
Games With Uniqueness Properties

by Shin Aida1, Marcel Crasmaru2, Kenneth Regan3, and Osamu Watanabe2

1. Dept. of Knowledge-based Information Engineering,
Toyohashi University of Technology, Toyohashi, Japan 441-8580 aida@tutkie.tut.ac.jp.
2. Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
Meguro-ku Ookayama, Tokyo 152-8552 marcel@is.titech.ac.jp, watan-

abe@is.titech.ac.jp.
3. Dept. of Computer Science, State University of New York at Buffalo
Buffalo, NY 14260-2000 USA regan@cse.buffalo.edu. Supported in part by JSPS/NSF

cooperative research grant “Complexity Theory for Strategic Goals,” INT 9726724, 1998–2001.

Abstract. For two-player games of perfect information such as Checkers, Chess, and Go

we introduce “uniqueness” properties. A game position has a uniqueness property if a win-

ning strategy—should one exist—is forced to be unique. Depending on the way that win-

ning strategy is forced, a uniqueness property is classified as weak , strong , or global . We

prove that any reasonable two-player game G is extendable to a game G∗ with the strong

uniqueness property for both players, so that e.g., QBF remains PSPACE−complete under

this reduction. For global uniqueness, we introduce a simple game over Boolean formu-

las with this property, and prove that any reasonable two-player game with the global

uniqueness property is reducible to it. We show that the class of languages that reduce

to globally-unique games equals Niedermeier and Rossmanith’s unambiguous alternation

class UAP [NR98], which is in an interesting region between FewP and SPP.

1

1. Introduction

Is it easier to analyze a position in a game to determine which player stands to win if one

is told that the winning strategy for that player is unique? In general, in one-player games

like “solitaire,” where one player makes a series of moves and the resulting position is then

adjudicated by an efficient referee, the answer is believed by many to be yes . A question

of this type corresponds, in complexity theory, to the one asking whether problems in UP

are easier than NP, or more precisely, whether the satisfiability of a given formula F is

easier to solve under the promise that it has at most one satisfying assignment. For the

case of NP problems, it is known [VV86] that the promise does not reduce the complexity

of NP problems so much.

This paper analyzes theoretically whether the same intuition holds for two-player

games. From a complexity theoretic point of view, our question is on the complexity of

alternating computation, and it is to ask whether computation becomes easy if we may

assume some sort of “uniqueness property” in the accepting computation.

Since the notion of unique winning strategy is not so clear for a two-player game or

alternating computation we first explain uniqueness properties we will discuss in this paper

by using some intuitive examples. In the game Chess, a problem of the “White to move and

win” variety is called a study . For a study to be “publishable” it is generally an absolute

requirement that the first winning move—called the “key”—be unique. Moreover, the

study should have a “main line” in which the defender forces the attacker to find unique

winning moves at every turn. The existence of a main line with unique play by the winner

can be called weak uniqueness . More elegant and challenging are problems in which the

defender has many options that force unique winning plays by the attacker. When all

options by the defender force unique replies at every move, then the study position has

the strong uniqueness property. A final element of study elegance puts uniqueness on the

flip side of the coin. It is desirable that certain tempting mis-steps by the attacker—called

“tries”—be punishable by unique defenses. When this applies not only to all poor first

moves by the attacker but to every position reachable from the start, then we speak of

the global uniqueness property.

An example of a game with global uniqueness is the basic form of Nim in which each

player may remove from 1 to m counters from a single pile initially with N counters, and

the player taking the last counter wins. If N is not a multiple of m + 1, then the first

player wins uniquely by removing N mod (m+1) counters. But if so, then the first player

loses—note now that the opponent has a unique winning reply to every move. Similarly,

a mistake by the first player in a winning position is punished uniquely by the opponent.

Global uniqueness is typical of many Nim-style games.

In general, the problem of finding a winning move for a given position is computa-

tionally hard. In complexity theory, the Winner Decision Problem, namely whether a

given position has a winning strategy for the player to move, usually has the same hard-

ness as finding a winning move when one exists. For example, it has been shown that

2

the Winner Decision Problem is EXPTIME-complete for certain liberal generalizations

to n × n boards of Chess and Go and several other games, for which see [Rob84], and

becomes PSPACE-complete when those games are constrained to limit all plays to length

polynomial in n. We would like to investigate whether this decision problem becomes

easier if we can assume some of the uniqueness properties mentioned above. For example,

we consider some subset of positions of Go that has the strong uniqueness property, and

investigate the complexity of the Winner Decision Problem.

There have been some preliminary results on our question. Crasmaru and Tromp

[CT00] proved that the Winner Decision Problem for Go remains PSPACE-hard even

when instances are restricted to very simple “ladder positions.” Aida and Tsukiji [AT01]

also discussed a way to define a game with some uniqueness property simulating a given

alternating Turing machine.

In this paper, we consider our question in the most general case, and we first show

the following result. We define “reasonable game G” in the next section, and “extension”

means a game that includes all positions of G without changing their winners.

(1) For every reasonable game G, we can define its extension G∗ in such a way that

every position P of G has the strong bi-uniqueness property in G∗. Furthermore, the

(maximal) depth of P , i.e., the depth of the game tree rooted by P , becomes at most

three times the original depth in G.

This result illustrates that the hardness of the problem of deciding which side of a

given position wins does not change even if we may assume that the position has the

strong bi-uniqueness property. In fact, by using this result, we can define a game GPS

(resp., GEXP) and a set PPS (resp., PEXP) of strong bi-unique game positions such that it

is PSPACE- (resp., EXPTIME-) complete to determine whether a given position in PPS

(resp., PEXP) has a winning strategy. Then for any game G, in order to obtain a set of

strong bi-unique game positions that are PSPACE- (resp., EXPTIME-) hard, it is enough

to show the way to implement the game rule of GPS (resp., GEXP) in G while keeping the

strong bi-uniqueness. One can show the previous results mentioned above in this way.

In contrast to the case of the strong bi-uniqueness property, it seems that the Winner

Decision Problem becomes easier when the global uniqueness property can be assumed.

Formally we define the following promise problem GUQBF:

Instance: A quantified Boolean formula ψ, usually in the prenex form

ψ = (∃xd)(∀xd−1) · · ·φ.

Promise: The logic game on ψ has the global uniqueness property.

Question: Is ψ true?

In the “logic game on ψ,” the first player assigns xd := 0 or xd := 1, then the second

player assigns a value to xd−1, and so on. The first player wins if the resulting sentence φ

is true, else the second player wins. The class SPP was introduced in [FFK94], while the

more-familiar class FewP contains the decision version of factoring and other problems

believed to be intractable.

3

(2) The class of languages that polynomial-time many-one reduce to GUQBF, by re-

ductions whose range is contained in the promise set, equals the unambiguous al-

ternation class UAP defined by Niedermeier and Rossmanith, which is located by

FewP ⊆ UAP ⊆ SPP [NR98].

In particular, it follows that GUQBF cannot be PSPACE-hard unless PSPACE =

SPP. Thus, it seems unlikely that every two player game of polynomial depth can be

extended to a game of polynomial depth with the global uniqueness property. On the

other hand, GUQBF is not trivial because it is hard for the problem of factoring integers.

2. Formal Definition of Game and Uniqueness Properties

Here we define the notion of game and several uniqueness properties and prepare some

notations for our discussion.

For the notion of two-player game, we adopt the following definition given in [CS79].

Definition 2.1. A (two person perfect-information) game G is a triple (PG
0 , P

G
1 , R

G),

where PG
0 and PG

1 are sets such that PG
0 ∩PG

1 = ∅, and RG is a subset of PG
0 ×PG

1 ∪PG
1 ×PG

0 .

Where no ambiguity arises, we will abbreviate PG
0 as P0, etc. The set P0 (resp., P1)

stands for the set of positions in which player 0 (resp., 1) is to move, and R stands for

the set of legal moves. We assume some reasonable coding for elements of P0 ∪P1; in the

following, we simply identify elements of P0 ∪ P1 and their description under this coding.

A move for player x in the current position π ∈ Px consists is a pair (π, π′) ∈ R, with π′

becoming the next position. For any π, we define R(π) = R1(π) = { π′ : (π, π′) ∈ R },
and for d ≥ 2, we inductively define

Rd(π) =
⋃

π′∈Rd−1

R(π′).

Finally set R∞(π) =
⋃
d≥0 Rd(π). This is the set of all positions reachable from π. Now

we define “reasonable game.”

Definition 2.2. A game G = (P0, P1, R) is polynomially definable if there is a polynomial

q such that for any π ∈ P0 ∪ P1 and π′ ∈ R∞(π), |π′| ≤ q(|π|), and the relation R(π, π′)

belongs to P.

Such a game has R∞(π) is finite for any π, but this definition allows cycles whereby

π ∈ Rd(π) for some d ≥ 1. A play of a polynomially-definable game with an initial

position of size n can run for at most 2O(q(n)) moves without cycling. Generally we

consider polynomially-definable games without cycles, and later we shall emphasize those

of polynomial depth, i.e., all of whose plays last nO(1) moves before halting. Polynomially

definable games give a model of polynomial space bounded alternating computation.

Terminal winning positions for Player x are the same as positions π ∈ Px such that

R(π) = ∅; i.e., a player who is “on move” but unable to move loses. This becomes the

4

basis of the following definition of the sets WG
x,d = Wx,d of winning positions for player x

within d moves, namely:

Wx,0 = { π ∈ Px : R(π) = ∅ },
Wx,d+1 = Wx,d ∪ { π ∈ Px : R(π) ∩Wx,d 6= ∅ } ∪ {π ∈ Px : R(π) ⊆ Wx,d }.

The inductive clause includes both positions in which player x is to move and can move

to a winning position within d moves, and ones in which player x is to move but cannot

avoid moving to a position that is winning within d moves for player x. The set of all

winning positions for x is given by Wx = ∪d≥0Wx,d. We have W0 ∩W1 = ∅, and when

there are no cycles, W0 ∪W1 = P0 ∪ P1. For any π ∈ P0 ∪ P1, the depth of π, denoted

by d(π), is the smallest d such that π ∈ Wx,d for some x ∈ {0, 1}. Intuitively, d(π) is

the smallest depth necessary to determine which player wins under their best moves. On

the other hand, we will also use the maximal depth of π, i.e., the length of the longest

path from π to a leaf of the game tree, which we denote by dmax(π). Precisely, dmax(π) is

defined inductively as follows.

dmax(π) =

{
0, if R(π) = ∅,
1 + maxπ′∈R(π)(dmax(π′)), otherwise.

Since we assume polynomially definable games, both d(π) and dmax(π) are bounded by

2q(|π|) for some polynomial q.

Definition 2.3. A position π has the strong uniqueness property for player x if:

(a) π is a winning position for the opponent x, or

(b) x is to move at π, x has a unique winning move, and this move goes to a position

having the strong uniqueness property for x, or

(c) the opponent x is to move at π but all moves go to positions having the strong

uniqueness property for x.

If all positions π′ ∈ R∞(π) have the strong uniqueness property for the player winning at

π′, then the game with initial position π has the global uniqueness property .

“Weak uniqueness” as mentioned in the Introduction would be defined by weakening (c)

to say only that all moves for x lose and some move goes to a position having weak

uniqueness for x, and saying “weak uniqueness” in (b) as well. The informally-worded

inductive clauses in the above definition support the following inductive definition of the

set SUG
x = SUx of positions having the strong uniqueness property for player x, via

SU0 = Wx,0 and for d ≥ 0,

SUx,d+1 = { π ∈ Px : π ∈ Wx ⇒ [|R(π) ∩Wx| = 1 ∧ R(π) ∩Wx ⊆ SUx,d]}
∪ { π ∈ Px : π ∈ Wx ⇒ R(π) ⊆ SUx,d },

5

and finally SUx =
⋃
d≥0 SUx,d.

Note the convention in (a) that Wx ⊆ SUx, which makes this and later definitions

smoother, even though SUx ⊆ Wx becomes false. We say that a position π has the strong

bi-uniqueness property if π belongs to SUx ∩ SUx. The difference between strong bi-

uniqueness and global uniqueness is that the former allows player x to make a bad move

that goes to a position π′ that x wins but not with uniqueness.

3. Conversion to a Game with the Strong Uniqueness Property

Here we prove our first main result, namely that many game problems remain complete for

their respective classes even when the range of reductions is restricted to positions with

the strong uniqueness property. We do so by converting every polynomially definable

game G into a game G∗ so that for each position π of G, (i) the conversion does not

change π and its winner in G∗, and (ii) π has the strong uniqueness property in G∗.

Furthermore d∗max(π), namely the maximum depth of the game tree below π in G∗, is at

most 3dmax(π). The basic idea is that G∗ adds a new “turn-the-tables” rule. Under some

total ordering of the legal moves in any position π, if the move made by Player x in π is

not least in the order, the opponent x̄ may change places with x, take back that move,

and play a move that is lower in the order. Reductions from G∗ then obey the desired

restriction on their ranges.

We prepare some notation that is useful in our proof. For any game G = (P0, P1, R),

we define the dual game G of G by G = (P 0, P 1, R), where roughly speaking, P 0 = P1,

P 1 = P0, and R = R. That is, the dual of G is simply the game in which the players have

“exchanged” only their places. Recall that we assume that the player to move is encoded

in a position. Thus, precisely speaking, P 0 is not the same as P1, for example; instead,

every position π ∈ P1, its dual π ∈ P 0 is obtained from π by replacing the part encoding

“player 0” with “player 1.” From this, we may assume that (P0 ∪ P1) ∩ (P 0 ∪ P 1) = ∅.
For the dual game G, we can define WG

x in the same way as G. To simplify our notation,

we will denote WG
x by W x.

One can observe that the dual of the dual of a game is the game itself, i.e., G = G, and

that player x wins in a position π of G if and only if x loses in the dual position π of G.

Moreover, one can easily show that for any position π of G, we have dmax(π) = dmax(π).

Now we are ready to prove our first main result, abbreviating PG∗
0 to P ∗, etc.

Theorem 3.1. For any game G = (P0, P1, R) without cycles, we can define a game G∗ =

(P ∗0 , P
∗
1 , R

∗) such that for each player x ∈ {0, 1}, we have (i) Px ⊆ P ∗x and Wx ⊆ W ∗
x , and

(ii) Wx ⊆ SU∗x . That is, G∗ has strong bi-uniqueness. Furthermore, if G is polynomially

definable, then so is G∗, and for every π ∈ P0 ∪ P1, we have d∗max(π) ≤ 3dmax(π).

Before stating the proof formally, we explain our conversion idea intuitively. Suppose

player x has a winning move in a position π in the original game G. List the possible next

moves for x in lexicographic order of their encodings as R(π) = {π1, π2, . . . , πk}. In our

6

new game G∗, player x has to choose the leftmost winning move, i.e., the winning move

with the smallest index. This is enforced by adding a rule that allows the opponent x to

“challenge” a move πj by taking over the role of x and playing to some πi with i < j.

Figure 1. Conversion from G to G∗

To define G∗, we add new positions of the forms (i) πi to represent that a challenge has

occurred, (ii) (π, j) to represent that the j-th move in lex order was made from position

π, and (iii) [π, j] to represent that the opposing player did not challenge (π, j). Assume

for example, π2 is the leftmost winning move. Then to win in the new game G∗, player x

has to choose (π, 2) as the next position. Then in the next move, the opposing player x

can choose π1 or [π, 2]. Intuitively, choosing [π, 2] means to continue the game as in the

original game; that is, x accepts π2 as a next position. Then x must continue by choosing

π2 (so positions of the form [π, j] have only one next move)—see Figure 1. On the other

hand, choosing π1 intuitively means that player x has to show that π1 is not the winning

move in G; that is, he/she would have lost the game against best play by choosing π1 in

G. This is because x loses from π1 if and only if x wins from π1.

We apply this conversion inductively throughout the game tree—the star symbol in

Figure 1 means that the same conversion is made in the corresponding subtrees. After a

challenge, no further challenges are allowed, and it follows that the maximal depth of G∗

is at most three times that of G. Whichever player x stands to win at a given position π,

the leftmost winning move for x is unique, at π and at any position reached after moves

by x following optimal moves by x. Therefore G∗ will have strong uniqueness for both

players, as we show formally below. It may not have global uniqueness, however, because

7

after a mistake by x, the opponent may have more than one means of refutation. In

particular this happens if x plays a losing move in G that is rightward of the leftmost

winning move.

Proof. We first state how to define G∗ from G formally. For any x ∈ {0, 1}, let π ∈ Px be

a position of the game G, and let R(π) = {π1, π2, . . . , πk} be the set of obtainable positions

from π in one move in game G. (Whenever the sequence “π1, π2, . . . , πk” appears in the

proof, suppose that it is previously ordered lexicographically.) Then we define AuxP (π)

and AuxP ′(π) by

AuxP (π) = { (π, i) : 2 ≤ i ≤ k }, and AuxP ′(π) = { [π, i] : 2 ≤ i ≤ k }.

For any π ∈ P x, we define AuxP (π) and AuxP ′(π) in the same way. These states are

newly added in the game G∗. Precisely, in G∗, we define the sets P ∗0 and P ∗1 of positions

in the following way.

P ∗0 = P0 ∪ P 0 ∪
⋃

π∈P0∪P 0

AuxP ′(π) ∪
⋃

π∈P1∪P 1

AuxP (π), and

P ∗1 = P1 ∪ P 1 ∪
⋃

π∈P1∪P 1

AuxP ′(π) ∪
⋃

π∈P0∪P 0

AuxP (π).

The new game relation R∗ is defined as follows in terms of AuxR(π).

R∗ =
⋃

π∈P0∪P1∪P 0∪P 1

AuxR(π), and

AuxR(π) = { (π, 1)} ∪ {(π, (π, i)) : 2 ≤ i ≤ k }
∪ { ((π, i), πj) : 1 ≤ j < i ≤ k } ∪ { ((π, i), [π, i]) : 2 ≤ i ≤ k }
∪ { ([π, i], πi) : 2 ≤ i ≤ k }

where R(π) = {π1, π2, . . . , πk}. Observe that equality P ∗0 ∩ P ∗1 = ∅ holds by assuming

that (P0 ∪ P1) ∩ (P 0 ∪ P 1) = ∅. It is obvious that P0 ⊆ P ∗0 , and P1 ⊆ P ∗1 .

If P0, P1 and R are polynomial-time computable, then so are P ∗0 and P ∗1 , because P ∗0
(resp. P ∗1) is the union of polynomial-time computable sets, P0, P 0,

⋃
π∈P0∪P 0

AuxP ′(π)

and
⋃
π∈P1∪P 1

AuxP (π) (resp. P1, P 1,
⋃
π∈P1∪P 1

AuxP ′(π) and
⋃
π∈P0∪P 0

AuxP (π).) Simi-

larly one can check polynomial-time computability of R∗. Therefore if G is polynomially

definable, then so is G∗. As explained before, the maximal depth of G∗ is at most three

times that of G, and the construction introduces no cycles.

We can show that the new game has the desired properties by induction on the

maximal depth.

For this, we first define Q(d) to be the set of π with dmax(π) = d. Then clearly, we

have
⋃
d≥0 Q(d) = P0 ∪ P1. Again we use Q(d) to denote the same set for the dual game.

Below we prove that the equalities Wx ∩Q(d) = W ∗
x ∩Q(d) and W x ∩Q(d) = W ∗

x ∩Q(d)

hold for any integer d ≥ 0.

Consider the case when π ∈ Wx∩Q(0). Then since R(π) = ∅, we have R∗(π) = ∅, and

by definition of W ∗
x , we have π ∈ W ∗

x . If π ∈W ∗
x∩Q(0), then we also have R(π) = ∅, which

8

implies π ∈ Wx. Thus, we conclude that Wx ∩ Q(0) = W ∗
x ∩ Q(0). The corresponding

equality holds in the same way for the dual game.

Suppose now that the equalities Wx∩Q(d′) = W ∗
x∩Q(d′) and W x∩Q(d′) = W ∗

x∩Q(d′)

hold for any positive integer d′ ≤ d, and we will show that the same equalities hold for

d+ 1.

Let π be a position of the game G such that π ∈ Px ∩Wx ∩ Q(d + 1), and R(π) =

{π1, π2, . . . , πk}. By the definition of Wx, there exists an index i0 such that 1 ≤ i0 ≤ k,

πi0 ∈ Wx, dmax(πi0) ≤ d, and πj ∈ Wx for each j < i0. Using the property of the

dual game, we have that πi0 ∈ W x, and πj ∈ W x for each j < i0. Because dmax(πj) =

dmax(πj) ≤ d for each 1 ≤ j ≤ i0, from our inductive hypothesis we obtain that πi0 ∈ W ∗
x ,

πi0 ∈ W ∗
x , πj ∈ W ∗

x , and πj ∈ W ∗
x , where 1 ≤ j < i0. Then [π, i0] ∈ W ∗

x , because

R∗([π, i0]) ∩W ∗
x = {πi0}. We then have that R∗((π, i0)) = {π1, . . . , πi0−1, [π, i0])} ⊆ W ∗

x ,

therefore (π, i0) ∈ W ∗
x , by the definition of W ∗

x . The inclusion {(π, i0)} ⊆ R∗(π) ∩W ∗
x

implies that π ∈ W ∗
x .

Consider now the case when π is a position of the game G such that π ∈ Px ∩Wx ∩
Q(d + 1), and R(π) = {π1, π2, . . . , πk}. By the definition of Wx, we have that πj ∈ Wx,

and dmax(πj) ≤ d for 1 ≤ j ≤ k. Our inductive hypothesis implies that πj ∈ W ∗
x for

1 ≤ j ≤ k. Then [π, j] ∈ W ∗
x , because R∗([π, j]) = {πj} ⊆ W ∗

x and [π, j] ∈ P ∗x , for each

2 ≤ j ≤ k. It follows that (π, j) ∈ W ∗
x , observing that [π, j] ∈ R∗((π, i)) ∩W ∗

x ∩ P ∗x for

each 2 ≤ j ≤ k. We then have R∗(π) = {π1, (π, 2), . . . , (π, k)} ⊆ W ∗
x ; therefore π ∈ W ∗

x ,

by the definition of W ∗
x .

We have shown the two inclusions Wx ⊆ W ∗
x and Wx ⊆ W ∗

x among positions in

Px∩Q(d+1). That these inclusions are actually equalities when restricted to Px∩Q(d+1)

follows because by the absence of cycles, Wx∪Wx covers all positions in G, and W ∗
x ∪W ∗

x

covers all positions in G∗. By induction we have that Wx ∩ Q(d) = W ∗
x ∩ Q(d), for any

d ≥ 0. The corresponding dual relation W x ∩ Q(d) = W ∗
x ∩ Q(d) can be proved in the

same way. Therefore, we can conclude that Wx ⊆ W ∗
x holds. What follows now is the

proof that any position of the game G has the strong bi-uniqueness property in the game

G∗.

First let us observe that any position π ∈ Wx ∩ Q(0) has the strong bi-uniqueness

property in the game G∗, because R∗(π) = ∅ ⊆ SU∗x . For its dual position π, we also have

π ∈ SU∗x . Then relations Wx ∩Q(0) ⊆ SU∗x , and W x ∩Q(0) ⊆ SU∗x hold.

Suppose now that the relations Wx ∩ Q(d) ⊆ SU∗x , and W x ∩ Q(d) ⊆ SU∗x hold for

any integer d′ such that 0 ≤ d′ ≤ d.

Let π be a position such that π ∈ Px ∩Wx ∩ Q(d + 1) and R(π) = {π1, π2, . . . , πk}.
As we did in the above proof, we can assume that there exists an index i0 such that

1 ≤ i0 ≤ k, πi0 ∈ Wx, and πj ∈ Wx for each j < i0. Then as shown above, we have

πi0 ∈ W ∗
x , and πj ∈ W ∗

x , where 1 ≤ j < i0. One can observe that R∗([π, j]) = {πj} ⊆ W ∗
x ;

that is, [π, j] ∈ W ∗
x for 2 ≤ j < i0. Then R∗((π, j)) ∩W ∗

x = {[π, j]}; hence, (π, j) ∈ W ∗
x

for 2 ≤ j < i0. On the other hand, πi0 ∈ W ∗
x implies that {πi0} ⊆ R∗((π, j)) ∩W ∗

x 6= ∅;
thus (π, j) ∈ W ∗

x for each i0 < j ≤ k. Remembering that (π, i0) ∈ W ∗
x , we can conclude

9

that R∗(π) ∩W ∗
x = {(π, i0)}. That is, |R∗(π) ∩W ∗

x | = 1.

One can observe that dmax(πi0) ≤ d, and dmax(πj) ≤ d. Then from our inductive

hypothesis it follows that πi0 ∈ SU∗x , and πj ∈ SU∗x for 1 ≤ j < i0. Because |R∗([π, i0])| =
|{πi0}| = 1, and {πi0} ⊆ SU∗x , we have that [π, i0] ∈ SU∗x . It follows that R∗((π, i0)) =

{π1, . . . , πi0−1, [π, i0]} ⊆ SU∗x ; that is, (π, i0) ∈ SU∗x . This and the fact |R∗(π) ∩W ∗
x | =

|{(π, i0)}| = 1 imply that π ∈ SU∗x .

Consider now a position π such that π ∈ Px∩Wx∩Q(d+1) and R(π) = {π1, π2, . . . , πk}.
We have that dmax(πj) ≤ d; then from our inductive hypothesis it follows that πj ∈ SU∗x ,

and πj ∈ SU∗x for 1 ≤ j ≤ k. Because R∗([π, j]) = {πj} ⊆ SU∗x , we have [π, j] ∈ SU∗x
for each 2 ≤ j ≤ k. We then obtain that |R∗((π, j)) ∩ W ∗

x | = |{[π, j]}| = 1; that is,

(π, j) ∈ SU∗x , where 2 ≤ j ≤ k. Hence, we have R∗(π) = {π1, (π, π2), . . . , (π, πk)} ⊆ SU∗x ;

therefore, π ∈ SU∗x . This finishes our proof. tu

When using polynomially definable games as a computation model, we may usually

assume that the depth is the same as the maximal depth. Thus, from the above result,

we have shown that any alternating computation can be simulated by some alternating

computation with (i) the same order of alternations, (ii) only a constant-factor increase

in depth, and (iii) the strong bi-uniqueness property.

4. Global Uniqueness Property and Globally Unique QBFs

Given any G, it is possible to create a game G∗∗ with the global uniqueness property by

extending the “turn the tables and takeback” rule of the last section to allow rewinding

any number of moves. While G∗∗ always has optimal strategies of polynomial depth (given

that all plays in G—in particular, all leftmost winning plays—have polynomial depth), it

will no longer hold that all plays in G∗∗ have polynomial depth. This section will show

that the difference between these clauses is that between PSPACE and a subclass of PP

called UAP for “alternating UP” by Niedermeier and Rossmanith [NR98].

Definition 4.1. (cf. [NR98]) An ATM M has the global uniqueness property if the

naturally-associated game does. Namely, in every accepting non-final existential configu-

ration of M , exactly one move leads to an accepting configuration, and in every rejecting

non-final universal configuration, exactly one move leads to a rejecting configuration.

UAP denotes the class of languages of languages accepted by polynomial-time

bounded ATMs with the global uniqueness property.

We remark that polynomially-definable games are slightly more general than

polynomial-time ATMs in one respect. The next-move relation of an ATM (under

standard encoding of configurations) belongs to AC0, i.e. has uniform polynomial-size

constant-depth circuits, whereas all we have said about the next-move relation R(π, π′)

of the game is that it belongs to P. AC0 is known to be a proper subclass of P. We shall

show that our model nevertheless captures no more than UAP, by characterizing both

classes by reduction to GUQBF as given in the Introduction.

10

We re-cast GUQBF as a promise problem about Boolean formulas F with labeled

variables x1, . . . , xd, by regarding F as inducing the quantified Boolean formula

φ = ∃xd ∀xd−1 ∃xd−2 · · · Qdx1 F,

where Qd is ∀ if d is even, ∃ if d is odd. The strict alternation of ∃ and ∀ quantifiers thus

defined makes a strict alternation of moves by the player controlling the variables with

∃ quantifers, whom we call the “E-player,” and the opponent controlling the universal

quantifiers, whom we call the “U-player.” This definition makes the E-player always go

first, but we will sometimes consider (sub-)formulas to include (sub-)games in which the

U-player goes first. All plays of the logic game have the same depth d, as variables from

xd down to x1 are successively instantiated 0 or 1, and the E-player wins iff the final

sentence F is true. We call φ a “PQBF” for “prenex QBF,” and use “GUPQBF” for

GUQBF emphasized thus as a promise problem about Boolean formulas:

Instance: A Boolean formula F with labeled variables xd, . . . , x1.

Promise: The game on the induced PQBF φ has the global uniqueness property.

Question: Is φ true?

Abstractly, a promise problem (Q,R) has promise set Q and property set R, and any

language S such that Q ∩ R ⊆ S and Q \ R ⊆ S is a solution. The definition of

reducibility between promise problems given by Selman [Sel88] entails that a language A

polynomial-time many-one reduces to (Q,R) if A ≤pm S for every solution S of (Q,R).

It follows that there is a single polynomial-time computable function f such that for all

x, f(x) is in Q, and f(x) ∈ R ⇔ x ∈ A. (To see this, build a solution S such that for

every polynomial-time computable function g with Ran(f) \Q infinite, g does not reduce

A to S. The leftover f giving A ≤pm S all have Ran(f) \Q finite, and patching does the

rest.) We note that the promise problem “given a Boolean formula F , with the promise

that F has at most one satisfying assignment, is F satisfiable?” yields UP as the class of

languages that reduce to it in this sense. Likewise BPP, RP, and other “promise classes”

can be characterized by reducibility to promise problems.

We note first that GUPQBF is invariant under equivalence of Boolean formulas F

and G, since the PQBFs induced from F and G define the same logic game. Thus we can

characterize game positions with global uniqueness by selecting representatives from each

equivalence class. Let True (resp., False) denote a constant Boolean formula whose

value is 1 (resp., 0). We define inductively the following sets of Boolean formulas:

A0 = {False },
B0 = {True }, and for d ≥ 1,

Ad = { (xd ∧ ¬F1) ∨ (x̄d ∧ ¬F0) : F0, F1 ∈ Bd−1 },
Bd = { (xd ∧ ¬F1) ∨ (x̄d ∧ ¬F0) :

(F0 ∈ Ad−1 and F1 ∈ Bd−1) or (F0 ∈ Bd−1 and F1 ∈ Ad−1) }.

11

Here Bd comprises those d-variable Boolean formulas that induce globally-unique logic

games with the E-player to move that are wins for the E-player, while Ad comprises those

in which the E-player is to move but loses. Note that Ad says that both substitutions for

xd leave Boolean formulas whose negations are in Bd−1, meaning the negations are unique

wins with the E-player to move, which implies that the resulting formulas themselves

are unique U-player wins with the U-player to move. The recursion for Bd is interpreted

similarly.

For example, A1 = { (x1 ∧ False) ∨ (x̄1 ∧ False) }, which is equivalent to

A1 = {False } and (mentioning x1) to A1 = {x1 ∧ x̄1 }. Also

B1 = { (x1 ∧ True) ∨ (x̄1 ∧ False), (x1 ∧ False) ∨ (x̄1 ∧ True) },

which reduces to B1 = {x1, x̄1 }. For simplicity, let us use ±x to denote either x or x̄.

Then syntactically, A2 consists of the four formulas (x2 ∧ ±x1) ∨ (x̄2 ∧ ±x1) over the

four possible combinations of ±x1 in both places. Also

B2 = { (x2 ∧ True) ∨ (x̄2 ∧ x1), (x2 ∧ True) ∨ (x̄2 ∧ x̄1),

(x2 ∧ x1) ∨ (x̄2 ∧ True), (x2 ∧ x̄1) ∨ (x̄2 ∧ True) },

which is equivalent to the set of four formulas ±x1 ∨ ±x2. The following characterization

confirms the above interpretation.

Lemma 4.2. For every Boolean formula F on d ≥ 1 variables, let φ be the QBF induced

from F , and consider φ as a logic-game position with the E-player to move.

(a) The U-player wins at φ with global uniqueness if and only if F is equivalent to a

Boolean formula in Ad.

(b) The E-player wins at φ with global uniqueness if and only if F is equivalent to a

Boolean formula in Bd.

Proof. By inspection this holds for d = 1. For d ≥ 2 and a given F , define F0 = F [xd = 0],

F1 = F [xd = 1],

φ0 = ∀xd−1 ∃xd−2 · · · Qdx1 F0, and

φ1 = ∀xd−1 ∃xd−2 · · · Qdx1 F1.

For showing the (⇒) direction, first suppose that φ has the global uniqueness property

and that the U-player wins on φ. Then both φ0 and φ1 are false, so ¬φ0 and ¬φ1 are

true. Thus the Boolean formulas ¬F0 and ¬F1 both induce QBFs such that the E-player

wins in the (d− 1)-round logic game, and by global uniqueness for F , it follows that they

have global uniqueness. Hence by the induction hypothesis, ¬F0 and ¬F1 are respectively

equivalent to Boolean formulas G0 and G1 in Bd−1. Then the formula

G = (xd ∧ G1) ∨ (x̄d ∧ G0) (1)

12

belongs to Ad and is equivalent to F as a Boolean formula.

Now suppose instead that the E-player wins on φ. Then exactly one of φ0 and φ1 is

true; w.l.o.g. suppose it is φ0. Then ¬F0 induces a QBF from which the E-player loses

and ¬F1 induces a QBF from which the E-player wins, both with global uniqueness. By

induction hypothesis, there are formulas G0 ∈ Ad−1 and G1 ∈ Bd−1 equivalent to F0 and

F1 respectively. Then G defined as in (1) belongs to Bd and is again equivalent to F . The

case where φ1 is true similarly yields the other defining case of membership in Bd.

The reasoning in the other direction is immediate, since equivalent Boolean formulas

induce equivalent logic games. tu

This lemma characterizes true/false PQBFs with global uniqueness up to equivalence

of the inducing Boolean formulas. Note that distinct formulas in Ad∪Bd are inequivalent.

We can count these sets via the recursion:

|Ad| = |Bd−1|2, |Bd| = 2|Ad−1| · |Bd−1|.

With |A0| = |B0| = 1, this yields for d even |Ad| = |Bd| = 2(2/3)(2d−1), and for d odd,

|Ad| = 2(2/3)(2d−2), |Bd| = 2|Ad|. Thus there are members of Ad and Bd that have no

equivalent formulas of bit-size o(2d).

The exponential size in general makes it challenging to give an upper bound for the

promise problem GUPQBF. Our upper bounds are based on the structure of “counting

classes” within PSPACE. The basic point of everything is the following fact, which is

proved by straightforward induction.

Lemma 4.3. For even d, every formula in Ad has Nd = (2/3)(2d − 1) satisfying assign-

ments, while for odd d, every formula in Ad has Nd = (2/3)(2d−1 − 1) of them, which

equals Nd−1. On the other hand, for all d, every formula in Bd has Nd + 1 satisfying

assignments.

The class SPP was defined in [FFK94] to comprise those languages L such that for

some polynomial-time bounded NTM N and all x ∈ Σ∗,

x ∈ L ⇒ #acc(N, x)−#rej (N, x) = 1,

x /∈ L ⇒ #acc(N, x)−#rej (N, x) = 0,

where #acc(N, x) and #rej (N, x) denote the numbers of accepting and rejecting compu-

tations of N on input x, respectively. By applying “Closure Property 6” in [FFK94], it

suffices [Fen02] to replace the former condition by

x ∈ L⇒ #acc(N, x)−#rej (N, x) = 2.

Theorem 4.4. Every language L such that L ≤pm GUPQBF belongs to SPP.

13

It is clear that L ≤pm GUPQBF implies that L belongs to UAP as defined above, so we

could use the result UAP ⊆ SPP from [NR98]. The proof in [NR98] adds one accepting

and one rejecting path to every rejecting final configuration, and one rejecting path to

every universal configuration, observing that the resulting NTM N ′ gives #acc(N ′, x)−
#rej (N ′, x) = 0 or 1 for every x. However, we prefer to use Lemma 4.3 about the number

of satisfying assignments to the formulas.

Proof. Take N to compute f(x) and then guess an assignment of the resulting formula.

Lemma 4.3 gives us polynomial-time computable functions g, g′ : Σ∗ −→ N such that for

all x ∈ Σ∗, regardless of whether d is even or odd:

x ∈ L ⇒ #acc(N, x) = g(x) + 1 ∧ #rej (N, x) = g′(x),

x /∈ L ⇒ #acc(N, x) = g(x) ∧ #rej (N, x) = g′(x) + 1.

By padding N with g′(x) + 1 additional accepting computations and g(x) additional

rejecting computations on any input x, we obtain a polynomial-time bounded NTM N ′

such that for all x,

x ∈ L ⇒ #acc(N ′, x) = g(x) + g′(x) + 2 ∧ #rej (N ′, x) = g(x) + g′(x),

x /∈ L ⇒ #acc(N ′, x) = #rej (N ′, x) = g(x) + g′(x) + 1.

This meets the “difference 2 or 0” condition for membership of L in SPP cited just above.

tu

Curiously, we do not know how to get a solution of the promise problem GUPQBF to

exist in SPP via this method. Our best upper bounds for solutions utilize some older and

more familiar counting classes. PP is known to be polynomial-time Turing equivalent to

Valiant’s class #P of functions f such that for some polynomial-time bounded NTMN and

all x, f(x) equals the number of accepting computations of N on input x. A language L

belongs to C=P iff there is a #P function f and a polynomial-time computable function

g : Σ∗ −→ N such that for all x, x ∈ L ⇔ f(x) = g(x). ⊕P is the class defined by

stipulating x ∈ L⇔ f(x) is odd.

Theorem 4.5. The promise problem GUPQBF has solutions in PP, ⊕P, C=P, and

co-C=P.

Proof. Let N0 be the familiar NTM that checks satisfiability. We define an NTM N as

follows. For a given input PQBF φ with global uniqueness, the machine N first reads d

from the formula and obtains the unquantified formula F that induced φ. If d is even,

d ≥ 2, then N makes a nondeterministic choice between simulating N0 on F or entering

a routine that has exactly (1/3)(2d − 1) accepting computations and the same number

14

of rejecting computations. Then by Lemma 4.3, if F is true, then N(φ) has exactly

2d accepting computations, while if F is false, then N(φ) has exactly 2d − 1 accepting

computations. Then defining g(φ) = 2d makes N, g define a language in C=P that is a

solution to the promise problem, while defining g(φ) = 2d − 1 likewise defines a solution

in co-C=P. (Note that these solutions can differ outside the promise set and may not be

in C=P ∩ co-C=P.)

Further padding yields an N ′ such that on such inputs φ, the accepting computations

outnumber the rejecting ones iff φ is true, and this determination for N ′ can be made with

one call to a language in PP. We can also pad to add exactly one satisfying assignment,

thus making φ true iff the number of satisfying assignments is the odd value 2d + 1 versus

the even value 2d, thus yielding a solution in ⊕P. The case of d odd is similar. tu

Since PP is believed to be a proper subclass of PSPACE, and SPP is regarded as even

lower (to wit, PPSPP = PP, i.e. “SPP is low for PP” [FFK94]), it seems unlikely that

truth of globally-unique formulas is as hard as PSPACE. Whether the complexity of the

global-uniqueness property itself—i.e. the complexity of the promise—obeys these bounds

is open, however, as is whether GUPQBF has any solutions in SPP itself. However, we

show that GUPQBF is at least as hard as factoring integers by reducing UP to it. This is

apparently tantamount to showing the equivalence between reduction to GUPQBF and

membership in UAP as defined above, which requires first some padding techniques for

converting alternating Turing machines into PQBFs that preserve global uniqueness.

To begin, consider the conversion of any (prenex) QBF to one in PQBF, for instance

∃x3∃x2∀x1 F (x1, x2, x3) to ∃x′4∀x′3∃x′2∀x′1 F ′(x′1, x′2, x′3, x′4) in PQBF. For this, we make

use of the following set of formulas, which we call trivial unique game positions. (Here

we write the ∧ operation like an invisible tighter-binding multiplication for better visual

impact.)

t0 = True

t2 = x1 ∨ x2

t4 = x1 ∨ x2(x3 ∨ x4)

t6 = x1 ∨ x2(x3 ∨ x4(x5 ∨ x6))

t8 = x1 ∨ x2(x3 ∨ x4(x5 ∨ x6(x7 ∨ x8)))
...

and so on. Also for odd d ≥ 1, define td by substituting xd+1 = False in td+1. Let τd
denote the QBF induced from td. Notice that these formulas are much simpler than those

in Ad ∪Bd; in fact, the size of the formula τd is linear in d.

Lemma 4.6. For even d, the formula τd is a game position from which the E-player wins

with global uniqueness, while for odd d, the U-player wins from τd with global uniqueness.

Proof. Consider any even d. In td, if the E-player sets xd = True, the game reduces to

td+2 regardless of the U-player’s move. But if the E-player plays xd = False, the result

is td−1, and the U-player can uniquely avoid reducing to td−2 by setting xd−1 = False.

15

That setting of xd−1 annihilates xd−2, leaving the E-player powerless to avoid reduction

to td−3 and so on to 0, i.e., a U-player’s win. The same argument holds for every sequence

of e moves; the formula is reduced either td−e or td−e−1 and so global uniqueness holds.

The odd case can be analyzed similarly. tu

Now we see how these formulas fill an essential padding role.

Lemma 4.7. There is a polynomial-time procedure that, given any prenex form QBF φ′

in d′ variables with global uniqueness, produces a Boolean formula F in d ≤ 2d′ variables

that induces a formula φ in PQBF with global uniqueness that is equivalent to φ′. (In

fact, it holds that F is equivalent to some formula in Bd if φ′ is true and equivalent to

some formula in Ad if φ′ is false.)

Proof. By renumbering variables in φ′, we may assume that the innermost variable is

numbered x1 (resp., x2) if it is universally (resp., existentially) quantified, and that vari-

ables are numbered going outward so that every universally (resp., existentially) quantified

variable has odd (resp., even) index. Let xd (resp., xd−1) be the last index if xd is exis-

tentially (resp., universally) quantified. (Thus, we assume that d is even.) Now we define

a recursive procedure R that works on prenex QBFs with free variables allowed. R does

not change on single-quantifier QBFs; otherwise, it works as follows according to the first

two quantifiers.

R(∃xd∃xd−2ψ) = ∃xd ∀xd−1 [(x̄d−1 ∧ τd−2) ∨ (xd−1 ∧ R(∃xd−2ψ))],

R(∃xd∀xd−1ψ) = ∃xdR(∀xd−1ψ),

R(∀xd−1∃xd−2ψ) = ∀xd−1R(∃xd−2ψ), and

R(∀xd−1∀xd−3) = ∀xd−1 ∃xd−2 [(x̄d−2 ∧ τd−3) ∨ (xd−2 ∧ R(∀xd−3ψ))].

We claim that the logic game on R(η) is equivalent to that on η and retains global

uniqueness. First consider the case that the E-player is to make the next move from η.

Suppose that the E-player wins from ψ, and consider the first two moves. If the E-player

makes the right choice for xd, then the U-player with the inserted turn xd−1 has only the

choice between continuing the game on η or entering the trivial unique game τd−1 that

the E-player wins. If the E-player makes the wrong choice for xd, then the U-player can

punish this only by avoiding τd−2 and continuing with η by setting xd−1 = 1. Now suppose

that the E-player loses from η. Even in this case, the U-player must still respond uniquely

to either choice for xd by setting xd−1 = 1.

Consider the case where η starts with a universal quantifier on a variable xd−1, which

means that it is the U-player’s turn. Suppose again that the E-player wins from η. Then

the E-player must set xd−2 = 1 (no matter how xd−1 is assigned) to avoid the trivial

unique game position td−3. On the other hand, if the U-player wins from η, the E-player

must always set xd−2 = 1 to retain his chances.

Finally, to transform R(φ) into a prenex formula, we can simply move all quantifiers

in R(φ) to the far left (maintaining their order), without changing the semantics of the

16

formula. Note that the invariant that existentially quantified variables have even index

and the others have odd index is maintained throughout the computation of R(φ). tu

This facilitates our proof of one of the main results of this section.

Theorem 4.8. Consider any polynomially definable game G = (P0, P1, R) of polynomial

depth with the global uniqueness property. Then we can define a polynomial-time com-

putable procedure that given any position π ∈ P0 ∪ P1 outputs a PQBF formula φ with

global uniqueness such that φ is true if and only if π is a winning position for P0.

With a polynomial-time ATM in place of G, the proof would enjoy the convenience

that the next-move relation belongs to AC0, hence to NC1, hence can be encoded by

polynomial-size Boolean formulas. But for the game G we are told only that the next-

position relation R(π, π′) belongs to P, so we seem to need an extra existential quantifier.

We may take polynomial-size propositional formulas δ(y, z,w) such that R(πy, πz) holds

for the positions πy coded by the variables in y and πz coded by z, if and only if

(∃w)δ(y, z,w). Here the variables in w represent the output wires of gates in uniform

polynomial-size circuits deciding R, and the binary values of these variables represent a

guess for the values of these wires. The body of δ(y, z,w) need only check that the stated

values are correct for each gate separately, which task belongs to AC0, so we may encode

it by propositional formulas. These have the property that the satisfying assignment to

w, if any, is unique.

Proof. First, we apply to our games the standard trick of making accepting and rejecting

IDs of (A)TMs unique and reached in an exact number of steps. By polynomial depth

we are given a polynomial p such that for any given initial position π, every play from

π in G lasts at most mπ = p(|π|) steps. By adding “dummy positions,” and preserving

both global uniqueness and polynomial-time computability of the next-move relation, we

can modify G so that all plays from π take mπ or mπ + 1 steps. Furthermore, changing

our earlier stipulation that the player unable to move in a terminal position loses, we can

add two special constant positions π0 and π1 and arrange that every play from an initial

position π that wins for player P0 in G ends at π0 in an even number m = 2bm/2c+ 2 of

steps, and every play from π that wins for P1 ends at π1 in the same number m of steps.

Call the new game rooted at π as G′ = (P ′0, P
′
1, R

′).

Now let n be the number of Boolean variables needed to encode any position reachable

from π in G′, and let m = mπ. We use a binary vector x = x1, ..., xn to represent a game

position in the game tree rooted π. Given the next-move relation R′ of G′, we take the

formula δ to encode it as discussed above. Also we define a Boolean formula WIN 0 such

that WIN 0(x) holds if and only if x is π0.

Now we define, for our given π, a Boolean formula F and its quantified version ψ.

The variables of F are

xm1 , . . . , x
m
n , xm−1

1 , . . . , xm−1
n , . . . , x1

1, . . . , x
1
n, and

wm1 , . . . , w
m
n , wm−1

1 , . . . , wm−1
n , . . . , w1

1, . . . , w
1
n.

17

Intuitively, variables xm−i+1 = xm−i+1
1 , . . . , xm−i+1

n are used to encode a game position at

the ith step. For any j ≤ m− 1, we use a formula tj that is defined in the same way as

tj by substituting every xi, 1 ≤ i ≤ j, with xi1 ∨ · · · ∨ xin ∨ wi1 ∨ · · · ∨ win if i is odd, and

with xi1 ∧ · · · ∧ xin ∧ wi1 ∧ · · · ∧ win if i is even. For example,

t3 = (x1
1∨· · ·∨x1

n∨w1
1∨· · ·∨w1

n) ∨ (x2
1∧· · ·∧x2

n∧w2
1∧· · ·∧w2

n)(x3
1∨· · ·∨x3

n∨w3
1∨· · ·∨w3

n).

For uniformity in the following expression, we write xm+1 for the encoding of the initial

position π—which is a constant in the following, not a vector of variables. (We number

down from m+1 to follow the previous convention of quantifying higher-indexed variables

first.) Then our F is defined by:

F = [¬δ(xm+1,xm,wm) ∧ tm−1]

∨ [δ(xm+1,xm,wm) ∧ ¬δ(xm,xm−1,wm−1) ∧ tm−2]

∨ [δ(xm+1,xm,wm) ∧ δ(xm,xm−1,wm−1) ∧ ¬δ(xm−1,xm−2,wm−2) ∧ tm−3]
...

∨
[(

1∧
i=m

δ(xi+1,xi,wi)

)
∧ WIN 0(x1)

]
.

A quantified Boolean formula ψ is obtained from F by quantifying variables with even

superscripts existentially and variables with odd superscripts universally—in the order of

their superscripts. That is, φ = ∃xm1 ∃wm1 · · · ∃xmn ∃wmn ∀xm−1
1 ∀wm−1

1 · · · F .

The correctness of F is based on the following interpretation: If the E-player tries to

cheat by setting the values of the existentially-quantified variables xm to form a non-legal

game position, or if he fails to give a unique witness for wm, then the E-player loses

uniquely according to the trivial game tm−1 on the remaining variables. If the E-player

gives correct assignments to xm and wm, then the U-player must give correct assignments

to xm−1 and wm−1 on pain of otherwise losing the trivial global unique game tm−2. This

compulsion holds all the way down until the end.

As in the last proof, we apply the padding of Lemma 4.7 between adjacent like quan-

tifiers in ψ to obtain a final Boolean formula φ in PQBF. Clearly, the whole process can

be done within polynomial-time in |π|. tu

Corollary 4.9. The class UAP coincides with the class of languages that polynomial-

time many-one reduce to GUQBF. tu

Now is finally the place to rejoin the remarks about the globally-unique extension

“G∗∗” of an arbitrary game G that were made at the outset of this section. Picture G∗∗

as being played “on” the game tree of possible plays from a position π0 of G. At any

time in G∗∗, a player can revisit a position π along the current branch of play , and play a

move that is more leftward than the move made there (by either player) on the previous

visit. This goes down a new branch of play from π. Thus any play of G∗∗ sweeps out a

18

subtree of the total game tree of G below π0 from right to left. It is not hard to see that

G∗∗ has the global uniqueness property: the unique winning move is always the leftmost

winning move in G from the highest position along the current branch of play that has a

more-leftward winning move than the move last taken (if any).

In one sense, optimal play in G∗∗ is no deeper than optimal play in G, since it involves

selecting the leftmost winning move in G whwnever a win exists. It is not quite true that

all optimal plays in G∗∗ obey the same length bound as in G, as the opponent can delay

losing exponentially long in a “silly” way by revisiting earlier positions and making more-

leftward but losing moves. What difference do these “silly” plays make? Precisely put,

they upset the counting mechanism in Lemma 4.3 preceding Theorem 4.4. If QBF∗∗ had

polynomial depth—or if long non-optimal plays could be canceled out of the counting—

then PSPACE would collapse to SPP, which is widely disbelieved.

5 Conclusions and Open Problems

We have formalized and developed several concepts of unique solvability for games and

game positions, extending natural notions such as “study” puzzles and Nim-style games.

We have proved that many combinatorial games retain their hardness under strong condi-

tions of unique solvability, but evidently not when uniqueness applies “globally” to every

reachable position in the game. The class of languages reducible to game-decision prob-

lems with global uniqueness, i.e. reducible to GUQBF, is a natural analogue of UP for

alternating classes. It is located fairly precisely between FewP and SPP [NR98]. (For

more on these complexity-class environs, see [FFK94, FFL96].)

The main structural-complexity open problems are whether UAP = SPP, and whether

the property of global uniqueness itself (of an ATM or of a quantified Boolean formula)

has complexity equivalent to UAP. Does the promise problem GU(P)QBF have solutions

in UAP? The self-reducibility structure of these problems also seems interesting. Perhaps

most notably, however, can we say more about the concrete classes “Ad” and “Bd” of

Boolean formulas defined in the last section? Our recursive definition of these formulas

produces representatives of exponential size, but we showed that some of them have

equivalent formulas of linear size (in d). Can we characterize formulas of polynomial size

that are equivalent to ones in Ad or Bd, and/or relate questions about these formulas to

complexity questions about Boolean formulas in general?

Finally, is there any larger mathematical significance of our uniqueness concepts, the

strongest one (i.e., global uniqueness) in particular? Perhaps it can be shown to imply

unitarity of some transition/value matrix associated to plays of the game, and thence to

relate to quantum complexity classes—some of whom have been characterized in the same

rough neighborhood of counting classes, as e.g. in [FR98]. Equivalence between UAP and

a quantum complexity class might have the pleasing theological interpretation that when

we think God is feasibly “rolling dice,” He is equivalently following a unique Plan.

19

Acknowledgments We thank Steve Fenner for helpful conversations at Complexity’02,

in particular for the characterization of SPP. We thank Christian Glasser and Samik Sen-

gupta for further ideas on global uniqueness and for bringing Niedermeier and Rossmanith

[NR98] to our attention in November 2002. Finally we thank the journal referees—one in

particular—for many helpful suggestions that simplified and improved this paper.

References
[AT01] S. Aida and T. Tsukiji, Complexity of two person games with unique winning

strategy, Technical Report of IEICE, COMP2000-87, March 2001.

[CS79] A.K. Chandra and L.J. Stockmayer, Provably difficult combinatorial games,

SIAM J. Comput. 8 (1979), 151–174.

[CT00] M. Crasmaru and J. Tromp, Ladders are PSPACE-complete, in Proceedings

of the 2nd Int’l Conference on Computers and Games, Lecture Notes in Com-

puter Science 2063 (2000), pp 253–263.

[Cra01] M. Crasmaru, PSPACE versus EXP-TIME and the game of GO, Master The-

sis, Tokyo Institute of Technology, March 2001.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comp.

Sys. Sci. 48 (1994), 116–148.

[FFL96] S. Fenner, L. Fortnow, and L. Li, Gap-definability as a closure property, In-

form. and Comp. 130 (1996), 1–17.

[Fen02] S. Fenner, personal communication, May 2002.

[FR98] L. Fortnow and J. Rogers, Complexity limitations on quantum computation,

in Proceedings of the 13th Annual IEEE Conference on Computational Com-

plexity, 1998, pp 202–206.

[NR98] R. Niedermeier and P. Rossmanith, Unambiguous computations and locally

definable acceptance types, Theor. Comp. Sci. 194 (1998), 137–161.

[Rob84] J.M. Robson, Combinatorial games with exponential space complete decision

problems, in Proc. of Mathematical Foundations of Computer Science, Lecture

Notes in Computer Science 176 (1984), pp 498–506.

[Sav72] W.J. Savitch, Relationship between nondeterministic and deterministic tape

classes, J. Comput. Syst. Sci. 4 (1970), 177–192.

[Sel88] A. Selman, Promise problems complete for complexity classes, Information

and Computation 78 (1988), 87–98.

[VV86] L.G. Valiant and V.V. Vazirani, NP is as eay as detecting unique solutions,

Theoret. Comput. Sci. 47 (1986), 85–93.

20

