
CSE696 Lecture 2, Wed. Feb. 3: The Arithmetical and Polynomial Hierarchies.CSE696 Lecture 2, Wed. Feb. 3: The Arithmetical and Polynomial Hierarchies.

(Un-)Computability Relative to an Oracle(Un-)Computability Relative to an Oracle

Let Let be a collection of oracle Turing machines be a collection of oracle Turing machines . Then for any language . Then for any language , define, defineCC MM AA

 ..CC == LL MM :: M M ∈∈ CCAA AA

For example, taking the collection of all oracle Turing machines,For example, taking the collection of all oracle Turing machines,

the set of all languages that can be accepted with oracle the set of all languages that can be accepted with oracle ..RERE == LL MM == AA AA AA

And And . Now here is a fun puzzle. Saying that . Now here is a fun puzzle. Saying that is is RECREC == LL MM :: M is total with oracle A M is total with oracle AAA AA MM

total---i.e., halts for all inputs---with oracle total---i.e., halts for all inputs---with oracle is a statement that depends on the particular oracle is a statement that depends on the particular oracle . It. It AA AA

does not come from does not come from belonging to a collections of machines by themselves. The natural collection to belonging to a collections of machines by themselves. The natural collection to MM

use is that of OTMs that are total with use is that of OTMs that are total with allall oracles---indeed, that have an associated oracles---indeed, that have an associated time clocktime clock that that tt nn(())

shuts them off after shuts them off after steps independent of any answers from the oracle. Call this collection steps independent of any answers from the oracle. Call this collection .. tt ||xx||(()) TT

For any For any , clearly , clearly since every machine in since every machine in is of course total with oracle is of course total with oracle . But are. But are AA TT ⊆⊆ RECREC

AA AA
TT AA

they equal? That is to say, if you have they equal? That is to say, if you have and and such that such that halts for all inputs when halts for all inputs when is the oracle, is the oracle, MM AA MM AA

can we replace can we replace by by such that such that and and is total with is total with allall oracles---indeed, has a oracles---indeed, has a MM M'M' LL M'M' == L L MMAA AA M'M'

computable running time bound apart from the oracle? To model this, identify all languages computable running time bound apart from the oracle? To model this, identify all languages with with AA

branches of the infinite binary tree branches of the infinite binary tree . Now see if you can frame the problem in a way that leverages. Now see if you can frame the problem in a way that leverages BB

König's LemmaKönig's Lemma: every subtree of : every subtree of that has no infinite branch is finite, and in particular, has finite that has no infinite branch is finite, and in particular, has finite BB

depth.depth.

The possibly-larger definition of The possibly-larger definition of suffices, in any event, for the following two theorems that were suffices, in any event, for the following two theorems that were RECRECAA

proved without an oracle in CSE596.proved without an oracle in CSE596.

Theorem 1Theorem 1: For all oracles : For all oracles , , ..AA RERE ∩∩ co co --RERE == RECREC

AA AA AA

Theorem 2Theorem 2: For all oracles : For all oracles , , ..AA RERE ≠≠ RECRECAA AA

To prove Theorem 1, suppose To prove Theorem 1, suppose . Then there are OTMs . Then there are OTMs such that such that L L ∈∈ RERE ∩∩ co co --RERE AA AA MM ,, MM11 22

 and and . Build an OTM . Build an OTM to carry out the following routine---for any to carry out the following routine---for any LL MM == L LAA
11 LL MM == ∼∼ LLAA

22 MM

oracle oracle , not just the given one:, not just the given one:AA

https://en.wikipedia.org/wiki/K%C5%91nig%27s_lemma

The point---which Turing realized in his original 1936 paper---is that these proofs are really the same asThe point---which Turing realized in his original 1936 paper---is that these proofs are really the same as
the original ones without the oracle. The pink the original ones without the oracle. The pink s are not really s are not really usedused in the proof. They just "ride in the proof. They just "ride AA
along." Another fact is that we can turn a universal Turing machine into a universal along." Another fact is that we can turn a universal Turing machine into a universal oracleoracle Turing Turing
machine machine such that for any oracle such that for any oracle , , on input on input simulates simulates . Furthermore:. Furthermore:UU AA UUAA ⟨⟨MM,, ww⟩⟩ MM wwAA(())

Theorem 3Theorem 3: For all oracles : For all oracles , , is complete for is complete for under reductions that are computable in under reductions that are computable in AA LL UUAA REREAA

linear time linear time withoutwithout using the oracle. using the oracle.

ProofProof: Given any language : Given any language , take an OTM , take an OTM such that such that . To reduce . To reduce to to L L ∈∈ REREAA MM LL MM == L LAA LL

, map , map . Note that the reduction is "just syntax"---no oracle involved. . Note that the reduction is "just syntax"---no oracle involved. LL UUAA ff ww == ⟨⟨MM,, ww⟩⟩(()) ☒☒

So So always has complete languages just like always has complete languages just like does without the oracle. Moreover, does without the oracle. Moreover, is is REREAA RERE KKAA

complete for complete for via the same trick used to reduce the universal language via the same trick used to reduce the universal language to to without the without the REREAA AATMTM KK

oracle. We get exactly the same picture as before with extra "pink oracle. We get exactly the same picture as before with extra "pink s" added:s" added:AA

input input xx

Do oneDo one
more stepmore step
of of MM xxAA

11 (())

DidDid
MM xxAA

11 (())

accept?accept?

Do oneDo one
more stepmore step
of of MM xxAA

22 (())

DidDid
MM xxAA

22 (())

accept?accept?

MM == AA

nono

nono

yesyes

yesyes
Accept Accept xx

Reject Reject xx And to prove Theorem 2, defineAnd to prove Theorem 2, define

DD == ⟨⟨MM⟩⟩ :: ⟨⟨MM⟩⟩ ∉∉ L L MM ..AA
AA

If If were in were in , then there would be , then there would be DDAA RERE
AA

an OTM an OTM such that such that But:But:QQ LL QQ == DD ..AA
AA

 accepts accepts QQAA ⟨⟨QQ⟩⟩ ⟺⟺ ⟨⟨QQ⟩⟩ ∈∈ D D AA

by definition of by definition of ,,LL QQ == D DAA
AA

 by definition of by definition of ..⟺⟺ ⟨⟨QQ⟩⟩ ∉∉ D DAA DDAA

This contradiction shows This contradiction shows DD ∉∉ RERE ,,AA
AA

yet its complement (call it yet its complement (call it) is) isKKAA

, which does, which does⟨⟨MM⟩⟩ :: ⟨⟨MM⟩⟩ ∈∈ L L MMAA

belong to belong to --- but not to --- but not to . . REREAA RECRECAA ☒☒

Define Define . For example, . For example, = = , which by the, which by the CC == LL MM :: M M ∈∈ CC,, A A ∈∈ DDDD AA
RERE

RERE
RERE⋃⋃

A ∈ A ∈ RERE

AA

completeness of completeness of for for (the ordinary non-oracle versions) equals (the ordinary non-oracle versions) equals . But this notation conceals a. But this notation conceals a KK RERE REREKK

trap. In trap. In and especially in and especially in , the bottom , the bottom is not a class of languages like the top is not a class of languages like the top is. It's is. It's RERERERE REREAA RERE RERE

a "class" of a "class" of machinesmachines, and maybe should really be written , and maybe should really be written .. RERE
RERE

Likewise, when we write Likewise, when we write and and , the bottoms are not really the language classes , the bottoms are not really the language classes and and .. PPAA NPNPAA PP NPNP

They are the collections of deterministic and nondeterministic oracle TMs, respectively, with polynomialThey are the collections of deterministic and nondeterministic oracle TMs, respectively, with polynomial
time clocks bolted on. This is a major example of "abuse of notation" that is rampant in complexitytime clocks bolted on. This is a major example of "abuse of notation" that is rampant in complexity
theory and occasionally deceives. Pardon my French: theory and occasionally deceives. Pardon my French: tout abus sera munitout abus sera muni..

The real significance of the The real significance of the non-usenon-use of the pink of the pink s is that the associated methods cannot resolves is that the associated methods cannot resolve AA

cases where they cases where they dodo matter. When matter. When is the language TQBF of true quantified Boolean formulas, then is the language TQBF of true quantified Boolean formulas, then AA

 = = . Hence methods that are ignorant of internal details of the oracle set can never prove. Hence methods that are ignorant of internal details of the oracle set can never prove PPAA NPNPAA

 without the oracle. There are languages without the oracle. There are languages such that such that , so , so can never be can never be P P ≠≠ NP NP BB PP
BB ≠≠ NPNP

BB
P P == NP NP

proved without really being concrete about the proved without really being concrete about the absenceabsence of an oracle. The ability to "relativize" to of an oracle. The ability to "relativize" to
oracles is thus the first barrier to resolving the oracles is thus the first barrier to resolving the question. question.P P == ?? NP NP

Defining the HierarchiesDefining the Hierarchies

Nevertheless, the notation is useful to define both reductions and hierarchies.Nevertheless, the notation is useful to define both reductions and hierarchies.

Definition 2Definition 2: For any languages : For any languages and and ,,AA BB

• • Turing-reducesTuring-reduces to to , written , written , if , if .. AA BB A A ≤≤ B BTT A A ∈∈ RECRECBB

• • polynomial-timepolynomial-time Turing-reducesTuring-reduces to to , written , written , if , if ..AA BB A A ≤≤ B B
pp
TT A A ∈∈ PPBB

RECREC
AA

RERE
AA co-co-REREAA

neither c.e. in neither c.e. in nor co-c.e. in nor co-c.e. in AA AA

DD ,,AAKKAA

𝜃 𝜃 >> 45 45∘∘

AA

BB

means means A A ≤≤ B Bmm

 must must ALLALLAA
TMTM

be somewhere be somewhere
in this intersec-in this intersec-
tion of conestion of cones..

TOTTOTAA

EEAA
TMTM

IIAA𝜖𝜖{{{{ }}}}

NENEAA
TMTM

EE == MM :: L L MM == ∅ ∅AA
TMTM

AA

NENE == MM :: L L MM ≠≠ ∅ ∅AA
TMTM

AA

ALLALL == MM :: L L MM == 𝛴 𝛴AA
TMTM

AA **

TOTTOT == MM :: M M is total is totalAA AA

II == MM :: L L MM == 𝜖𝜖AA
𝜖𝜖{{{{ }}}}

AA {{ }}

Definition 3Definition 3: : , , , , co-REco-RE, and for , and for : : == == RECREC ∑∑

00

00
∏∏

00

00
 == RERE∑∑

00

11
 ==∏∏

00

11
k k ≥≥ 2 2 == RERE∑∑

00

kk

 ∑∑
 00
k-1k-1

and and co-co- . Also . Also .. == ∏∏

00

kk
∑∑

00

kk
AHAH == ⋃⋃

kk
∑∑

00

kk

Definition 4Definition 4: : , , , , co-NPco-NP, and for , and for : : == == PP ∑∑

pp

00
∏∏

pp

00
 == NPNP∑∑

pp

11
 ==∏∏

pp

11
k k ≥≥ 2 2 == NPNP∑∑

pp

kk

 ∑∑
 pp

k-1k-1

and and co-co- . Also . Also .. == ∏∏

pp

kk
∑∑

pp

kk
PHPH == ⋃⋃

kk
∑∑

pp

kk

The term "arithmetical hierarchy" can refer either to the suite of these classes as a concept or to theirThe term "arithmetical hierarchy" can refer either to the suite of these classes as a concept or to their
union, which is the class union, which is the class . Likewise for "polynomial hierarchy" and . Likewise for "polynomial hierarchy" and . The superscript . The superscript stands stands AHAH PHPH pp

for "polynomial". The superscript for "polynomial". The superscript (which is often omitted) stands for "first-order arithmetic" and/or the (which is often omitted) stands for "first-order arithmetic" and/or the 00

old-style notation old-style notation for for as a "degree of unsolvability." Why are we talking about "arithmetic"? as a "degree of unsolvability." Why are we talking about "arithmetic"? 00 RECREC

That's where much of the beauty and intellectual heft of the arithmetical hierarchy comes from. We willThat's where much of the beauty and intellectual heft of the arithmetical hierarchy comes from. We will
build on the next theorem proved in CSE596:build on the next theorem proved in CSE596:

Theorem 4Theorem 4: A language : A language belongs to belongs to if and only if there is a decidable predicate if and only if there is a decidable predicate such that such that LL RERE RR xx,, yy(())

for all for all , , ..xx x x ∈∈ L L ⟺⟺ ∃∃yy RR xx,, yy(()) (())

Note also:Note also:

Theorem 4'Theorem 4': A language : A language belongs to belongs to if and only if there are a if and only if there are a polynomial-timepolynomial-time decidable predicate decidable predicate LL NPNP

 and a polynomial and a polynomial such that for all such that for all , , ..RR xx,, yy(()) pp xx x x ∈∈ L L ⟺⟺ ∃∃yy :: ||yy|| ≤≤ pp ||xx|| RR xx,, yy(((()))) (())

The only predicate that we need to consider in both cases is the The only predicate that we need to consider in both cases is the Kleene Kleene -predicate-predicate "" TT TT MM,, xx,, ≡≡((cc)) cc

is an accepting computation of the (possibly nondeterministic) Turing machine is an accepting computation of the (possibly nondeterministic) Turing machine on input on input ." This is." This is MM xx
decidable in polynomial time---in fact, decidable in linear time by a machine that acts like a deterministicdecidable in polynomial time---in fact, decidable in linear time by a machine that acts like a deterministic
finite automaton with two heads. In the direction going forward from finite automaton with two heads. In the direction going forward from , the machine , the machine is fixed so we is fixed so we LL MM

really get a predicate really get a predicate where where encodes the computation encodes the computation . Furthermore, we could compact. Furthermore, we could compact TT xx,, yyMM(()) yy cc

the statement in the the statement in the case by stipulating that case by stipulating that be decidable in time polynomial in be decidable in time polynomial in alone, so alone, so NPNP RR xx,, yy(()) ||xx||

that a polynomial that a polynomial forcing forcing would come from that. We could call the would come from that. We could call the predicate predicate pp ||yy|| ≤≤ pp ||xx||(()) RR xx,, yy(())

polynomialpolynomial -decidable-decidable in that case. But IMHO it is important to keep in mind that the major difference in that case. But IMHO it is important to keep in mind that the major difference pp

between the between the and and cases is not the time to decide cases is not the time to decide but rather the length bound on but rather the length bound on . For. For NPNP RERE RR xx,, yy(()) yy

shorthand we can abbreviate shorthand we can abbreviate to to when the context for when the context for is clear. is clear. ∃∃yy :: ||yy|| ≤≤ pp ||xx||(((()))) ∃∃ yypp ||yy|| ≤≤ pp ||xx||(())

Then we can also say:Then we can also say:

• • A language A language belongs to belongs to co-co- if and only if there is a linear if and only if there is a linear-time-time decidable predicate decidable predicate LL RERE RR xx,, yy(())

such that for all such that for all , , ..xx x x ∈∈ L L ⟺⟺ ∀∀yy RR xx,, yy(()) (())

• • A language A language belongs to belongs to co-co- if and only if there is a linear if and only if there is a linear-time -time decidable predicate decidable predicate LL NPNP RR xx,, yy(())

and a polynomial and a polynomial such that for all such that for all , , ..pp xx x x ∈∈ L L ⟺⟺ ∀∀ yy RR xx,, yypp (())

ArithmeticArithmetic comes into play because the comes into play because the -predicate can be encoded entirely numerically with -predicate can be encoded entirely numerically with , , TT MM xx

treated as numbers and treated as numbers and as the "tupling" of a list of numbers into one number. If the computation is as the "tupling" of a list of numbers into one number. If the computation is cc

the sequence of configurations the sequence of configurations and these are already encoded as numbers, then we can and these are already encoded as numbers, then we can II ,, II ,, …… ,, II00 11 tt

consider consider using the first using the first odd primes. (As we sometimes say on the blog, odd primes. (As we sometimes say on the blog, is a very is a very == 2 2 33 ⋯⋯ ppcc II00 II11 II
tt
tt tt 22

odd prime.) There are more-compact ways to do pairing and tupling via polynomials odd prime.) There are more-compact ways to do pairing and tupling via polynomials without without qq uu,, vv(())

exponentiating, but what's significant is that this does require multiplication. The legwork for this wasexponentiating, but what's significant is that this does require multiplication. The legwork for this was
already done before Turing's 1936 paper by Kurt Gödel in 1930-31 in the context of encoding already done before Turing's 1936 paper by Kurt Gödel in 1930-31 in the context of encoding proofsproofs
rather than rather than computationscomputations, but the essence is much the same. It was Stephen Kleene who, but the essence is much the same. It was Stephen Kleene who
systematized the abstract formalization of computation. He wrote separately systematized the abstract formalization of computation. He wrote separately to specify the to specify the UU((== v vcc))

value output by the computation, but we can use any convenient variant notation such as value output by the computation, but we can use any convenient variant notation such as TT MM,, xx,, ,, vv((cc))

or or just to say the computation halts within just to say the computation halts within steps. For the polynomial hierarchy we will still steps. For the polynomial hierarchy we will still TT MM,, xx,, tt(()) tt
use predicates, but there we will find a backbone that uses no arithmetic at all, just propositional logicuse predicates, but there we will find a backbone that uses no arithmetic at all, just propositional logic
with with (or alternatively just NAND or NOR), growing from SAT to the language TQBF. (or alternatively just NAND or NOR), growing from SAT to the language TQBF.∧∧ ,, ∨∨ ,, ¬¬

Definition 3Definition 3. Call a predicate of the form . Call a predicate of the form with with (linear-time-) decidable a (linear-time-) decidable a --SS xx == ∃∃yy RR xx,, yy(()) (()) (()) RR ∑∑

11

predicatepredicate, and , and a a -predicate-predicate. And naturally enough, . And naturally enough, is a is a --S'S' xx == ∀∀yy RR xx,, yy(()) (()) (()) ∏∏

11
∃∃ yy RR xx,, yypp (()) ∑∑

pp

11

predicatepredicate and and is a is a -predicate-predicate.. ∀∀ yy RR xx,, yypp (()) ∏∏
pp

11

 Inductively, for Inductively, for , a , a -predicate-predicate is one of the form is one of the form where where is a is a --k k ≥≥ 2 2 ∑∑

kk
SS xx ==(()) ∃∃yy RR xx,, yy(()) (()) RR ∏∏

k-1k-1

predicate, and a predicate, and a -predicate-predicate has the form has the form where where is a is a -predicate. -predicate. --∏∏

kk
S'S' xx ==(()) ∀∀yy R'R' xx,, yy(()) (()) R'R' ∑∑

k-1k-1
∑∑

pp

kk

predicatespredicates andand -predicates-predicates are defined analogously. are defined analogously.∏∏
pp

kk

Every Every -predicate is the negation of a -predicate is the negation of a -predicate and vice-versa. Any predicate -predicate and vice-versa. Any predicate with the one with the one ∑∑

kk
∏∏

kk
SS xx(())

free string/numeric variable free string/numeric variable defines a language defines a language via via . Note that when a. Note that when a xx LLSS LL == xx :: S S xx is true is trueSS {{ (()) }}

particular string is substituted for particular string is substituted for , the unary predicate becomes a logical , the unary predicate becomes a logical sentencesentence. Unrolling the. Unrolling the xx
definition, we see:definition, we see:

• • A A -predicate has the form -predicate has the form with with decidable (in linear time). decidable (in linear time). ∑∑

22
SS xx == ∃∃yy ∀∀zz RR xx,, yy,, zz(()) (())(()) (()) RR

• • A A -predicate has the form -predicate has the form with with decidable. decidable.∏∏

22
S'S' xx == ∀∀yy ∃∃zz R'R' xx,, yy,, zz(()) (())(()) (()) R'R'

• • A A -predicate has the form -predicate has the form with with decidable. decidable.∑∑

33
SS xx == ∃∃yy ∀∀zz ∃∃ww RR xx,, yy,, zz,, ww(()) (())(())(()) (()) RR

• • A A -predicate has the form -predicate has the form with with a polynomial a polynomial ∏∏
pp

55
S'S' xx == ∀∀ yy ∃∃ zz ∀∀ ww ∃∃ vv ∀∀ uu RR(()) pp pp pp pp pp pp

and and being polynomial-time (wlog. linear-time) decidable. being polynomial-time (wlog. linear-time) decidable.RR xx,, yy,, zz,, ww,, vv,, uu(())

The number The number reflects not the raw count of quantifiers but the number of times they reflects not the raw count of quantifiers but the number of times they alternatealternate between between kk

 and and . Using pairing and tupling, we can always "condense" quantifiers of the same kind, e.g.. Using pairing and tupling, we can always "condense" quantifiers of the same kind, e.g. ∃∃ ∀∀

 becomes becomes .. ∃∃tt ∃∃uu ∃∃vv RR ⋯⋯(())(())(()) (()) ∃∃ww w w =:=: ⟨⟨tt,, uu,, vv⟩⟩ ∧∧ R R ⋯⋯(())[[(())]]

Examples:Examples:

• • , so the language of (non-oracle) TMs that do not halt on, so the language of (non-oracle) TMs that do not halt on M never halts M never halts ≡≡ ∀∀xx ∀∀tt ¬¬TT MM,, xx,, tt(())(()) (())

any input [i.e., are such that for all inputs, the machine does not halt on that input] any input [i.e., are such that for all inputs, the machine does not halt on that input] isis co-c.e. co-c.e.

• • , so the , so the language belongs to language belongs to .. M always halts M always halts ≡≡ ∀∀xx ∃∃tt TT MM,, xx,, tt(())(()) (()) ALLALLTMTM ∏∏ 00

22

• • : We can define a recursive enumeration : We can define a recursive enumeration of polynomial-timeof polynomial-time LL MM belongs to belongs to PP(()) PP ,, PP ,, PP ,, ……11 22 33

bounded [oracle] Turing machines. Then bounded [oracle] Turing machines. Then . This is a . This is a --LL MM ∈∈ PP ≡≡ ∃∃kk LL MM == L L PP(()) (())[[(()) ((kk))]] ∑∑

33

predicate because the equality of the languages of two Turing machines (even when both thempredicate because the equality of the languages of two Turing machines (even when both them

are not necessarily halting) is definable by a are not necessarily halting) is definable by a -predicate.-predicate. ∏∏

22

Now we can state:Now we can state:

Theorem (Kleene's Arithmetical Hierarchy Theorem)Theorem (Kleene's Arithmetical Hierarchy Theorem): For all : For all ::k k ≥≥ 1 1

• • A language A language belongs to belongs to if and only if it equals if and only if it equals for some for some -predicate -predicate ..LL ∑∑

00

kk
LLSS ∑∑

kk
SS

• • Similarly, Similarly, belongs to belongs to iff it is defined by a iff it is defined by a -predicate -predicate ..LL ∏∏

00

kk
∏∏

kk
S'S'

• • The language The language of of truetrue -sentences of arithmetic is complete for -sentences of arithmetic is complete for under under (indeed, (indeed, VVkk ∑∑

kk
∑∑

00

kk
≤≤ mm

under many-one reductions that are linear-time computable).under many-one reductions that are linear-time computable).

One immediate corollary of this and the separation One immediate corollary of this and the separation in Theorem 2 involves a time in Theorem 2 involves a time RERE ≠≠ RECREC

AA AA

inversion:inversion:

CorollaryCorollary: The language : The language of all sentences of arithmetic that are true (in the standard model of all sentences of arithmetic that are true (in the standard model , that, that VV NN

is) is hard for is) is hard for for all for all , and hence does not belong to , and hence does not belong to at all. at all. ∑∑

00

kk
kk AHAH

This was proved by the logician Alfred Tarski in 1933---after Gödel but before Turing. Compare:This was proved by the logician Alfred Tarski in 1933---after Gödel but before Turing. Compare:

• • Using simple arithmetic, we can define real numbers that we cannot compute (Turing, 1936).Using simple arithmetic, we can define real numbers that we cannot compute (Turing, 1936).
• • The set of theorems of (Giuseppe Peano's formalization of) arithmetic is undecidable (Gödel,The set of theorems of (Giuseppe Peano's formalization of) arithmetic is undecidable (Gödel,

1931). The set of theorems is, however, definable by a 1931). The set of theorems is, however, definable by a -predicate.-predicate.∑∑

11

• • The set of true statements of (Peano's) arithmetic is not definable in arithmetic at all (Tarski).The set of true statements of (Peano's) arithmetic is not definable in arithmetic at all (Tarski).

In the polynomial world, we have an analogous statement:In the polynomial world, we have an analogous statement:

Theorem ("Weak" Polynomial Hierarchy Theorem)Theorem ("Weak" Polynomial Hierarchy Theorem): For all : For all ::k k ≥≥ 1 1

• • A language A language belongs to belongs to if and only if it equals if and only if it equals for some for some -predicate -predicate ..LL ∑∑

pp

kk
LLSS ∑∑

pp

kk
SS

• • Similarly, Similarly, belongs to belongs to iff it is defined by a iff it is defined by a -predicate -predicate ..LL ∏∏

pp

kk
∏∏

pp

kk
S'S'

• • The language The language of of truetrue -sentences of propositional logic is complete for -sentences of propositional logic is complete for under under BBkk ∑∑

kk
∑∑

pp

kk
≤≤

pp
mm

(where the polynomial depends on the language being reduced to (where the polynomial depends on the language being reduced to).).BBkk

Note that a Boolean Note that a Boolean formulaformula is satisfiable if and only if the corresponding propositional is satisfiable if and only if the corresponding propositional 𝜙𝜙 xx ,, …… ,, xx((11 nn))

sentencesentence is true, i.e., belongs to is true, i.e., belongs to . Thus the . Thus the PSPACEPSPACE-complete-complete ∃∃xx ∃∃xx ⋯⋯ ∃∃xx 𝜙𝜙 xx ,, …… ,, xx((11))((22)) ((nn)) ((11 nn)) BB11

language TQBF, which essentially equals language TQBF, which essentially equals , is analogous to , is analogous to . This analogy promotes powerful. This analogy promotes powerful ∪∪ BBkk kk VV
beliefbelief that the polynomial hierarchy theorem is infinite and (hence) different from that the polynomial hierarchy theorem is infinite and (hence) different from PSPACEPSPACE, but we don't, but we don't
have such a "Strong Hierarchy Theorem" yet for have such a "Strong Hierarchy Theorem" yet for PHPH..

Our notational setup enables us to do the Our notational setup enables us to do the case while losing no generality. case while losing no generality.kk == 22

ProofProof: The (: The (direction, from a direction, from a -predicate -predicate to an OTM to an OTM with the co-c.e. with the co-c.e. ⟸⟸)) ∑∑

22
SS xx == ∃∃yy RR xx,, yy(()) (()) (()) MM

language language as oracle, is easy: we code as oracle, is easy: we code on input on input to loop to loop and accept if and whenand accept if and when LLRR MM xx y y == 0 0,, 11,, 22,, ……

the oracle says yes to the query the oracle says yes to the query .. ⟨⟨xx,, yy⟩⟩

To do the To do the ((direction, let direction, let be an OTM with a co-c.e. oracle be an OTM with a co-c.e. oracle , which we can (by induction), which we can (by induction) ⟹⟹)) MM RR

identify with a identify with a -predicate -predicate . What makes the induction a little non-trivial is that we also use the. What makes the induction a little non-trivial is that we also use the ∏∏

11
RR yy(())

-representation of the negation -representation of the negation of of . That is, we have . That is, we have for some decidable for some decidable ∑∑

11
R'R' RR RR yy == ∀∀ww QQ yy,, ww(()) (()) (())

predicate predicate , so , so . Now we can define for any . Now we can define for any ::QQ R'R' yy == ∃∃ww Q'Q' yy,, ww(()) (()) (()) xx

, where the string , where the string unpacks not only into an accepting computation unpacks not only into an accepting computation that that x x ∈∈ L L MM ⟺⟺ ∃∃ 𝛷𝛷RR ((dd)) ((dd)) dd cc

postulates answers to each oracle query, but also gives:postulates answers to each oracle query, but also gives:
1. 1. The queries The queries that are listed as being answered "yes" in that are listed as being answered "yes" in , with the body of , with the body of yy ,, …… ,, yy11 kk cc 𝛷𝛷

including including . This is where the second . This is where the second quantifier comes in. quantifier comes in.RR yy ∧∧ ⋯⋯ ∧∧RR yy((11)) ((kk)) ∀∀ ⋯⋯(())

2. 2. The queries The queries listed in listed in as being answered "no", as being answered "no", together withtogether with the witnesses the witnesses zz ,, …… ,, zz11 ℓℓ cc

 such that such that ..ww ,, …… ,, ww11 ℓℓ Q'Q' zz ,, ww ∧∧ ⋯⋯ ∧∧ Q' Q' zz ,, ww((11 11)) ((ℓℓ ℓℓ))

To complete putting this into strict To complete putting this into strict form, we can use the identity form, we can use the identity∑∑

22

∀∀vv QQ yy ,, vv ∧∧ ∀∀vv QQ yy ,, vv ∧∧ ⋯⋯ ∧∧ ∀∀vv QQ yy ,, vv ≡≡ ∀∀vv QQ yy ,, vv ∧∧ ⋯⋯ ∧∧QQ yy ,, vv ..((11)) ((11 11)) ((22)) ((22 22)) ((kk)) ((kk kk)) (())[[((11)) ((kk))]]

Even if the middle connector were Even if the middle connector were not not , we would still get a single universal , we would still get a single universal blockblock as as ∨∨ ∧∧

. To do the induction for . To do the induction for , we iterate similar aspects, we iterate similar aspects ∀∀vv ,, …… vv QQ yy ,, vv ∨∨ ⋯⋯ ∨∨QQ yy ,, vv((11 kk))[[((11 11)) ((kk kk))]] k k >> 2 2

of the general algortihm for conversion to of the general algortihm for conversion to prenex normal formprenex normal form. That process also finishes the formal. That process also finishes the formal

conversion into conversion into -sentences for the third part. To finish this "handwave", the -sentences for the third part. To finish this "handwave", the case piggybacks case piggybacks ∑∑

kk
BBkk

onto the proof of the Cook-Levin Theorem for onto the proof of the Cook-Levin Theorem for . . k k == 1 1 ☒☒

