tells right RPRP RPRP RR

away that away that is closed under complements, which makes it less confusing. For is closed under complements, which makes it less confusing. For , we can also, we can also BPPBPP BPPBPP

combine the conditions into one, namelycombine the conditions into one, namely

..AA xx == R R xx,, yy >> 3 3 // 44PrPr|y|=p|y|=p nn(())[[(()) (())]]

But this is often less helpful than having the two separate probabilities. Note that if the secondBut this is often less helpful than having the two separate probabilities. Note that if the second
probability is probability is then then is impossible when is impossible when . It follows that having . It follows that having be true makes be true makes 00 RR xx,, yy(()) x x ∉∉ A A RR xx,, yy(()) yy

a valid a valid witnesswitness for for , so we have proved the following:, so we have proved the following:x x ∈∈ A A

Proposition 1Proposition 1: : and and co-co- . . RPRP ⊆⊆ NPNP RPRP ⊆⊆ coco --NPNP ☒☒

Of course Of course , so whether a problem belongs to , so whether a problem belongs to or to or to co-co- depends on depends on L L ∈∈ RPRP ⟺⟺ ∈∈ coco --RPRPLL RPRP RPRP

which side one takes as the "yes" side. If you regard which side one takes as the "yes" side. If you regard as the yes side and as the yes side and as the as the AB AB == C C ABu ABu == Cu Cu

verifying predicate "verifying predicate " ", then the matrix example has one-sided error of the "", then the matrix example has one-sided error of the "co-co- type", type", RR ⟨⟨AA,, BB,, CC⟩⟩,, u u(()) RPRP

meaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in ameaning that if the answer is yes then you can never be bluffed into thinking the answer is no; but in a
true-negative case there is a tiny chance of getting a false positive (i.e., thinking true-negative case there is a tiny chance of getting a false positive (i.e., thinking because because AB AB == C C

every every that you tried gave that you tried gave). You could say that the language). You could say that the languageuu AA BuBu == Cu Cu(())

 belongs to belongs to co-co- ,,L L == ⟨⟨AA,, BB,, CC⟩⟩ :: AB AB == C C{{ }} RPTIMERPTIME nnOO 22

but this notation gets ugly and hides the dependence between the error probability and the timebut this notation gets ugly and hides the dependence between the error probability and the time
allowed for multiple trials. For polynomial bounds it is even more favorable than for "Oh-tilde" typeallowed for multiple trials. For polynomial bounds it is even more favorable than for "Oh-tilde" type
bounds:bounds:

Amplification Lemma 2Amplification Lemma 2: If : If with associated with associated and and , then for any polynomial , then for any polynomial A A ∈∈ BPPBPP RR xx,, yy(()) pp nn(()) qq nn(())

we can build a polynomial-time decidable we can build a polynomial-time decidable and associated polynomial and associated polynomial such that for all such that for all ,,R'R' xx,, zz(()) p'p' nn(()) xx

;;x x ∈∈ A A ⟹⟹ R'R' xx,, zz >> 1 1 -- 2 2PrPr|z|=p'|z|=p' nn(())[[(())]] -q-q nn(())

.. x x ∉∉ A A ⟹⟹ R'R' xx,, zz << 2 2PrPr|z|=p'|z|=p' nn(())[[(())]] -q-q nn(())

Moreover, we can achieve this even if the original Moreover, we can achieve this even if the original and and only give a "non-negligible" advantage, only give a "non-negligible" advantage, RR pp

meaning that for some polynomial meaning that for some polynomial ,,rr nn ≥≥ n n(())

;;x x ∈∈ A A ⟹⟹ RR xx,, yy >> ++ PrPr|y|=p|y|=p nn(())[[(())]]
11

22

11

rr nn(())

..x x ∉∉ A A ⟹⟹ RR xx,, yy << -- PrPr|y|=p|y|=p nn(())[[(())]]
11

22

11

rr nn(())

Proof Sketch (for now)Proof Sketch (for now): Regard : Regard where where and define and define z z == ⟨⟨yy ,, yy ,, …… ,, yy ⟩⟩11 22 q'q' nn(()) q'q' nn == OO qq nn (()) (((()))) R'R' xx,, zz(())

to be the majority vote of the polynomially-many trials to be the majority vote of the polynomially-many trials . [The full proof in Arora-Barak comes. [The full proof in Arora-Barak comes RR xx,, yy((jj))

later in Chapter 7.] later in Chapter 7.] ☒☒

There is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentiallyThere is a similar amplification lemma for one-sided error; in fact, the details of getting the exponentially
small error are simpler because you don't need majority vote. A philosophical point is that the thesmall error are simpler because you don't need majority vote. A philosophical point is that the the
theoretical software error can be reduced below the chance of hardware error---but when you seetheoretical software error can be reduced below the chance of hardware error---but when you see
something like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPRsomething like https://www.wnycstudios.org/podcasts/radiolab/articles/bit-flip (which I heard on NPR
last November), maybe that's not so reassuring...last November), maybe that's not so reassuring...

There is also There is also co-co- . By the two error-free conditions, this can be characterized as the. By the two error-free conditions, this can be characterized as the ZPPZPP == RPRP ∩∩ RPRP

class of languages (or functions) that have an algorithm class of languages (or functions) that have an algorithm and a polynomial and a polynomial such that: such that:AA pp

• • With high probability over random With high probability over random , , halts within halts within steps. steps.zz AA xx,, zz(()) pp ||xx||(())

• • If and when If and when halts, it always gives correct output. halts, it always gives correct output.AA xx,, zz(())

Such an Such an is often called a is often called a Las Vegas algorithmLas Vegas algorithm to contrast with a to contrast with a Monte Carlo algorithmMonte Carlo algorithm where where AA
even after termination there is uncertainty on one or the other side. Again, IMHO the best initialeven after termination there is uncertainty on one or the other side. Again, IMHO the best initial
examples are for quasi-linear versus quadratic complexity rather than polynomial versus exponential.examples are for quasi-linear versus quadratic complexity rather than polynomial versus exponential.
In two words: In two words: Randomized QuicksortRandomized Quicksort! Another such example should ring a bell:! Another such example should ring a bell:

The (Randomized Greedy Algorithm for the) The (Randomized Greedy Algorithm for the) NN-Queens Problem-Queens Problem..

One related family of examples is hash-based storage---where, however, the element of randomnessOne related family of examples is hash-based storage---where, however, the element of randomness
may come from the data rather than the algorithm. may come from the data rather than the algorithm. Cuckoo HashingCuckoo Hashing is a particularly nice case. is a particularly nice case.

The definition of the quantum complexity class The definition of the quantum complexity class is similar, except that in place of getting is similar, except that in place of getting such such BQPBQP yy

that that by rolling classical dice, we have a by rolling classical dice, we have a quantum circuitquantum circuit in place of in place of and get the effect of and get the effect of RR xx,, yy(()) CC RR yy
by measurements. Amplification and many other properties hold similarly; the main external differenceby measurements. Amplification and many other properties hold similarly; the main external difference
is that the factoring problem and some others belong to is that the factoring problem and some others belong to but (hopefully!) not to but (hopefully!) not to . The. The BQPBQP BPPBPP

"landscape" of current knowledge is:"landscape" of current knowledge is:

The Pivotal Problem [A-B section 7.2.2]The Pivotal Problem [A-B section 7.2.2]

Before 2002, the usual first example of a language in Before 2002, the usual first example of a language in was the language of prime numbers, which was the language of prime numbers, which BPPBPP

was long known to belong to was long known to belong to . That is, before it was . That is, before it was derandomizedderandomized by being shown to belong to by being shown to belong to ZPPZPP

. The deterministic algorithm runs with a higher polynomial exponent than the randomized ones,. The deterministic algorithm runs with a higher polynomial exponent than the randomized ones, PP

however, so many software primality tests are still randomized. Except for the following bellwetherhowever, so many software primality tests are still randomized. Except for the following bellwether
problem, it is hard to find other examples, let alone with two-sided error.problem, it is hard to find other examples, let alone with two-sided error.

Polynomial Identity TestingPolynomial Identity Testing (().). PITPIT
InstanceInstance: A polynomial formula : A polynomial formula over over , , , or a field , or a field (see notes on degree below). (see notes on degree below).ff xx ,, …… ,, xx((11 nn)) ZZ ZZmm FF

QuestionQuestion: Does : Does when "multiplied out" cancel to the all-zero polynomial? when "multiplied out" cancel to the all-zero polynomial?ff

Multiplying out is not so simple---it can take exponential time. Consider how in reducing from Multiplying out is not so simple---it can take exponential time. Consider how in reducing from ExactlyExactly
One 3SATOne 3SAT to to Binary Linear EquationsBinary Linear Equations (presentation topic 4 of HW6) we get equations (presentation topic 4 of HW6) we get equations

 from the from the clauses. Each equation has 3 variables plus maybe a clauses. Each equation has 3 variables plus maybe a EE == 1 1,, E E == 1 1,, …… ,, E E == 1 111 22 mm mm

constant term. We can multiply them together to get a single equation of degree (only!) constant term. We can multiply them together to get a single equation of degree (only!) ::mm

..EE EE ⋯⋯ EE -- 1 1 == 0 0((11))((22)) ((mm))

Multiplying this out, however, gives somewhere between Multiplying this out, however, gives somewhere between and and terms. Even so, we're hung up on terms. Even so, we're hung up on 33mm 44mm

the "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether allthe "NP-side" of looking for one solution, rather than the "co-NP side" of seeing whether all
assignments are solutions. This can be done, but you still have to mix in the non-linear equationsassignments are solutions. This can be done, but you still have to mix in the non-linear equations

 to force each variable to be to force each variable to be or or , and even then, the resulting polynomial might not, and even then, the resulting polynomial might not xx -- x x == 0 022
ii ii 00 11

cancel entirely symbolically, as we show with a simple one-variable example next.cancel entirely symbolically, as we show with a simple one-variable example next.

PP

NPNP co-co-NPNP

𝜃 𝜃 >> 45 45∘∘

AA

BB

means means A A ≤≤ B B
pp
mm

REGREG

∃∃
qq ∀∀

qq

Note differences fromNote differences from
the unbounded the unbounded
computability case: computability case:
NP intersect co-NP isNP intersect co-NP is
not known (or believed) not known (or believed)
to equal P, and the to equal P, and the
quantifiers are quantifiers are length-length-
boundedbounded by a polynomial. by a polynomial.

FACTFACT

PRIMESPRIMES

SAT, G3CSAT, G3C TAUTTAUT

BPP
BPP BP

P
BP

P

RPRP co-RPco-RP

BQPBQP

BQPBQP BQPBQP

BQPBQP is thought to hug the walls even is thought to hug the walls even
outside PH but never have NP-hard sets. outside PH but never have NP-hard sets.

BPP BPP stays within the second level of thestays within the second level of the
"polynomial hierarchy" ("polynomial hierarchy" (PHPH).).

PSPACEPSPACE

PPPP
PPPPPP

I don't see how to reflect that these classesI don't see how to reflect that these classes

are closed under are closed under and and PPPP contains contains BQPBQP≤≤
pp
mm

but is not known to contain but is not known to contain PHPH like like does. does.PPPPPP

A "yes" answer certainly implies that A "yes" answer certainly implies that for all arguments for all arguments . Hence if. Hence if ff == 0 0((aa)) == aa ,, …… ,, aa ∈∈ FFaa ((11 nn)) nn

we find an argument we find an argument such that such that , then we know the answer is "no"., then we know the answer is "no". == aa ,, …… ,, aaaa ((11 nn)) ff aa ,, …… ,, aa ≠≠ 0 0((11 nn))

1. 1. There are polynomials that are zero on all There are polynomials that are zero on all without multiplying out to zero; a simple one- without multiplying out to zero; a simple one- ∈∈ FFaa nn

variable example (variable example () with) with is is over over .. n n == 1 1 p p == 2 2 gg xx == x x -- x x((11)) 22
11 11 FF22

2. 2. However, if we enlarge the field to However, if we enlarge the field to or or (etc.) while keeping the mod-2 (etc.) while keeping the mod-2 characteristiccharacteristicF' F' == F F44 FF88

 the same (note those are not the same as the integers mod 4 or mod 8), then the same (note those are not the same as the integers mod 4 or mod 8), then is no longer is no longer gg xx((11))

everywhere-zero over everywhere-zero over .. FF''

3. 3. Whereas, if Whereas, if multiplies out to zero over multiplies out to zero over , then it multiplies out to zero over any, then it multiplies out to zero over any ff xx ,, …… ,, xx((11 nn)) FF

 of the same characteristic (called an of the same characteristic (called an extension fieldextension field), and vice-versa.), and vice-versa. FF' ' ⊇⊇ FF

Points 1 and 2 are why the fact of Points 1 and 2 are why the fact of PITPIT being in being in ---indeed, with one-sided error like in the ---indeed, with one-sided error like in the BPPBPP AB AB == C C

matrix example---does not put matrix example---does not put SATSAT into into . (While composing these notes, I thought of a possible. (While composing these notes, I thought of a possible BPPBPP

allusion to how working with binary truth values involves the "law of excluded middle" while going toallusion to how working with binary truth values involves the "law of excluded middle" while going to
 or or (etc.) means doing without it---but I am not sure how meaningful it is.) (etc.) means doing without it---but I am not sure how meaningful it is.) F' F' == F F44 FF88

An important further point is that we can exponentiate the field size with only polynomial work: For anyAn important further point is that we can exponentiate the field size with only polynomial work: For any

, , equals the binary vector space equals the binary vector space augmented with an extra multiplication operation augmented with an extra multiplication operation on on k k >> 1 1 FF22kk FF
kk
22 u*vu*v

binary binary -tuples. Computing -tuples. Computing only involves multiplying and dividing by certain single-variable only involves multiplying and dividing by certain single-variable kk u*vu*v

polynomials of degree polynomials of degree modulo 2. With modulo 2. With variables you wind up with variables you wind up with -tuples but the arithmetic-tuples but the arithmetic kk nn nknk(())

involves only involves only work per operation. work per operation. nknkOO(())

The upshot of this is that in stating PIT, we may suppose that the total degree The upshot of this is that in stating PIT, we may suppose that the total degree of the polynomial of the polynomial dd

formula formula obeys obeys . If it doesn't, then we can scale up . If it doesn't, then we can scale up to to to make it so--- to make it so---ff xx ,, …… ,, xx((11 nn)) d d << ||FF|| FF FF''

unless the degrees unless the degrees of the formulas of the formulas for each for each are horribly exponential. This allows us to apply are horribly exponential. This allows us to apply ddnn ffnn nn

the following "strong form" of the the following "strong form" of the Schwartz-Zippel-(de Millo-Lipton) LemmaSchwartz-Zippel-(de Millo-Lipton) Lemma..

Lemma 3Lemma 3: Take any finite subset : Take any finite subset of the field of the field (if (if is already finite we can just take is already finite we can just take). Let). Let SS FF FF S S == FF

 have total degree at most have total degree at most . Suppose . Suppose does not multiply out to does not multiply out to . Then. Thenff xx ,, …… ,, xx((11 nn)) dd ff 00

..ff aa ,, …… ,, aa == 0 0 ≤≤ PrPraa ,…,a,…,a ∈ S ∈ S11 nn
[[((11 nn))]]

dd

||SS||

There is an alternative weaker form in which There is an alternative weaker form in which is the maximum degree in any one of the is the maximum degree in any one of the variables variables d'd' nn

and the probability conclusion you get is and the probability conclusion you get is . The weaker form also holds over . The weaker form also holds over and and and and ≤≤
d'nd'n

|S||S|
ZZ ZZmm

other other ringsrings that are not that are not fieldsfields. Note that the average degree of a variable is . Note that the average degree of a variable is so the numerator so the numerator is is dd

nn
d'nd'n

similar to just similar to just , but because this defines , but because this defines to be the max, not the average, the result you get is to be the max, not the average, the result you get is dd d'd'
technically weaker (but just as useful in most cases---this is how Debray gives it). Note that I partnertechnically weaker (but just as useful in most cases---this is how Debray gives it). Note that I partner
with Lipton; I helped him explain atwith Lipton; I helped him explain at

https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/

the story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jackthe story of how he and Rich de Millo originally had the weaker form in 1977, a year ahead of Jack
Schwartz's stronger form with Richard Zippel in-between. Moreover, I shared an office with Zippel atSchwartz's stronger form with Richard Zippel in-between. Moreover, I shared an office with Zippel at
Cornell for some months in 1986 (if I recall correctly).Cornell for some months in 1986 (if I recall correctly).

Corollary 4Corollary 4: : PITPIT (over any of (over any of , , , or fields , or fields , even infinite fields) belongs to , even infinite fields) belongs to co-co- ..ZZ ZZmm FF RPRP

The basic fact underlying the proof is that a The basic fact underlying the proof is that a single-single-variable polynomial of degree variable polynomial of degree has at most has at most roots. roots. dd dd

The fact of having The fact of having variables expands in the denominator and the numerator in a similar manner; variables expands in the denominator and the numerator in a similar manner; nn

formally, this is shown by induction on formally, this is shown by induction on . For those interested in the details,. For those interested in the details, nn

https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/https://nickhar.wordpress.com/2012/02/01/lecture-9-polynomial-identity-testing-by-the-schwartz-zippel-lemma/

also has a nice comparison of also has a nice comparison of PITPIT with the evaluates-to-zero problem. Whether with the evaluates-to-zero problem. Whether PITPIT belongs to belongs to ,, ZPPZPP

let alone to let alone to , is a challenging question., is a challenging question.PP

Perfect Matchings and "Magic" Matrices [compare A-B ch. 7, subsection 7.2.3]Perfect Matchings and "Magic" Matrices [compare A-B ch. 7, subsection 7.2.3]

Note that if Note that if is an is an matrix with nonnegative entries, then matrix with nonnegative entries, then ,, BB n n ×× n n permperm BB == 0 0 ⟹⟹ BB == 00(()) detdet(())
because no diagonal products are negative, so the only way the permanent can vanish is when theybecause no diagonal products are negative, so the only way the permanent can vanish is when they
are all zero, which vanishes the determinant as well. This implication does not necessarily go the otherare all zero, which vanishes the determinant as well. This implication does not necessarily go the other

way, the matrix way, the matrix being a simple example. We are interested in cases where this does become being a simple example. We are interested in cases where this does become 11 11
11 11

an equivalence, so that we can harness the "easy" determinant to do some work of the "hard"an equivalence, so that we can harness the "easy" determinant to do some work of the "hard"
permanent function. Now write permanent function. Now write if if is obtained from is obtained from by zeroing out some entries. by zeroing out some entries.A A ⩿⩿ B B AA BB

Definition 2Definition 2: Call an : Call an matrix matrix with positive rational entries " with positive rational entries "magicmagic" if for all matrices " if for all matrices such that such that n n ×× n n BB AA

 we have we have .. A A ⩿⩿ B B AA == 0 0 ⟺⟺ perm perm AA == 0 0detdet(()) (())

We can make the above matrix magic simply by changing one of the entries to We can make the above matrix magic simply by changing one of the entries to or to or to , say. You, say. You 22 0.50.5

would expect me as a responsible teacher to give you an example of a magic would expect me as a responsible teacher to give you an example of a magic matrix for every matrix for every n n ×× n n

value of value of , but that is the one thing in this case that humanity does not know how to do. The best we, but that is the one thing in this case that humanity does not know how to do. The best we nn
know is the following results.know is the following results.

Theorem 5Theorem 5 [origin unclear]: With vastly high probability, an [origin unclear]: With vastly high probability, an matrix with random positive entries matrix with random positive entries n n ×× n n

of precision of precision bits or greater is magic. bits or greater is magic. 2n2n nnloglog ☒☒

There are similar theorems about "generic position" for separating hyperplanes in data science; theThere are similar theorems about "generic position" for separating hyperplanes in data science; the

 comes from Stirling's approximation to comes from Stirling's approximation to or just as or just as , with the extra factor of , with the extra factor of providing providing nn nnloglog n!n! nnloglog nn 22
slack to amplify the probability.slack to amplify the probability.

Corollary 6Corollary 6:: Deciding whether an Deciding whether an bipartite graph bipartite graph has a perfect matching randomly reduces to has a perfect matching randomly reduces to n n ×× n n GG
computing determinants.computing determinants.

ProofProof: Generate an : Generate an magic matrix magic matrix and take and take to be the entrywise product of to be the entrywise product of and the and the n n ×× n n BB AA BB

adjacency matrix between the partitions of adjacency matrix between the partitions of , so that , so that . Then . Then has a perfect matching if and has a perfect matching if and GG A A ⩿⩿ B B GG

only if only if , which by "magic" is if and only if , which by "magic" is if and only if . . permperm AA == 0 0(()) AA == 0 0detdet(()) ☒☒

The Arora-Barak text gives a more direct argument by László Lovász that applies the S-Z lemma to theThe Arora-Barak text gives a more direct argument by László Lovász that applies the S-Z lemma to the
determinant polynomial and needs random entries only from the set determinant polynomial and needs random entries only from the set to work the "magic" in to work the "magic" in 11,, …… 2n2n{{ }}
similar fashion. The general form is more compelling, and also IMHO presents the bottom-storysimilar fashion. The general form is more compelling, and also IMHO presents the bottom-story
instance of instance of derandomizationderandomization: Can we construct a family of : Can we construct a family of magic matrices for all magic matrices for all ? One? One n n ×× n n nn
might expect Vandermonde and related matrices to fill the bill, but they do not...might expect Vandermonde and related matrices to fill the bill, but they do not...

Relativizations and Presentations of BPP and RPRelativizations and Presentations of BPP and RP

We can define a general We can define a general operator on any complexity class, and do likewise with operator on any complexity class, and do likewise with and and BPBP ⋅⋅[[]] RPRP ⋅⋅[[]]

 operators. As with operators. As with we keep the polynomial length bound but allow any class inside. we keep the polynomial length bound but allow any class inside.ZPPZPP ⋅⋅[[]] NPNP ⋅⋅[[]]

Definition 3Definition 3: For any class : For any class , a language , a language belongs to belongs to if there is a polynomial if there is a polynomial and a and a CC AA BPBP CC[[]] pp

predicate predicate in in such that for all such that for all and and of length of length ::RR xx,, yy(()) CC nn xx nn

;;x x ∈∈ A A ⟹⟹ RR xx,, yy >> 3 3 // 44PrPr|y|=p|y|=p nn(())[[(())]]

..x x ∉∉ A A ⟹⟹ RR xx,, yy << 1 1 // 44PrPr|y|=p|y|=p nn(())[[(())]]

Note, by the way, that if a polynomial-time machine Note, by the way, that if a polynomial-time machine decides decides then we don't have then we don't have .. PPjj RR xx,, yy(()) A A == L L PP((jj))

We can associate a nondeterministic machine We can associate a nondeterministic machine that on input that on input guesses a guesses a and accepts and accepts if if NNjj xx yy xx PPjj

accepts accepts , but we don't have , but we don't have either. Indeed, either. Indeed, might equal might equal since NTMs since NTMs ⟨⟨xx,, yy⟩⟩ A A == L L NN((jj)) LL NN((jj)) 𝛴𝛴**

accept if accept if somesome is good, regardless of how few is good, regardless of how few there are. Instead, we postulate a there are. Instead, we postulate a probabilisticprobabilistic yy yy

Turing machineTuring machine that accepts that accepts when the " when the " " case holds and rejects " case holds and rejects when the " when the " QQjj xx >> 3 3 // 44 xx << 1 1 // 4"4"

case holds. In order to call case holds. In order to call a a BPP-machineBPP-machine, we need the , we need the promisepromise that one or the other case holds that one or the other case holds QQjj

for all for all . Then, and only then, can we write . Then, and only then, can we write where the definition of where the definition of "" accepts accepts "" is that is that xx A A == L L QQ((jj)) QQjj xx

the "the " " case holds." case holds.>> 3 3 // 44

The most important case is The most important case is , which we will soon equate with , which we will soon equate with Arthur-MerlinArthur-Merlin protocols when we protocols when we BPBP NPNP[[]]
hit Chapter 8. Now we can make a dangerously misleading definition:hit Chapter 8. Now we can make a dangerously misleading definition:

Definition 4Definition 4: For any oracle language : For any oracle language and class and class , the relativization of , the relativization of to the language to the language is is BB CC BPBP CC[[]] BB

defined to be defined to be . In particular, . In particular, , which just means that the , which just means that the predicate predicate BPBP CCBB BPPBPP == BPBP PPBB BB RR xx,, yy(())

belongs to belongs to .. PPBB

Why dangerous? The definition really needs Why dangerous? The definition really needs to be a to be a class of oracle machinesclass of oracle machines, which I started writing, which I started writing CC

. So . So really leans on the natural presentation of relativized polynomial time by polynomially really leans on the natural presentation of relativized polynomial time by polynomially CC BPPBPPBB

clocked OTMs clocked OTMs . The nontriviality of this shift from "class of languages" to "collection of. The nontriviality of this shift from "class of languages" to "collection of PP == PP[[jj]]
machines" shows up right away when we ask:machines" shows up right away when we ask:

Open ProblemOpen Problem: Does there exist a collection : Does there exist a collection of OTMs such that for all oracle of OTMs such that for all oracle BPPBPP == QQ[[jj]]

languages languages , , ??BB BPPBPP == LL QQBB BB
jj

My use of My use of for "quixotic" hints that the answer is for "quixotic" hints that the answer is yoyo: yes-and-no. The hitch is that the property in: yes-and-no. The hitch is that the property in QQ

Definition 3 is a Definition 3 is a promise propertypromise property: If : If decides decides , it has the special property that for all , it has the special property that for all , either, either QQjj RR xx,, yy(()) xx

the density of "good" strings the density of "good" strings is is or it is or it is . If this property holds (also) for some. If this property holds (also) for some yy >> 3 3 // 44 << 1 1 // 44

nontrivial oracle set nontrivial oracle set , then either:, then either:BB

• • the same predicate the same predicate for all for all . In this case, . In this case, is called a is called a robust OTMrobust OTM and the and the LL QQ == BB
jj RR xx,, yy(()) BB QQjj

oracle oracle is only "helping" the running time, or is only "helping" the running time, orBB

• • can be a different predicate can be a different predicate for different oracle sets for different oracle sets , but some , but some may lack the may lack the LL QQBB
jj RRBB BB RRB'B'

 versus versus separation property---whereupon separation property---whereupon may not define a language in may not define a language in afterafter 33 // 44 11 // 44 QQB'B'
jj BPPBPPB'B'

all.all.

The basic issue even shows up when we merely try to create a recursive presentation of The basic issue even shows up when we merely try to create a recursive presentation of by non- by non-BPPBPP

oracle machines. We can do so, but the only way we know how is to use "looking back" to check thatoracle machines. We can do so, but the only way we know how is to use "looking back" to check that
the promise has held for shorter inputs the promise has held for shorter inputs and abort the machine to accept a finite and abort the machine to accept a finite x' x' == 𝜖 𝜖,, 00,, 11,, 0000,, ……

set if and when a violation is revealed. Namely, take our bedrock presentation of set if and when a violation is revealed. Namely, take our bedrock presentation of by machines by machines ,, PP PPjj

which we run on inputs which we run on inputs . The machine . The machine on input on input first spends first spends steps running the steps running the ⟨⟨xx,, yy⟩⟩ QQjj xx n n == ||xx||
"looking-back" process. It does not matter that verifying the promise takes exponential time in terms of"looking-back" process. It does not matter that verifying the promise takes exponential time in terms of
the earlier strings the earlier strings --- looking-back can take any finite time desired in the "long view" while occupying --- looking-back can take any finite time desired in the "long view" while occupying x'x'

only only steps on any particular input. If the steps on any particular input. If the steps turn up no violation, then steps turn up no violation, then behaves syntactically behaves syntactically nn nn QQjj

like the associated NTM like the associated NTM which guesses a which guesses a and accepts if and accepts if accepts accepts . If a violation is found,. If a violation is found, NNjj yy PPjj ⟨⟨xx,, yy⟩⟩

then then rejects---which for rejects---which for can certainly be regarded as an instance of the " can certainly be regarded as an instance of the " of of 's" case,'s" case, QQjj xx << 1 1 // 44 yy

indeed with zero indeed with zero 's.'s. yy

Still in the non-oracle case, we get that either Still in the non-oracle case, we get that either is finite---and hence belongs to is finite---and hence belongs to ---or that the---or that the LL QQ((jj)) BPPBPP

promise holds for all promise holds for all and hence did hold for each and every and hence did hold for each and every after all, whereupon after all, whereupon x' x' == 𝜖 𝜖,, 00,, 11,, 0000,, …… xx

 is a genuine is a genuine machine. For every machine. For every there is a there is a whose whose keeps the promise, keeps the promise, QQjj BPPBPP A A ∈∈ BPPBPP PPjj RR xx,, yy(())

so that so that accepts accepts under the " under the " stipulation. So stipulation. So is a recursive presentation of is a recursive presentation of by by QQjj AA >> 3 3 // 4"4" QQ[[jj]] BPPBPP

machines, so we can apply the uniform diagonalization theorem and etc. to it.machines, so we can apply the uniform diagonalization theorem and etc. to it.

The fly in the ointment is that when the promise is violated for some The fly in the ointment is that when the promise is violated for some , this is only discovered on some, this is only discovered on some x'x'

much larger string much larger string (indeed, on (indeed, on for some for some). For strings of that length and longer,). For strings of that length and longer, obeys obeys xx x x == 0 0nn nn QQjj

the the promise condition through the " promise condition through the " of of 's" case. But for strings 's" case. But for strings between between and and , the, the BPPBPP << 1 1 // 44 yy x''x'' x'x' xx

acceptance criterion for acceptance criterion for is not well-defined. There may well be lots of other undetected is not well-defined. There may well be lots of other undetected QQ x''x''jj(())

violations on those violations on those . Therefore, . Therefore, itself is not a "legal itself is not a "legal -machine", even though we can argue-machine", even though we can argue x''x'' QQjj BPPBPP

that however we arbitrarily define membership of these strings that however we arbitrarily define membership of these strings , the overall language will be finite, the overall language will be finite x''x''

and hence belong to and hence belong to .. BPPBPP

When we have oracles, the situation is compounded by the possibility that every non-robust When we have oracles, the situation is compounded by the possibility that every non-robust may be may be QQjj

legal for some oracles and illegal for others. That is, the only legal legal for some oracles and illegal for others. That is, the only legal may be ones for which may be ones for which QQjj

acceptance is independent of the oracle. The looking-back idea may work after all for any oracle, butacceptance is independent of the oracle. The looking-back idea may work after all for any oracle, but
even then it will not give a presentation by "nice" machines.even then it will not give a presentation by "nice" machines.

Where things Where things reallyreally bite---in the non-oracle and oracle worlds alike---is that even if you add polynomial bite---in the non-oracle and oracle worlds alike---is that even if you add polynomial
amounts of padding, the illegality frustrates the idea of building a "universal amounts of padding, the illegality frustrates the idea of building a "universal machine." In machine." In BPPBPP

particular:particular:

 is not known, and not believed, to have complete sets under polynomial-time Turing is not known, and not believed, to have complete sets under polynomial-time Turing BPPBPP

reductions---let alone many-one reductions---except for the eventuality that reductions---let alone many-one reductions---except for the eventuality that . There are. There are BPP BPP == P P

oracles oracles such that such that does not have complete sets even when the reductions may consult does not have complete sets even when the reductions may consult ..CC BPPBPPCC CC

This lack in turn impedes diagonalizating against This lack in turn impedes diagonalizating against . There is a more-general notion of. There is a more-general notion of BPPBPP

 for general time functions for general time functions , but whether it has a nontrivial , but whether it has a nontrivial time hierarchy theoremtime hierarchy theorem BPTIMEBPTIME tt nn[[(())]] tt nn(())
has been a hugely thorny question.has been a hugely thorny question.

Amplification [A-B section 7.4]Amplification [A-B section 7.4]

BPP Has Small Circuits [A-B section 7.6, skipping 7.5]BPP Has Small Circuits [A-B section 7.6, skipping 7.5]

BPP is in PH [A-B section 7.7]BPP is in PH [A-B section 7.7]

PH is in BP[PH is in BP[P] and thence in P] and thence in (Toda's Theorem) [A-B section 9.3](Toda's Theorem) [A-B section 9.3]⊕⊕ PPPPPP

