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The key concept is a The key concept is a random variablerandom variable over a probability distribution  over a probability distribution . .  itself is formally a function itself is formally a function  DD DD

on a set on a set  whose values are nonnegative real numbers that sum to  whose values are nonnegative real numbers that sum to .  When just .  When just  is given and  is given and  is is  SS 11 SS SS

finite, the default assumption is that finite, the default assumption is that  is the  is the uniform distributionuniform distribution on  on , that is, , that is,  for all for all  DD SS DD xx   ==  1 1 // ||SS||(( ))

.  The random variable is formally a function .  The random variable is formally a function  from  from  to a range  to a range  that  that inducesinduces a distribution  a distribution   x x ∈∈  S S ff SS RR EE

on on  by the rule by the ruleRR

..EE yy   ==   DD xx(( )) ∑∑
  

x∈S:fx∈S:f xx =y=y(( ))

(( ))

  
For example, consider the number For example, consider the number  of heads in  of heads in  flips of a fair coin.  For  flips of a fair coin.  For , we have , we have   kk nn nn == 11 SS == 00,, 11{{ }}

standing for the outcomes tails and heads, respectively, and standing for the outcomes tails and heads, respectively, and  gives each equal probability  gives each equal probability .  For.  For  DD 11 // 22

general general , we have the domain , we have the domain , and , and .  The induced distribution is.  The induced distribution is  nn SS   ==   00,, 11nn {{ }}nn ff ::  S S     00,, …… ,, nnnn →→ {{ }}

the (unbiased) binomial distributionthe (unbiased) binomial distribution  

..    BB kk   ==   nn(( ))
11

22nn

nn
kk

  
We have mapped uniform distribution to the binomial distribution.  Often the task of finding a We have mapped uniform distribution to the binomial distribution.  Often the task of finding a fairfair way to way to  
sample a target distribution sample a target distribution  lies in defining a mapping from uniform to  lies in defining a mapping from uniform to ..    EE EE
  
The most immediate task is to make inferences about The most immediate task is to make inferences about  given only partial information about  given only partial information about , , ,,  EE DD ff

and/or and/or  itself.  Some of this information involves the  itself.  Some of this information involves the meanmean and  and variancevariance, which are defined when the, which are defined when the  EE
range is numeric:range is numeric:
  

𝜇𝜇   ==   EE ff   ==   EE ff xx   ==   ff xx DD xxEE DD[[ ]] x↤Dx↤D[[ (( ))]] ∑∑
  

x∈Sx∈S

(( )) (( ))

𝜎𝜎   ==   EE y y --  𝜇 𝜇   ==   EE ff xx   --  E E ff xx22

EE y↤Ey↤E (( EE))22
x↤Dx↤D (( (( )) x↤Dx↤D[[ (( ))]]))22

  
We can also write these as We can also write these as  and  and  when we want to emphasize the underlying distribution  when we want to emphasize the underlying distribution  rather rather  𝜇𝜇ff 𝜎𝜎22

ff DD

than the top-level distribution than the top-level distribution .  Another form for the variance comes when you multiply the square out:.  Another form for the variance comes when you multiply the square out:EE
  

..𝜎𝜎   ==   EE y y --  𝜇 𝜇   ==   EE yy   --  2 2EE y𝜇y𝜇   ++   EE 𝜇𝜇   ==   EE yy   --  𝜇 𝜇   22
EE y↤Ey↤E (( EE))22

y↤Ey↤E
22

y↤Ey↤E[[ EE]] y↤Ey↤E
22
EE y↤Ey↤E

22 22
EE

..--22EE y𝜇y𝜇   ==   -- 2𝜇2𝜇 EE yy   ==   -- 2𝜇2𝜇y↤Ey↤E[[ EE]] EE [[ ]] 22
EE

  
The square root of the variance is called the The square root of the variance is called the standard deviationstandard deviation and is just  and is just  or  or  or just  or just   𝜎𝜎EE 𝜎𝜎ff 𝜎𝜎

depending on context.  Here are two bounds we get by using first depending on context.  Here are two bounds we get by using first  and then  and then  as the given partial as the given partial  𝜇𝜇 𝜎𝜎

information:information:
  
Markov's InequalityMarkov's Inequality: Let : Let  be any random variable on  be any random variable on  with nonnegative numerical values, and let with nonnegative numerical values, and let  ff DD

.  Then.  Thena a ≥≥  0  0 

  

  



ff xx ≥≥ aa   ≤≤   ..PrPrx↤Dx↤D[[ (( )) ]]
𝜇𝜇

aa
ff

  
To sanity-check this, consider that To sanity-check this, consider that  gives the inequality  gives the inequality , but that is fine.  The case, but that is fine.  The case  a a ==  0 0 1 1 ≤≤  ∞ ∞

 says that the probability of getting  says that the probability of getting  cannot exceed the mean.  Of course, if the mean cannot exceed the mean.  Of course, if the mean  a a ==  1 1 ff xx   ≥≥  1 1(( ))

is is  in that case then the conclusion is again trivial (since the probability is always  in that case then the conclusion is again trivial (since the probability is always ).  So there).  So there  ≥≥  1 1 ≤≤  1 1

is "tension" only when the mean is is "tension" only when the mean is , in which case there must be values , in which case there must be values  having nonzero having nonzero  <<  1 1 <<  1 1

probability, so probability, so  as well.  The proof throws away two terms. as well.  The proof throws away two terms.ff xx ≥≥ 11   <<  1 1PrPrx↤Dx↤D[[ (( )) ]]

  
ProofProof: Define : Define .  Throwing away the complement of .  Throwing away the complement of  from the sum of from the sum of  SS   ==   xx ∈∈ SS ::  f f xx ≥≥ aaaa {{ (( )) }} SSaa

nonnegative values that defines nonnegative values that defines  as above, we have: as above, we have:𝜇𝜇ff

  

,,𝜇𝜇     ≥≥     ff xx DD xx     ≥≥     aDaD xx     ==   a  a ff xx   ≥≥  a aff ∑∑
  

x∈Sx∈Saa

(( )) (( )) ∑∑
  

x∈Sx∈Saa

(( )) PrPrx↤Dx↤D[[ (( )) ]]

  
from which the result follows.  from which the result follows.  ☒☒
  
So this looks like a very stupid theorem that throws away a lot.  However, it can be used in ways thatSo this looks like a very stupid theorem that throws away a lot.  However, it can be used in ways that  
don't throw away so much, and thereby undergirds results that aren't as stupid.  The first one might bedon't throw away so much, and thereby undergirds results that aren't as stupid.  The first one might be  
called "semi-intelligent":called "semi-intelligent":
  
Chebyshev's InequalityChebyshev's Inequality: Let : Let  be any numerical random variable (negative values now OK), and be any numerical random variable (negative values now OK), and    ff

suppose suppose  and  and  are both known.  Then we know that for any  are both known.  Then we know that for any ,,𝜇𝜇ff 𝜎𝜎ff k k >>  0 0

..||y y --  𝜇 𝜇 ||  ≥≥  k𝜎 k𝜎   ≤≤   PrPrEE[[ ff ff]]
11

kk22

  
ProofProof: Define : Define .  We could "ground" this on .  We could "ground" this on  by defining  by defining ,,  g g ==   y y --  𝜇 𝜇(( ff))22 SS,, DD(( )) gg xx   ==   ff xx   --  𝜇 𝜇(( )) (( (( )) ff))22

but we can reason without this "crutch."  This is a random variable defined on but we can reason without this "crutch."  This is a random variable defined on  that takes non-negative that takes non-negative  EE

values.  We could "re-base" it on the original distribution values.  We could "re-base" it on the original distribution  but part of the fun is that we can reason but part of the fun is that we can reason  DD

entirely at the level of entirely at the level of .  First, note that .  First, note that  which is just the definition of  which is just the definition of ..    EE 𝜇𝜇   ==   EE y y --  𝜇 𝜇gg y↤Ey↤E (( ff))22 𝜎𝜎22
ff

Markov's inequality tells us that for any Markov's inequality tells us that for any ,,a a >>  0 0

 . .gg yy   ≥≥  a a   ≤≤     ==   PrPry↤Ey↤E[[ (( )) ]]
𝜇𝜇

aa

gg 𝜎𝜎

aa

22
ff

Now choose Now choose .  Then the right-hand side becomes .  Then the right-hand side becomes , while the left-hand side becomes, while the left-hand side becomes  a a ==  k k 𝜎𝜎22 22
ff

11

kk22

, which is the same as saying , which is the same as saying .  .  gg yy   ≥≥  k k 𝜎𝜎PrPry↤Ey↤E (( )) 22 22
ff y y --  𝜇 𝜇 ||  ≥≥  k𝜎 k𝜎PrPry↤Ey↤E[[|| ff ff]] ☒☒

  
  
With With , what this says is that , what this says is that for any numerical distribution whatsoeverfor any numerical distribution whatsoever, the chance of getting a, the chance of getting a  k k ==  2 2

numerical result that is two standard deviations or more away from the mean is at most numerical result that is two standard deviations or more away from the mean is at most .  There.  There  0.250.25

are distributions where this is tight.  In my opinion, the most overt one is for the random variable are distributions where this is tight.  In my opinion, the most overt one is for the random variable  with withXX

  

  



  
,  ,  , and , and ..XX == --11   ==  0.125 0.125PrPr[[ ]] XX == 00   ==  0.75 0.75PrPr[[ ]] XX == ++11   ==  0.125 0.125PrPr[[ ]]

  
Expressed as a function from a simpler distribution, this is Expressed as a function from a simpler distribution, this is , , ,,  ff 000000   ==   -- 11(( )) ff 111111   ==   ++ 11(( ))

.  The mean is .  The mean is , while the standard, while the standard  ff 001001 == ff 010010 == ff 011011 == ff 100100 == ff 101101 == ff 110110 == 00(( )) (( )) (( )) (( )) (( )) (( )) 00

deviation is deviation is .  This makes.  This makes  𝜎𝜎   ==  0.125 0.125 ⋅⋅ --1 1 --  0 0   ++  0.75 0.75 ⋅⋅ 00 -- 00   ++  0.125 0.125 ⋅⋅ 11 -- 00   ==  0.25 0.2522
ff (( ))22 (( ))22 (( ))22

.  The values .  The values  and  and  are thus each  are thus each  standard deviations away from the mean and have standard deviations away from the mean and have  𝜎𝜎 == 0.50.5 --11 ++11 22

collective probability collective probability , which is the limit by Chebychev's theorem., which is the limit by Chebychev's theorem.0.25 0.25 ==  1 1 // 2222

  
It is amusing to try to make a tight case with a It is amusing to try to make a tight case with a rv.rv. that takes only 2 values.  Suppose we insist the that takes only 2 values.  Suppose we insist the  
values be values be  and  and  with  with  and  and .  The mean is .  The mean is  and the variance is and the variance is  00 11 p p ==   11PrPr(( )) qq ≡≡ 11 -- pp   ==   00(( )) PrPr(( )) 𝜇 𝜇 ==  p p
  

..    pp 11 -- pp   ++   11 -- pp 00 -- pp   ==  p  p --  2p 2p   ++  p p   ++ pp   -- pp   ==  p p -- pp   == pp 11 -- pp   == pqpq(( ))22 (( ))(( ))22 22 33 22 33 22 (( ))

  
If the value If the value  is to be  is to be  standard deviations above the mean, then we get the equation standard deviations above the mean, then we get the equation11 kk == 22

  

,   so   ,   so   ,  so   ,  so   ,  so  ,  so  ..11 == p p ++  2 2 pp 11 -- pp(( )) 11 -- pp == 22 pp 11 -- pp(( )) 11 -- pp == 4p4p 11 -- pp(( ))22 (( )) 11 -- pp == 4p4p

  
Thus Thus .  This makes .  This makes , i.e., , i.e., , equal to , equal to , which is less than the, which is less than the  p p ==  1 1 // 55 XX == 11PrPr[[ ]] XX--𝜇𝜇 ≥≥ 2𝜎2𝜎PrPr[[ ]] 0.20.2

Chebychev bound of Chebychev bound of .  So it is not tight.  Can we make it tight with numerical values .  So it is not tight.  Can we make it tight with numerical values  other than other than  0.250.25 xx,, yy

 and  and ?  Maybe with a different value of ?  Maybe with a different value of ?  This is idle fun to work out.?  This is idle fun to work out.00 11 kk
  
Independence and Sums of RVs.Independence and Sums of RVs.
  
For less-idle application, let's see how close Chebychev comes for the case of the binomial distributionFor less-idle application, let's see how close Chebychev comes for the case of the binomial distribution  

 on  on .  As a random variable, it is the .  As a random variable, it is the sumsum of  of   independentindependent random variables.  Now I random variables.  Now I  BBn,pn,p 00,, …… ,, nn{{ }} nn
tend to insert extra layers of technicality, but what tends to get hidden in presentations is the concept oftend to insert extra layers of technicality, but what tends to get hidden in presentations is the concept of  
random variables being projected-out.  Suppose we have a support set of the form random variables being projected-out.  Suppose we have a support set of the form  with with  S S ==  S S ×× SS11 22

distribution distribution  and a distribution  and a distribution  on  on  induced by a function  induced by a function .  For any.  For any  DD EE R R ==  R R ×× RR11 22 FF :: SS RR→→

 we have we haveyy ,, yy ∈∈ RR(( 11 22))

..EE yy ,, yy   ==   DD xx ,, xx(( 11 22)) ∑∑
  

xx ,x,x :F:F xx ,x,x == yy ,y,y(( 11 22)) (( 11 22)) (( 11 22))

(( 11 22))

  
Now we define the projected random variables via their distributions asNow we define the projected random variables via their distributions as

  and    and  EE yy   == DD xx ,, xx   11(( 11)) ∑∑
  

xx ,x,x :: ∃y∃y FF xx ,x,x == yy ,y,y(( 11 22)) (( )) (( 11 22)) (( 11 ))

(( 11 22)) EE yy   == DD xx ,, xx22(( 22)) ∑∑
  

xx ,x,x :: ∃y∃y FF xx ,x,x == y,yy,y(( 11 22)) (( )) (( 11 22)) (( 22))

(( 11 22))

  
It is important to note that these are induced by the functions It is important to note that these are induced by the functions  and  and ,,  FF xx ,, xx == yy11(( 11 22)) 11 FF xx ,, xx == yy22(( 11 22)) 22

where for both cases where for both cases , but are , but are notnot necessarily induced by functions  necessarily induced by functions   yy ,, yy == FF xx ,, xx(( 11 22)) (( 11 22)) ff :: SS RR11 11 →→ 11

and and  defined on the separate components.  This happens only when the projected random defined on the separate components.  This happens only when the projected random  ff :: SS RR22 22 →→ 22

variables are independent, which we can now rigorously define as that for all variables are independent, which we can now rigorously define as that for all ,,yy ,, yy ∈∈ RR(( 11 22))

  

  



..EE yy ,, yy   ==  E E yy ⋅⋅EE yy(( 11 22)) 11(( 11)) 22(( 22))

  
It is high time for a revelatory example.  Let us use It is high time for a revelatory example.  Let us use ; I am not using ; I am not using  as the as the  SS == SS == HH,, TT11 22 {{ }} 00,, 11{{ }}

domain in order to ward off a potential confusion.  Now define the function domain in order to ward off a potential confusion.  Now define the function  by: by:FF
  

..FF HH,, HH   ==  F F HH,, TT   ==   00,, 00 ;;   F  F TT,, HH   ==  F F TT,, TT   ==   11,, 11(( )) (( )) (( )) (( )) (( )) (( ))

  
Under the presumed uniform distribution Under the presumed uniform distribution  on  on , this gives the outcomes , this gives the outcomes  and  and  equal equal  DD HH,, TT{{ }}22 00,, 00(( )) 11,, 11(( ))

probability probability , but gives the outcomes , but gives the outcomes  and  and  zero probability.  The projected rvs. are: zero probability.  The projected rvs. are:0.50.5 00,, 11(( )) 11,, 00(( ))

,  ,  ,,EE 00   ==  D D HH,, HH   ++  D D HH,, TT   ==  0.5 0.511(( )) (( )) (( )) EE 11   ==  D D TT,, HH ++ DD TT,, TT   ==  0.5 0.511(( )) (( )) (( ))

and similarly,and similarly,
,  ,  ..EE 00   ==  D D HH,, HH   ++  D D HH,, TT   ==  0.5 0.522(( )) (( )) (( )) EE 11   ==  D D TT,, HH ++ DD TT,, TT   ==  0.5 0.522(( )) (( )) (( ))

  
But we do not get independence, because e.g. But we do not get independence, because e.g.  but  but .  [In quantum.  [In quantum  EE 00 ⋅⋅EE 00   ==  0.25 0.2511(( )) 22(( )) EE 00,, 00   ==  0.5 0.5(( ))

mechanics, the putative domain will be two mechanics, the putative domain will be two qubitsqubits, one held by "Alice" and the other by "Bob".  The, one held by "Alice" and the other by "Bob".  The  
random variable random variable  will give the outcome of a  will give the outcome of a one-qubit measurementone-qubit measurement made by Alice and made by Alice and  YY   ==  y yAA 11

 the outcome for Bob.  The lack of independence will translate to saying the the two qubits the outcome for Bob.  The lack of independence will translate to saying the the two qubits  YY   ==  y yBB 22

are are entangledentangled.  This is quite against what you would get if Alice and Bob really flipped separate coins.  This is quite against what you would get if Alice and Bob really flipped separate coins  
with outcomes with outcomes  and  and , as the notation may have suggested.], as the notation may have suggested.]HH TT
  
Now consider the derived random variable giving the sum of the Now consider the derived random variable giving the sum of the  and  and  outcomes.  Formally it is outcomes.  Formally it is  yy11 yy22

induced by the functioninduced by the function
  

  where    where  ..    GG xx ,, xx   ==  y y ++ yyFF(( 11 22)) 11 22 yy ,, yy == FF xx ,, xx(( 11 22)) (( 11 22))

  
The possible values are The possible values are , but the induced distribution , but the induced distribution  has  has , , ,,  RR == 00,, 11,, 22GG {{ }} EEGG EE 00   ==  0.5 0.5GG(( )) EE 11   ==  0 0GG(( ))

and and .  The mean is .  The mean is , but the variance is , but the variance is ..EE 22   ==  0.5 0.5GG(( )) 11 0.50.5 00 -- 11 ++ 0.50.5 22 -- 11   ==  1 1(( ))22 (( ))22

  
Now suppose we have random variables defined via functions Now suppose we have random variables defined via functions  on the separate components with on the separate components with  ff ,, ff11 22

distributions distributions .   Then the Cartesian-product random variable is the function on .   Then the Cartesian-product random variable is the function on  defined defined  DD ,, DD11 22 DD ×× DD11 22

by by , and its induced distribution, and its induced distributionff xx ,, xx   ==   ff xx ,, ff xx(( 11 22)) (( 11(( 11)) 22(( 22))))

  

EE yy ,, yy     ==     DD xx ⋅⋅DD xx(( 11 22)) ∑∑
  

xx ,x,x : f: f xx ,x,x == yy ,y,y(( 11 22)) (( 11 22)) (( 11 22))

11(( 11)) 22(( 22))

  
guarantees independence.  Now if guarantees independence.  Now if  gives equal probability to the outcomes  gives equal probability to the outcomes  and  and , and , and  likewise, likewise,  ff11 00 11 ff22

then each of the outcomes then each of the outcomes  has probability  has probability .  Moreover, the sum, which is.  Moreover, the sum, which is  00,, 00 ,, 00,, 11 ,, 11,, 00 ,, 11,, 11(( )) (( )) (( )) (( )) 0.250.25

what we mean by the unbiased binomial distribution what we mean by the unbiased binomial distribution  on  on , has mean , has mean  but variance but variance  BB22 00,, 11,, 22{{ }} 11

,,𝜎𝜎   ==  0.25 0.25 00 -- 11   ++  0.5 0.5 11 -- 11   ++  0.25 0.25 22 -- 11     ==   0.5  0.522
22 (( ))22 (( ))22 (( ))22

  
rather than variance rather than variance as in the entangled case.  Now for some nomenclature:as in the entangled case.  Now for some nomenclature:1 1 

  

  



• • Even in the non-independent case, Even in the non-independent case,  and  and  are still considered  are still considered jointjoint random variables, since random variables, since  YYAA YYBB

they are projected from the same random variable they are projected from the same random variable  representing the outcome of the whole representing the outcome of the whole  YY
system.system.    

• • When there is independence in a Cartesian product of random variables, we can call themWhen there is independence in a Cartesian product of random variables, we can call them  
independently jointindependently joint..

• • When they are independent and all When they are independent and all  are the same (not just that all  are the same (not just that all  on the individual domain on the individual domain  EEii DDii

sets sets  are the same), they are  are the same), they are independently and identically distributedindependently and identically distributed, abbreviated , abbreviated i.i.d.i.i.d.SSii

• • We can apply similar terms---with care of context---to random variables that are really We can apply similar terms---with care of context---to random variables that are really derivedderived  
from the joint ones, such as the from the joint ones, such as the sumsum, that are not the joint rvs. themselves., that are not the joint rvs. themselves.

  
Now we return to top-level in Arora-Barak section 7.4 to discuss rules for sums of random variablesNow we return to top-level in Arora-Barak section 7.4 to discuss rules for sums of random variables  

::XX ,, …… ,, XX11 nn

  
1. 1. The expectation The expectation  of the sum is always the sum  of the sum is always the sum  of the of the  EE XX ++ ⋯⋯ ++ XX[[ 11 nn]] EE XX ++ ⋯⋯ ++EE XX[[ 11]] [[ nn]]

expectations, even if the variables are not independent.expectations, even if the variables are not independent.
2. 2. If the variables are independent, then the variance is additive as well:If the variables are independent, then the variance is additive as well:  

..𝜎𝜎 XX ++ ⋯⋯ ++ XX   ==   𝜎𝜎 XX   ++   ⋯⋯   𝜎𝜎 XX22[[ 11 nn]] 22[[ 11]] 22[[ nn]]

3. 3. In the case of possibly-biased binary distribution In the case of possibly-biased binary distribution  with  with  for all  for all , the, the  BBn,pn,p XX == 11   ==  p pPrPr[[ ii ]] ii

variables are i.i.d. and the sum has mean variables are i.i.d. and the sum has mean  and variance  and variance ..    pnpn nn ⋅⋅ pp 11 -- pp   ==   npqnpq(( ))

  
Now we can talk about how close Now we can talk about how close  (taking  (taking ) comes to Chebychev's inequality.  We have) comes to Chebychev's inequality.  We have  BBnn p p ==  0.5 0.5

, so , so .  If we are interested in .  If we are interested in  then this gives  then this gives .  Trying .  Trying   𝜎𝜎   ==  0.25n 0.25n22 𝜎 𝜎 ==   
11

22
nn kk == 22 2𝜎 2𝜎 ==   nn n n ==  9 9

gives gives  and  and .  The only outcomes higher than .  The only outcomes higher than  are  are  and  and .  There are .  There are   𝜇 𝜇 ==  4.5 4.5 2𝜎2𝜎 == 33 𝜇𝜇++ 2𝜎2𝜎 88 99 99

combinations that produce the sum combinations that produce the sum , with probability , with probability  each. plus the one giving  each. plus the one giving .  Thus.  Thus  88 11 // 2299 99

.  Quite a bit less than .  Quite a bit less than ..BB ≥≥ 𝜇𝜇++ 2𝜎2𝜎   ==     ==  0.01953125 0.01953125PrPr[[ 99 ]]
1010

512512
0.250.25

  
OK, let's try OK, let's try .  We have .  We have , , , so , so .  We therefore want to know about.  We therefore want to know about  n n ==  100 100 𝜇𝜇 == 5050 𝜎𝜎 == 55 2𝜎2𝜎 == 1010

.  This looks like it has a lot more room to grow---after all, .  This looks like it has a lot more room to grow---after all,  is over 40% of the is over 40% of the  BB ≥≥ 6060PrPr[[ 100100 ]] 6060…… 100100

range range .  Using a widget such as .  Using a widget such as https://stattrek.com/online-calculator/binomial.aspxhttps://stattrek.com/online-calculator/binomial.aspx, we get, we get00…… 100100

  
BB ≥≥ 6060   ==  0.02844396682 0.02844396682100100(( ))

  
Bigger, but still nowhere near Bigger, but still nowhere near .  A large chunk of this comes from the probability of getting exactly.  A large chunk of this comes from the probability of getting exactly  0.250.25

60 heads in 100 tosses of a fair coin: 60 heads in 100 tosses of a fair coin: , so , so ..    BB 6060 == 0.010843866710.01084386671100100(( )) BB >>  60 60 == 0.017600100110.01760010011100100(( ))

If we split the difference, we getIf we split the difference, we get
  

BB 6060   ++  B B >>  60 60     ==   0.023022033465.  0.023022033465.
11

22
100100(( )) 100100(( ))

  
This is quite close to 2.3%.  It is close to what we would get either way if we did This is quite close to 2.3%.  It is close to what we would get either way if we did , since it, since it  nn == 1010,, 000000

gives gives , , , so , so , so , so , and the individual value, and the individual value  𝜇𝜇 == 50005000 𝜎𝜎   ==  2500 250022 𝜎𝜎 == 5050 𝜇𝜇++ 2𝜎2𝜎 == 51005100

  

  

https://stattrek.com/online-calculator/binomial.aspx


, which leaves much less to "split".  Putting it in or out, we have, which leaves much less to "split".  Putting it in or out, we haveBB 51005100 == 0.001079864330.001079864331000010000(( ))

  
,       ,       ,,BB >> 51005100 == 0.022212899520.022212899521000010000(( )) BB ≥≥ 51005100 == 0.023292763850.023292763851000010000(( ))

  
whose average is a little under 2.3%.  The limit as whose average is a little under 2.3%.  The limit as  approaches  approaches  Where did I get that Where did I get that  nn ∞∞→→ 0.02275...0.02275...

from?  From the convergence of the limit binomial distribution to the from?  From the convergence of the limit binomial distribution to the Gaussian normal distributionGaussian normal distribution..
  
Thus the Chebychev bound is really weak for these distributions.  It becomes far worse for Thus the Chebychev bound is really weak for these distributions.  It becomes far worse for  and and  kk == 33

 and higher.  We can get far better bounds for these distributions.  But ironically, the proof of these and higher.  We can get far better bounds for these distributions.  But ironically, the proof of these  kk == 44

bounds comes from a judicious application of the "super-weak" Markov inequality...bounds comes from a judicious application of the "super-weak" Markov inequality...
  
  
Chernoff BoundsChernoff Bounds
  

The real essence of the binomial case is that whereas Chebychev's theorem gives only a The real essence of the binomial case is that whereas Chebychev's theorem gives only a  upper upper  ∼∼   
11

kk22

bound on the size of the "tail" of the distribution, for bound on the size of the "tail" of the distribution, for standard deviations above the mean, the truth isstandard deviations above the mean, the truth is  k k 

exponential decrease with exponential decrease with .  The binomial and normal distributions famously do not have closed-form.  The binomial and normal distributions famously do not have closed-form  kk
formulas that involve only simple mathematical functions (counting exp and log as simple but factorialformulas that involve only simple mathematical functions (counting exp and log as simple but factorial  
as not).  The "art" is getting a simple upper bound that is strong as not).  The "art" is getting a simple upper bound that is strong andand easy to manipulate.  Our recent easy to manipulate.  Our recent  
postpost
  
https://rjlipton.wordpress.com/2021/01/14/priming-random-restrictions/https://rjlipton.wordpress.com/2021/01/14/priming-random-restrictions/
  
shows a case where an inequality is weakened to make it "homomorphic" under certainshows a case where an inequality is weakened to make it "homomorphic" under certain  
transformations.  Whether the original stronger formulas can be used to squeeze a useful drop of extratransformations.  Whether the original stronger formulas can be used to squeeze a useful drop of extra  
power might be food for "the next generation" but our intuition is often helped by the simpler version.power might be food for "the next generation" but our intuition is often helped by the simpler version.    
The story of amplifying The story of amplifying  shows several facets of this, but let's start with the general case of bounds shows several facets of this, but let's start with the general case of bounds  BPPBPP

on binomial/Gaussian tails that were popularized by Herman Chernoff but arguably discovered byon binomial/Gaussian tails that were popularized by Herman Chernoff but arguably discovered by  
someone else named Herman.someone else named Herman.    
  
TheoremTheorem: Let : Let  be  be --  valued random variables that are independent but not neces-sarily valued random variables that are independent but not neces-sarily  XX ,, …… ,, XX11 NN 00 11

identically distributed.  Put identically distributed.  Put  and  and .  Then for all .  Then for all ::𝜇 𝜇 ==  E E XX   ++   ⋯⋯   ++  E E XX[[ 11]] [[ NN]] pp ==
𝜇𝜇

NN
𝛿𝛿 >> 00

  

XX ++ ⋯⋯ ++ XX   ≥≥  𝜇  𝜇 ++  𝛿𝜇 𝛿𝜇     ≤≤         ==     PrPr[[ 11 NN ]]
ee

11 ++ 𝛿𝛿

𝛿𝛿

(( ))1+𝛿1+𝛿

𝜇𝜇
11

ee pp 1+𝛿1+𝛿 +𝛿+𝛿 1+𝛿1+𝛿 -𝛿-𝛿(( ((lnln(( )) lnln(( )) ))))

NN

andand

..XX ++ ⋯⋯ ++ XX   ≤≤  𝜇  𝜇 --  𝛿𝜇 𝛿𝜇     ≤≤         ==     PrPr[[ 11 NN ]]
ee

11 -- 𝛿𝛿

-𝛿-𝛿

(( ))1-𝛿1-𝛿

𝜇𝜇
11

ee pp 1-𝛿1-𝛿 +𝛿+𝛿 1-𝛿1-𝛿 +𝛿+𝛿(( ((lnln(( )) lnln(( )) ))))

NN

  
Before we prove this, some remarks:Before we prove this, some remarks:

  

  

https://rjlipton.wordpress.com/2021/01/14/priming-random-restrictions/


1. 1. The upper tail is expressed as The upper tail is expressed as  not  not .  This makes .  This makes  in the first in the first  𝜇 𝜇 ++  𝛿 𝛿𝜇𝜇 𝜇 𝜇 ++  k k𝜎𝜎 𝛿 𝛿 ≤≤   
1-p1-p

pp

(( ))

statement, and of course statement, and of course  in the second statement. in the second statement.𝛿 𝛿 ≤≤  1 1

2. 2. In the i.i.d. case we get bounds on In the i.i.d. case we get bounds on  and  and ..BB ≥≥ 𝜇 𝜇 ++  𝛿 𝛿𝜇𝜇n,pn,p(( )) BB ≤≤ 𝜇 𝜇 --  𝛿 𝛿𝜇𝜇n,pn,p(( ))

3. 3. If we put If we put  for each  for each , with mean , with mean , then , then  is the same is the same  X'X'   ==  1 1 --XXii ii ii 𝜇' 𝜇' ==  N N--𝜇𝜇 XX   ≤≤  𝜇 𝜇-- 𝛿𝜇𝛿𝜇∑∑ ii

event as event as .  But this is not the same.  But this is not the same  X'X'   ≥≥  N N--𝜇𝜇++ 𝛿𝜇𝛿𝜇 ≡≡ X'X'   ≥≥ 𝜇'𝜇' ++ 𝛿N𝛿N-- 𝛿𝜇'𝛿𝜇'∑∑ ii ∑∑ ii

statement as the 'statement as the ' ' for above for ' for above for  and  and  unless  unless ..    ≥≥ X'X' 𝜇'𝜇' 𝜇 𝜇 ==  N N--𝜇 𝜇 ==   
NN

22

4. 4. Thus the two statements above are not redundant by symmetry.  Instead, there is a differenceThus the two statements above are not redundant by symmetry.  Instead, there is a difference  
according to whether the deviation is "to the short side" of according to whether the deviation is "to the short side" of  or "to the long side."  But, each or "to the long side."  But, each  𝜇𝜇

statement by itself has a "long side" and "short side" depending on whether statement by itself has a "long side" and "short side" depending on whether .  So is it.  So is it  𝜇𝜇 <<
11

22

abstractly sufficient to prove just one of them?  (??)abstractly sufficient to prove just one of them?  (??)

5. 5. For the For the  amplification lemma, we will apply it to the long side crossing under  amplification lemma, we will apply it to the long side crossing under  in order to in order to  BPPBPP
NN

22

bound away the probability of a majority vote giving the wrong answer.bound away the probability of a majority vote giving the wrong answer.  

6. 6. Using the identities Using the identities and and forfor  11 ++ 𝛿𝛿 == 𝛿𝛿-- ++ ++ ⋯⋯lnln(( ))
𝛿𝛿

22

22 𝛿𝛿

33

33

11 -- 𝛿𝛿 == -- 𝛿𝛿++ -- ++ ⋯⋯lnln(( ))
𝛿𝛿

22

22 𝛿𝛿

33

33

 (and the former OK with  (and the former OK with  too), and bounding some constant times  too), and bounding some constant times  by  by , one, one  ||𝛿𝛿|| << 11 𝛿𝛿 == 11 pp 22lnln

can prove the following two-sided form:can prove the following two-sided form:
  

CorollaryCorollary: For every : For every , , .  .  𝛾𝛾 >> 00 ||XX ++ ⋯⋯ ++ XX   --  𝜇 𝜇||  ≥≥  𝛾𝜇 𝛾𝜇     ≤≤     PrPr[[ 11 NN ]]
11

220.5N𝛾0.5N𝛾22 ☒☒

  
In any event, the asymptotic point is that the bound falls off exponentially with In any event, the asymptotic point is that the bound falls off exponentially with .  We have the freedom.  We have the freedom  NN

to make to make  as large a polynomial in the input size parameter  as large a polynomial in the input size parameter  as we want.  This will enable us to as we want.  This will enable us to  NN nn
amplify strongly exponentially.amplify strongly exponentially.
  
The proof of the theorem uses "only" Markov's inequality applied to the other kind of function besides aThe proof of the theorem uses "only" Markov's inequality applied to the other kind of function besides a  
square that guarantees nonnegative values: an exponential-valued random variable.  A key point is thatsquare that guarantees nonnegative values: an exponential-valued random variable.  A key point is that  
if if  and  and  are independent, then the mean of their product is a product of means. are independent, then the mean of their product is a product of means.XX YY
  

..EE XX ⋅⋅YY == ww ⋅⋅ XX ⋅⋅YY == ww   ==   ww ⋅⋅ XX == uu∧∧YY == vv[[ ]] ∑∑
  

ww

PrPr[[ ]] ∑∑
  

ww

∑∑
  

u,v:uv=wu,v:uv=w  

PrPr[[ ]]

  
Now applying independence, we getNow applying independence, we get  
  

..==   uu ⋅⋅ vv ⋅⋅ XX == uu ⋅⋅ YY == vv   ==   uu ⋅⋅ XX == uu vv ⋅⋅ YY == vv   ==   EE XX ⋅⋅EE YY∑∑
  

ww

∑∑
  

u,v:uv=wu,v:uv=w

PrPr[[ ]] PrPr[[ ]] ∑∑
  

u,vu,v

(( PrPr[[ ]]))(( PrPr[[ ]])) [[ ]] [[ ]]

  
  
ProofProof: To prove the upper-tail inequality, let : To prove the upper-tail inequality, let  be a positive parameter that we later optimize as be a positive parameter that we later optimize as  tt

,and consider the random variable ,and consider the random variable .   The event .   The event  is the is the  tt == 11 ++ 𝛿𝛿lnln(( )) Y Y ==  e ett XX +⋯+X+⋯+X(( 11 NN)) Y Y ≥≥  e ett 𝜇+𝛿𝜇𝜇+𝛿𝜇(( ))

  

  



same as the event same as the event  whose probability we wish to bound.  By Markov's whose probability we wish to bound.  By Markov's  XX ++ ⋯⋯ ++ XX   ≥≥  𝜇 𝜇++ 𝛿𝜇𝛿𝜇11 NN

inequality, inequality, .  Now the random variables .  Now the random variables  are likewise independent, so are likewise independent, so  Y Y ≥≥  e e   ≤≤   PrPr tt 𝜇+𝛿𝜇𝜇+𝛿𝜇(( ))
EE YY

ee

[[ ]]

tt 𝜇+𝛿𝜇𝜇+𝛿𝜇(( ))
eetXtXii

letting letting  be their probabilities of the value  be their probabilities of the value , giving , giving  for value  for value , we get, we getppii eett 11 -- pp(( ii)) 11

  

..EE YY   ==   EE ee   ==   EE ee   ==   11 -- pp ++ pp ee   ==   11 ++ pp ee -- 11   [[ ]] ∏∏
NN

i=1i=1

tXtXii ∏∏
NN

i=1i=1

tXtXii ∏∏
NN

i=1i=1

(( ii)) ii
tt ∏∏

NN

i=1i=1

ii
tt

  
Now, IMHO incredibly, we throw away more pieces by using Now, IMHO incredibly, we throw away more pieces by using  to make a double-decker to make a double-decker  11 ++ x x ≤≤  e exx

exponential, givingexponential, giving
  

..EE YY     ≤≤   ee   ==  e e   ==   e  e ==  e e   [[ ]] ∏∏
NN

i=1i=1

pp ee -1-1ii
tt pp ee -1-1∑∑

NN

i=1i=1
ii

tt pp ee -1-1∑∑
NN

i=1i=1
ii

tt
𝜇𝜇 ee -1-1tt

So for any So for any ,,tt
  

..XX ≥≥ 𝜇𝜇++ 𝛿𝜇𝛿𝜇   ==   YY ≥≥ ee   ≤≤     ==   ee   ==   eePrPr ∑∑NN

i=1i=1 ii PrPr tt 𝜇+𝛿𝜇𝜇+𝛿𝜇(( ))
ee

ee

𝜇𝜇 ee -1-1
tt

tt 𝜇+𝛿𝜇𝜇+𝛿𝜇(( ))

𝜇𝜇 ee -1-1 -𝜇t-𝜇t 1+𝛿1+𝛿
tt

(( )) ee -t-t 1+𝛿1+𝛿 -1-1tt (( ))
𝜇𝜇

  
The right-hand side is minimized when The right-hand side is minimized when  is chosen to minimize  is chosen to minimize , which is when, which is when  tt ee -- tt 11 ++ 𝛿𝛿tt (( ))

, which is when , which is when .  That choice makes .  That choice makes  become become  ee   --   11 ++ 𝛿𝛿 == 00tt (( )) t t ==   11 ++ 𝛿𝛿lnln(( )) ee -- tt 11 ++ 𝛿𝛿 -- 11tt (( ))

, so we get , so we get  and the bound follows.  The other and the bound follows.  The other  11 ++ 𝛿𝛿-- 11 -- 11 ++ 𝛿𝛿 11 ++ 𝛿𝛿(( ))lnln(( )) ⋯⋯   ≤≤  e ePrPr[[ ]] 𝛿-𝛿- 1+𝛿1+𝛿 1+𝛿1+𝛿(( ))lnln(( ))

inequality for the "lower tail" is proved "similarly."  inequality for the "lower tail" is proved "similarly."  ☒☒
  
  
Proof of the BPP Amplification LemmaProof of the BPP Amplification Lemma
  
Amplification LemmaAmplification Lemma: If : If  with associated  with associated  and  and , then for any polynomial , then for any polynomial  we we  A A ∈∈   BPPBPP RR xx,, yy(( )) pp nn(( )) qq nn(( ))

can build a polynomial-time decidable can build a polynomial-time decidable  and associated polynomial  and associated polynomial  such that for all  such that for all ,,R'R' xx,, zz(( )) p'p' nn(( )) xx

;;x x ∈∈  A  A ⟹⟹   R'R' xx,, zz   >>  1  1 --  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

..                x x ∉∉  A  A ⟹⟹   R'R' xx,, zz   <<  2 2PrPr|z|=p'|z|=p' nn(( ))[[ (( ))]] -q-q nn(( ))

  
Moreover, we can achieve this even if the original Moreover, we can achieve this even if the original  and  and  only give a "non-negligible" advantage, only give a "non-negligible" advantage,  RR pp

meaning that for some polynomial meaning that for some polynomial ,,rr nn   ≥≥  n n(( ))

;;x x ∈∈  A  A ⟹⟹   RR xx,, yy   >>     ++   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))

..x x ∉∉  A  A ⟹⟹   RR xx,, yy   <<     --   PrPr|y|=p|y|=p nn(( ))[[ (( ))]]
11

22

11

rr nn(( ))
  
ProofProof: The algorithm, given any : The algorithm, given any  and  and  of length  of length , is to do majority vote of , is to do majority vote of  trials, where  trials, where  depends depends  nn xx nn NN NN

on the polynomials on the polynomials  and  and  (and the overall time depends on  (and the overall time depends on  as well).  For  as well).  For , let, let  qq nn(( )) rr nn(( )) pp nn(( )) 11 ≤≤ ii ≤≤ NN

  

  



 if the randomly-chosen string  if the randomly-chosen string  in trial  in trial  makes  makes , ,  otherwise.  Then the otherwise.  Then the  XX == 11ii yyii ii RR xx,, yy == AA xx   (( ii)) (( )) XX == 00ii

 are i.i.d. r.v.s all having  are i.i.d. r.v.s all having , so , so  for their sum  for their sum  is just that multiplied by  is just that multiplied by .  We want to.  We want to  XXii 𝜇𝜇   ==   ++ii
11

22

11

rr nn(( ))
𝜇𝜇 XX NN

bound bound  where we get  where we get  by solving  by solving , so, so  X X <<     ==   X X <<  𝜇 𝜇 11 -- 𝛿𝛿PrPr
NN

22
PrPr[[ (( ))]] 𝛿𝛿 𝜇𝜇 11 -- 𝛿𝛿   ==   (( ))

NN

22

, so , so , so , so , so , so .  It suffices to.  It suffices to  ++ 11 -- 𝛿𝛿 ==
11

22

11

rr nn(( ))
(( ))

11

22
-- 𝛿𝛿 ++ -- 𝛿𝛿 ==

11

22

11

22

11

rr nn(( ))

11

rr nn(( ))

11

22
== 𝛿𝛿 ++

11

rr nn(( ))

11

22

11

rr nn(( ))
𝛿𝛿 ==

22

rr nn +2+2(( ))

use the 2-sided estimateuse the 2-sided estimate

  ..    ||XX--𝜇𝜇||  ≥≥  𝛿𝜇 𝛿𝜇   ≤≤     ==  2 2PrPr[[ ]]
11

220.5N𝛿0.5N𝛿22

--2N2N

rr nn ++ 22(( (( )) ))22

  

We need to make We need to make , so take , so take .  This is a polynomial in .  This is a polynomial in , so the, so the    ≥≥  q q nn
2N2N

rr nn +2+2(( (( )) ))22 (( )) N N ==  q q nn rr nn ++ 22 // 22(( ))(( (( )) ))22 nn

majority vote condition gives a predicate majority vote condition gives a predicate  decidable in  decidable in  time that meets the time that meets the  R'R' OO pp nn qq nn rr nn(( )) (( )) (( ))22

conditions of the Amplification lemma.  conditions of the Amplification lemma.  ☒☒
  
The ability to take The ability to take  has some further ramifications that we will encounter.  For immediate has some further ramifications that we will encounter.  For immediate  qq nn   ≫≫  p p nn(( )) (( ))

use, the lemma (and its more-obvious one-sided versions for use, the lemma (and its more-obvious one-sided versions for RPRP and  and ZPPZPP) simply allows us to be) simply allows us to be  
cavalier about the particular probability estimates involved for cavalier about the particular probability estimates involved for BPPBPP.  For example, we can show that the.  For example, we can show that the  
BPBP  operator is  operator is idempotentidempotent as follows: as follows:  ⋅⋅[[ ]]

  
Suppose Suppose  is in  is in .  Suppose we say that at least 9/10 of the z's give the property.  Suppose we say that at least 9/10 of the z's give the property  LL BPBP BPBP RR xx,, yy,, zzzz[[ yy[[ (( ))]]]]

that at least 9/10 of the y's give the right answer that at least 9/10 of the y's give the right answer .  The chance of being right both.  The chance of being right both  RR xx,, yy,, zz == LL xx(( )) (( ))

times is (times is (can we multiply?can we multiply?) at least 81%, which is still bigger than the 75% in the original definition of) at least 81%, which is still bigger than the 75% in the original definition of  
BPP.  So define BPP.  So define ""  breaks in half into  breaks in half into  such that  such that  holds."  Then  holds."  Then  gives a gives a  R'R' xx,, ww   ==   (( )) ww yy,, zz RR xx,, yy,, zz(( )) R'R'

 predicate for  predicate for , so , so ..BPPBPP LL L L ∈∈   BPPBPP

  
  
Chernoff Bounds in Practical TheoryChernoff Bounds in Practical Theory
  
How concretely good are the Chernoff bounds?  Let's first revisit the case of unbiased binaryHow concretely good are the Chernoff bounds?  Let's first revisit the case of unbiased binary  
distribution, where we had distribution, where we had , , , and, andBB 6060 == 0.010843866710.01084386671100100(( )) BB >>  60 60 == 0.017600100110.01760010011100100(( ))

  

BB 6060   ++  B B >>  60 60     ==   0.023022033465.  0.023022033465.
11

22
100100(( )) 100100(( ))

  

We have We have , , , , , , , and finally, and finally  𝜇 𝜇 ==  50 50 𝛿𝛿 ==   ==  0.2 0.2
60-5060-50

5050
ee == 1.221402758161.22140275816𝛿𝛿 1.21.2 == 1.24456474721.24456474721.21.2

==  0.98138948649... 0.98138948649...   ==  0.3909039476... 0.3909039476...
1.22140275816...1.22140275816...

1.2445647472...1.2445647472...

5050

5050

  

Not close!  OK, let's try Not close!  OK, let's try , , , , , so , so .  We had:.  We had:N N ==  10 10,, 000000 𝜇𝜇 == 50005000 𝜇𝜇++ 2𝜎2𝜎 == 51005100 𝛿𝛿 == == 0.020.02
100100

50005000

  

  

  



,       ,       ,,BB >> 51005100 == 0.022212899520.022212899521000010000(( )) BB ≥≥ 51005100 == 0.023292763850.023292763851000010000(( ))

  
Now Now , , , ratio , ratio , and, and  ee == 1.02020134001.02020134000.020.02 1.021.02 == 1.020404053601.02040405360(( ))1.021.02 rr == 0.99980133986720.9998013398672

.  Not much better!  But if we keep .  Not much better!  But if we keep  the same, we get the same, we getrr == 0.370315719350.3703157193550005000 𝛿𝛿

  
BB ≥≥ 60006000   ==  8.7021582061 8.7021582061 ×× 10101000010000(( )) -90-90

  
(from (from https://keisan.casio.com/exec/system/1180573199https://keisan.casio.com/exec/system/1180573199 this time) versus the Chernoff bound this time) versus the Chernoff bound  
  

0.98138948649...0.98138948649...   ==  1.61066648 1.61066648 ×× 101050005000 -41-41

  
Does this count as "close"?  Well, for non-i.i.d. distributions, Chernoff bounds can be even worse.Does this count as "close"?  Well, for non-i.i.d. distributions, Chernoff bounds can be even worse.    
Suppose we have 5,000 variables Suppose we have 5,000 variables  with the certain value  with the certain value  and 5,000 with the certain value  and 5,000 with the certain value .  They.  They  XXii 00 11

count as "independent."  We have count as "independent."  We have  again and that is all the Chernoff bounds care about.  Yet again and that is all the Chernoff bounds care about.  Yet  𝜇𝜇 == 50005000

the true probability of getting the sum to be the true probability of getting the sum to be , or , or , or even , or even , is zero., is zero.    60006000 51005100 50015001

  
Let's see a case where Let's see a case where  is back down in the  is back down in the  to  to  range but  range but  is bigger and takes us up the is bigger and takes us up the  NN 100100 200200 𝛿𝛿

"long side" across the middle from "long side" across the middle from  to almost  to almost .  We take .  We take , so that we have, so that we have  𝜇 𝜇 ==  0.444N 0.444N 0.6N0.6N NN == 184184

on one hand the biased binomial distribution on one hand the biased binomial distribution .  The tail is small:.  The tail is small:BB184,0.444184,0.444

  

BB ≥≥ 110110   ==  .0000196863761547 .0000196863761547 ≈≈   184,0.444184,0.444(( ))
11

50796.5550796.55
  

We have  We have  , , ,,  𝜇𝜇 == 0.4440.444 ×× 184184 == 81.69681.696 11 ++ 𝛿 𝛿 ==     == 1.34645515081.3464551508
110110

81.69681.696
,  ,  , , ,,  ee == 1.4140460735771.4140460735770.34645515080.3464551508 1.34645515081.3464551508 == 1.49262629611.49262629611.34645515081.3464551508 rr == 0.94735438954370.9473543895437

and finally and finally .  Again, not close!  Let's see how my chess program fares.  This.  Again, not close!  Let's see how my chess program fares.  This  rr == 0.0120548800.012054880𝜇𝜇

happens to be from an actual important cheating case this past week:happens to be from an actual important cheating case this past week:
  

We will focus on the line for the move-match test.  The random variable We will focus on the line for the move-match test.  The random variable  for the  for the -th position among-th position among  XXii ii
the 184 game turns that were tested is whether the player chose the move the computer listed first.the 184 game turns that were tested is whether the player chose the move the computer listed first.    
Now chess positions are not i.i.d.: some positions have obvious recaptures where the player andNow chess positions are not i.i.d.: some positions have obvious recaptures where the player and  
computer will certainly agree, while others have many reasonable moves with each given a fairly closecomputer will certainly agree, while others have many reasonable moves with each given a fairly close  
projected probability by my model.  One issue is that empirically, the move decisions by the player areprojected probability by my model.  One issue is that empirically, the move decisions by the player are  
notnot independent, especially at consecutive turns, but this is a "sparse" dependence whose effect is independent, especially at consecutive turns, but this is a "sparse" dependence whose effect is  
reasonable to model by a constant-factor adjustment, with the constant determined empirically duringreasonable to model by a constant-factor adjustment, with the constant determined empirically during  
model training.  This is the "adj" column, but the original "z-score" column assumes independence, so itmodel training.  This is the "adj" column, but the original "z-score" column assumes independence, so it  
is what we should compare with is what we should compare with ..BB ≥≥ 110110184,0.444184,0.444(( ))

So the number to compare with the binomial tail is So the number to compare with the binomial tail is .  This is the ".  This is the " " giving" givingzz == 4.634.63 kk

  

  

https://keisan.casio.com/exec/system/1180573199


  
𝜇𝜇++𝜇𝜇𝛿𝛿    ==   𝜇  𝜇++ kk𝜎𝜎

  
and the advantage is we can look up the corresponding probability directly under the approximation ofand the advantage is we can look up the corresponding probability directly under the approximation of  
the binomial distribution by the normal distribution, using an applet such asthe binomial distribution by the normal distribution, using an applet such as
https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.htmlhttps://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
  
  

  
Whoa!Whoa!  My program gives odds over 10 times as sharp as the idealized distribution!  The explanation is  My program gives odds over 10 times as sharp as the idealized distribution!  The explanation is  
hinted by the presence of obvious-recapture moves.  Consider if about half the projected agreementshinted by the presence of obvious-recapture moves.  Consider if about half the projected agreements  
are obvious moves.  Subtracting out 40 such cases leaves are obvious moves.  Subtracting out 40 such cases leaves  agreements versus  agreements versus  projected out of projected out of  7070 41.741.7

 trials, for  trials, for .  The actual distribution is.  The actual distribution is  144144 BB ≥≥ 7070 ≈≈ 0.000000520694570.00000052069457 ≈≈144,0.28958144,0.28958(( ))
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somewhere between those cases.  In any event, the empirically validated score that I reported on thissomewhere between those cases.  In any event, the empirically validated score that I reported on this  
test is test is , which gives, which giveszz == 3.833.83

This is in the same ballpark as the idealized binomial probability.  The most important point is that fromThis is in the same ballpark as the idealized binomial probability.  The most important point is that from  
large tournaments played over-the-board, without a whiff of cheating, the distribution of these reportedlarge tournaments played over-the-board, without a whiff of cheating, the distribution of these reported  
scores conforms (slightly conservatively on purpose) to the bell curve.scores conforms (slightly conservatively on purpose) to the bell curve.
  
Thus, Chernoff bounds are not close enough to be relevant for my concrete statistical work.  WhetherThus, Chernoff bounds are not close enough to be relevant for my concrete statistical work.  Whether  
one could make any real profit from closer bounds in asymptotic complexity is regarded as dubious, butone could make any real profit from closer bounds in asymptotic complexity is regarded as dubious, but  
who knows?who knows?
  

  

  

https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html

