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1 Introduction

The purposes of complexity theory are to ascertain the amount of computational resources
required to solve important computational problems, and to classify problems according to
their difficulty. The resource most often discussed is computational time, although memory
(space) and circuitry (or hardware) have also been studied. The main challenge of the the-
ory is to prove lower bounds, i.e., that certain problems cannot be solved without expending
large amounts of resources. Although it is easy to prove that inherently difficult problems
exist, it has turned out to be much more difficult to prove that any interesting problems
are hard to solve. There has been much more success in providing strong evidence of in-
tractability, based on plausible, widely-held conjectures. In both cases, the mathematical
arguments of intractability rely on the notions of reducibility and completeness—which are
the topics of the next chapter. Before one can understand reducibility and completeness,
however, one must grasp the notion of a complexity class—and that is the topic of this
chapter.

First, however, we want to demonstrate that complexity theory really can prove—to
even the most skeptical practitioner—that it is hopeless to try to build programs or circuits
that solve certain problems. As our example, we consider the manufacture and testing of
logic circuits and communication protocols. Many problems in these domains are solved
by building a logical formula over a certain vocabulary, and then determining whether the
formula is logically valid, or whether counterexamples (that is, bugs) exist. The choice of
vocabulary for the logic is important here, as the next paragraph illustrates.

One particular logic that was studied in [Stockmeyer, 1974] is called WS1S. (We need
not be concerned with any details of this logic.) Stockmeyer showed that any circuit that
takes as input a formula with up to 616 symbols and produces as output a correct answer

1Supported by the National Science Foundation under Grant CCR-9509603. Portions of this work were
performed while a visiting scholar at the Institute of Mathematical Sciences, Madras, India.

2Supported by the National Science Foundation under Grant CCR-9315696.
3Supported by the National Science Foundation under Grant CCR-9409104.

1

saying whether the formula is valid, requires at least 10123 gates. According to [Stock-
meyer, 1987],

Even if gates were the size of a proton and were connected by infinitely thin
wires, the network would densely fill the known universe.

Of course, Stockmeyer’s theorem holds for one particular sort of circuitry, but the awesome
size of the lower bound makes it evident that, no matter how innovative the architecture,
no matter how clever the software, no computational machinery will enable us to solve the
validity problem in this logic. For the practitioner testing validity of logical formulas, the
lessons are (1) be careful with the choice of the logic, (2) use small formulas, and often (3)
be satisfied with something less than full validity testing.

In contrast to this result of Stockmeyer, most lower bounds in complexity theory are
stated asymptotically. For example, one might show that a particular problem requires
time Ω

�

t

�

n

� �

to solve on a Turing machine, for some rapidly-growing function t. For the
Turing machine model, no other type of lower bound is possible, because Turing machines
have the linear-speed-up property (see Chapter 24, Theorem 3.1). This property makes
Turing machines mathematically convenient to work with, since constant factors become
irrelevant, but it has the by-product—which some find disturbing—that for any n there is a
Turing machine that handles inputs of length n in just n steps by looking up answers in a big
table. Nonetheless, these asymptotic lower bounds essentially always can be translated into
concrete lower bounds on, say, the number of components of a particular technology, or the
number of clock cycles on a particular vendor’s machine, that are required to compute a
given function on a certain input size.4

Sadly, to date, few general complexity-theoretic lower bounds are known that are in-
teresting enough to translate into concrete lower bounds in this sense. Even worse, for the
vast majority of important problems that are believed to be difficult, no nontrivial lower
bound on complexity is known today. Instead, complexity theory has contributed (1) a way
of dividing the computational world up into complexity classes, and (2) evidence suggest-
ing that these complexity classes are probably distinct. If this evidence can be replaced by
mathematical proof, then we will have an abundance of interesting lower bounds.

1.1 What is a Complexity Class?

Typically, a complexity class is defined by (1) a model of computation, (2) a resource
(or collection of resources), and (3) a function known as the complexity bound for each
resource.

4The skeptical practitioner can still argue that these lower bounds hold only for the worst-case behavior
of an algorithm, and that these bounds are irrelevant if the worst case arises very rarely in practice. There is
a complexity theory of problems that are hard on average (as a counterpoint to the average case analysis of
algorithms considered in Chapter 14), but to date only a small number of natural problems have been shown
to be hard in this sense, and this theory is beyond the scope of this volume. See Further Information at the
end of this chapter.
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The models used to define complexity classes fall into two main categories: (a)
machine-based models, and (b) circuit-based models. Turing machines (TMs) and random-
access machines (RAMs) are the two principal families of machine models; they were de-
scribed in Chapter 24. We describe circuit-based models later, in Section 3. Other kinds of
(Turing) machines were also introduced in Chapter 24, including deterministic, nondeter-
ministic, alternating, and oracle machines.

When we wish to model real computations, deterministic machines and circuits are our
closest links to reality. Then why consider the other kinds of machines? There are two
main reasons.

The most potent reason comes from the computational problems whose complexity we
are trying to understand. The most notorious examples are the hundreds of natural NP-
complete problems (see [Garey and Johnson, 1988]). To the extent that we understand
anything about the complexity of these problems, it is because of the model of nondeter-
ministic Turing machines. Nondeterministic machines do not model physical computation
devices, but they do model real computational problems. There are many other examples
where a particular model of computation has been introduced in order to capture some
well-known computational problem in a complexity class. This phenomenon is discussed
at greater length in Chapter 29.

The second reason is related to the first. Our desire to understand real computational
problems has forced upon us a repertoire of models of computation and resource bounds.
In order to understand the relationships between these models and bounds, we combine
and mix them and attempt to discover their relative power. Consider, for example, non-
determinism. By considering the complements of languages accepted by nondeterministic
machines, researchers were naturally led to the notion of alternating machines. When alter-
nating machines and deterministic machines were compared, a surprising virtual identity
of deterministic space and alternating time emerged. Subsequently, alternation was found
to be a useful way to model efficient parallel computation. (See Sections 2.8 and 3.4 be-
low.) This phenomenon, whereby models of computation are generalized and modified in
order to clarify their relative complexity, has occurred often through the brief history of
complexity theory, and has generated some of the most important new insights.

Other underlying principles in complexity theory emerge from the major theorems
showing relationships between complexity classes. These theorems fall into two broad
categories. Simulation theorems show that computations in one class can be simulated by
computations that meet the defining resource bounds of another class. The containment of
nondeterministic logarithmic space (NL) in polynomial time (P), and the equality of the
class P with alternating logarithmic space, are simulation theorems. Separation theorems
show that certain complexity classes are distinct. Complexity theory currently has precious
few of these. The main tool used in those separation theorems we have is called diago-
nalization. We illustrate this tool by giving proofs of some separation theorems in this
chapter. In the next chapter, however, we show some apparently severe limitations of this
tool. This ties in to the general feeling in computer science that lower bounds are hard to
prove. Our current inability to separate many complexity classes from each other is perhaps
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the greatest challenge to our intellect posed by complexity theory.

2 Time and Space Complexity Classes

We begin by emphasizing the fundamental resources of time and space for determinis-
tic and nondeterministic Turing machines. We concentrate on resource bounds between
logarithmic and exponential, because those bounds have proved to be the most useful for
understanding problems that arise in practice.

Time complexity and space complexity were defined in Chapter 24, Definition 3.1.
We repeat Definition 3.2 of that chapter to define the following fundamental time classes
and fundamental space classes, given functions t

�

n

�

and s

�

n

�

:

� DTIME

�

t

�

n

��

is the class of languages decided by deterministic Turing machines of
time complexity t

�

n

�

.

� NTIME

�

t

�

n

��

is the class of languages decided by nondeterministic Turing machines
of time complexity t

�

n
�

.

� DSPACE

�

s

�

n

��

is the class of languages decided by deterministic Turing machines
of space complexity s

�

n

�

.

� NSPACE
�

s
�

n
��

is the class of languages decided by nondeterministic Turing ma-
chines of space complexity s

�

n

�

.

We sometimes abbreviate DTIME

�

t

�

n

��

to DTIME

�

t

�

(and so on) when t is understood to
be a function, and when no reference is made to the input length n.

2.1 Canonical Complexity Classes

The following are the canonical complexity classes:

� L � DSPACE

�

logn

�

(deterministic log space)

� NL � NSPACE

�

logn

�

(nondeterministic log space)

� P � DTIME

�

nO

�

1

� �

� �

k

�

1 DTIME

�

nk�

(polynomial time)

� NP � NTIME

�

nO

�

1

� �

� �

k

�

1 NTIME

�

nk�

(nondeterministic polynomial time)

� PSPACE � DSPACE

�

nO

�

1

� �

� �

k

�

1 DSPACE

�

nk�

(polynomial space)

� E � DTIME

�

2O

�

n

� �

� �

k

�

1 DTIME

�

kn�

� NE � NTIME

�

2O

�

n

� �

� �

k

�

1 NTIME

�

kn�

� EXP � DTIME

�

2nO

�

1

	 �

� �

k

�

1 DTIME

�

2nk�

(deterministic exponential time)
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� NEXP � NTIME

�

2nO

�

1

	 �

� �

k

�

1 NTIME

�

2nk�

(nondeterministic exponential time)

� EXPSPACE � DSPACE

�

2nO

�

1

	 �

� �

k

�

1 DSPACE

�

2nk�

(exponential space)

The space classes PSPACE and EXPSPACE are defined in terms of the DSPACE com-
plexity measure. By Savitch’s Theorem (see Theorem 2.3 in Section 2.4), the NSPACE
measure with polynomial bounds also yields PSPACE, and with 2nO

�

1

	

bounds yields
EXPSPACE.

2.2 Why Focus on These Classes?

The class P contains many familiar problems that can be solved efficiently, such as finding
shortest paths in networks, parsing context-free grammars, sorting, matrix multiplication,
and linear programming. By definition, in fact, P contains all problems that can be solved
by (deterministic) programs of reasonable worst-case time complexity.

But P also contains problems whose best algorithms have time complexity n10500
. It

seems ridiculous to say that such problems are computationally feasible. Nevertheless,
there are four important reasons to include these problems:

1. For the main goal of proving lower bounds, it is sensible to have an overly generous
notion of the class of feasible problems. That is, if we show that a problem is not in
P, then we have shown in a very strong way that solution via deterministic algorithms
is impractical.

2. The theory of complexity-bounded reducibility (Chapter 28) is predicated on the sim-
ple notion that if functions f and g are both easy to compute, then the composition
of f and g should also be easy to compute. If we want to allow algorithms of time
complexity n2 to be considered feasible (and certainly many algorithms of this com-
plexity are used daily), then we are immediately led to regard running times n4� n8� � � �

as also being feasible. Put another way, the choice is either to lay down an arbitrary
and artificial limit on feasibility (and to forgo the desired property that the composi-
tion of easy functions be easy), or to go with the natural and overly-generous notion
given by P.

3. Polynomial time has served well as the intellectual boundary between feasible and
infeasible problems. Empirically, problems of time complexity n10500

do not arise
in practice, while problems of time complexity O

�

n4 �

, and those proved or believed
to be Ω

�

2n �

, occur often. Moreover, once a polynomial-time algorithm for a prob-
lem is found, the foot is in the door, and an armada of mathematical and algorithmic
techniques can be used to improve the algorithm. Linear programming may be the
best known example. The breakthrough O

�

n8 �

time algorithm of [Khachiyan, 1979],
for n � n instances, was impractical in itself, but it prompted an innovation by [Kar-
markar, 1984] that produced an algorithm whose running time of about O

�

n3 �

on all
cases competes well commercially with the simplex method, which runs in O

�

n3 �

5

time in most cases but takes 2n time in some. Of course, if it should turn out that the
Hamiltonian circuit problem (or some other NP-complete problem) has complexity
n10500

, then the theory would need to be overhauled. For the time being, this seems
unlikely.

4. We would like our fundamental notions to be independent of arbitrary choices we
have made in formalizing our definitions. There is much that is arbitrary and histori-
cally accidental in the prevalent choice of the Turing machine as the standard model
of computation. This choice does not affect the class P itself, however, because the
natural notions of polynomial time for essentially all models of sequential compu-
tation that have been devised yield the same class. The random-access and pointer
machine models described in Section 4 of Chapter 24 can be simulated by Turing
machines with at most a cubic increase in time. Many feel that our “true” experience
of running time on real sequential computers falls midway between Turing machines
and these more-powerful models, but this only bolsters our conviction that the class
P gives the “true” notion of polynomial time.

By analogy to the famous Church-Turing thesis (see Chapter 26, Section 4), which
states that the definition of a (partial) recursive function captures the intuitive notion of a
computable process, several authorities have proposed the following

“Polynomial-Time Church-Turing Thesis.” The class P captures the true notion of
those problems that are computable in polynomial time by sequential machines, and is
the same for any physically relevant model and minimally reasonable time measure of
sequential computation that will ever be devised.

This thesis extends also to parallel models if “time” is replaced by the technologically
important notion of parallel work (see Chapter 45, on parallel computation).

Another way in which the concept of P is robust is that P is characterized by many
concepts from logic and mathematics that do not mention machines or time. Some of these
characterizations are surveyed in Chapter 29.

The class NP can also be defined by means other than nondeterministic Turing ma-
chines. NP equals the class of problems whose solutions can be verified quickly, by deter-
ministic machines in polynomial time. Equivalently, NP comprises those languages whose
membership proofs can be checked quickly.

For example, one language in NP is the set of composite numbers, written in binary.
A proof that a number z is composite can consist of two factors z1

�

2 and z2

�

2 whose
product z1z2 equals z. This proof is quick to check if z1 and z2 are given, or guessed. Corre-
spondingly, one can design a nondeterministic Turing machine N that on input z branches
to write down “guesses” for z1 and z2, and then deterministically multiplies them to test
whether z1z2

� z. Then L

�

N

�

, the language accepted by N, equals the set of composite
numbers, since there exists an accepting computation path if and only if z really is com-
posite. Note that N does not really solve the problem—it just checks the candidate solution
proposed by each branch of the computation.
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Another important language in NP is the set of satisfiable Boolean formulas, called� ��

. A Boolean formula φ is satisfiable if there exists a way of assigning

�� � � or

�� 	
 �

to each variable such that under this truth assignment, the value of φ is

�� � � . For example,
the formula x

� �

x

�

y

�

is satisfiable, but x

�

y

� �

x

�

y

�

is not satisfiable. A nondeter-
ministic Turing machine N, after checking the syntax of φ and counting the number n of
variables, can nondeterministically write down an n-bit 0-1 string a on its tape, and then
deterministically (and easily) evaluate φ for the truth assignment denoted by a. The com-
putation path corresponding to each individual a accepts if and only if φ

�

a

�

� �� � � , and so
N itself accepts φ if and only if φ is satisfiable; i.e., L

�

N

�

� � ��

. Again, this checking of
given assignments differs significantly from trying to find an accepting assignment.

The above characterization of NP as the set of problems with easily verified solutions is
formalized as follows: A  NP if and only if there exist a language A

�  P and a polynomial
p such that for every x, x  A if and only if there exists a y such that

�

y

� �

p

� �

x

� �

and

�

x� y

�  A

�

. Here, whenever x belongs to A, y is interpreted as a positive solution to the
problem represented by x, or equivalently, as a proof that x belongs to A. The difference
between P and NP is that between solving and checking, or between finding a proof of
a mathematical theorem and testing whether a candidate proof is correct. In essence, NP
represents all sets of theorems with proofs that are short (i.e., of polynomial length), while
P represents those statements that can proved or refuted quickly from scratch.

The theory of NP-completeness, together with the many known NP-complete prob-
lems, is perhaps the best justification for interest in the classes P and NP. All of the other
canonical complexity classes listed above have natural and important problems that are
complete for them (under various reducibility relations, the subject of the next chapter).
Further motivation for studying L, NL, and PSPACE, comes from their relationships to
P and NP. Namely, L and NL are the largest space-bounded classes known to be con-
tained in P, and PSPACE is the smallest space-bounded class known to contain NP. (It is
worth mentioning here that NP does not stand for “non-polynomial time”; the class P is a
subclass of NP.)

Similarly, EXP is of interest primarily because it is the smallest deterministic time class
known to contain NP. The closely-related class E is not known to contain NP; we will see
in Section 2.7 the main reason for interest in E.

2.3 Constructibility

Before we go further, we need to introduce the notion of constructibility. Without it, no
meaningful theory of complexity is possible.

The most basic theorem that one should expect from complexity theory would say, “If
you have more resources, you can do more.” Unfortunately, if we aren’t careful with our
definitions, then this claim is false:

Theorem 2.1 (Gap Theorem) There is a computable time bound t

�

n

�

such that

DTIME

�

t

�

n

��

� DTIME

�

22t

�

n

	 �

.
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That is, there is an empty gap between time t

�

n

�

and time doubly-exponentially greater than
t

�

n

�

, in the sense that anything that can be computed in the larger time bound can already be
computed in the smaller time bound. That is, even with much more time, you can’t compute
more. This gap can be made much larger than doubly-exponential; for any computable r,
there is a computable time bound t such that DTIME

�

t

�

n

��

� DTIME

�

r

�

t

�

n

� ��

. Exactly
analogous statements hold for the NTIME, DSPACE, and NSPACE measures.

Fortunately, the gap phenomenon cannot happen for time bounds t that anyone would
ever be interested in. Indeed, the proof of the Gap Theorem proceeds by showing that one
can define a time bound t such that no machine has a running time that is between t

�

n

�

and

22t

�

n

	

. This theorem indicates the need for formulating only those time bounds that actually
describe the complexity of some machine.

A function t

�

n

�

is time-constructible if there exists a deterministic Turing machine
that halts after exactly t

�

n

�

steps for every input of length n. A function s

�

n

�

is space-
constructible if there exists a deterministic Turing machine that uses exactly s

�

n

�

worktape
cells for every input of length n. (Most authors consider only functions t

�

n

� �

n

�

1 to be
time-constructible, and many limit attention to s

�

n

� �

logn for space bounds. There do
exist sub-logarithmic space-constructible functions, but we prefer to avoid the tricky theory
of o

�

logn

�

space bounds.)
For example, t

�

n
�

� n

�

1 is time-constructible. Furthermore, if t1

�

n

�

and t2

�

n

�

are
time-constructible, then so are the functions t1

�

t2, t1t2, tt2
1 , and ct1 for every integer c � 1.

Consequently, if p
�

n

�

is a polynomial, then p

�

n

�

� Θ

�

t

�

n

� �

for some time-constructible
polynomial function t

�

n

�

. Similarly, s

�

n

�

� logn is space-constructible, and if s1

�

n

�

and
s2

�

n

�

are space-constructible, then so are the functions s1

�

s2, s1s2, ss2
1 , and cs1 for every

integer c � 1. Many common functions are space-constructible: e.g., n logn, n3, 2n, n!.
Constructibility helps eliminate an arbitrary choice in the definition of the basic time

and space classes. For general time functions t, the classes DTIME

�

t

�

and NTIME

�

t

�

may
vary depending on whether machines are required to halt within t steps on all computa-
tion paths, or just on those paths that accept. If t is time-constructible and s is space-
constructible, however, then DTIME

�

t

�

, NTIME

�

t

�

, DSPACE

�

s

�

, and NSPACE

�

s

�

can be
defined without loss of generality in terms of Turing machines that always halt.

As a general rule, any function t

�

n

� �

n

�

1 and any function s

�

n

� �

logn that one is
interested in as a time or space bound, is time- or space-constructible, respectively. As
we have seen, little of interest can be proved without restricting attention to constructible
functions. This restriction still leaves a rich class of resource bounds.

The Gap Theorem is not the only case where intuitions about complexity are false.
Most people also expect that a goal of algorithm design should be to arrive at an optimal
algorithm for a given problem. In some cases, however, no algorithm is remotely close to
optimal.

Theorem 2.2 (Speed-Up Theorem) There is a decidable language A such that for every
machine M that decides A, with running time u

�

n

�

, there is another machine M

�

that decides

A much faster: its running time t

�

n

�

satisfies 22t

�

n

	 �

u

�

n

�

for all but finitely many n.
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This statement, too, holds with any computable function r

�

t

�

in place of 22t
. Put intu-

itively, the program M

�

running on an old IBM PC is better than the program M running
on the fastest hardware to date. Hence A has no best algorithm, and no well-defined time-
complexity function. Unlike the case of the Gap Theorem, the speed-up phenomenon may
hold for languages and time bounds of interest. For instance, a problem of time complexity
bounded by t

�

n

�

� nlogn, which is just above polynomial time, may have arbitrary polyno-
mial speed-up—i.e., may have algorithms of time complexity t

�

n

� 1

�

k for all k � 0.
One implication of the Speed-Up Theorem is that the complexities of some problems

need to be sandwiched between upper and lower bounds. Actually, there is a sense in
which every problem has a well defined lower bound on time. For every language A there
is a computable function t0 such that for every time-constructible function t, there is some
machine that accepts A within time t if and only if t � Ω

�

t0

�

[Levin, 1996]. A catch,
however, is that t0 itself may not be time-constructible.

2.4 Basic Relationships

Clearly, for all time functions t

�

n

�

and space functions s

�

n

�

, DTIME

�

t

�

n

�� �

NTIME

�

t

�

n

��

and DSPACE

�

s

�

n

�� �

NSPACE

�

s

�

n

��

, because a deterministic machine is a special
case of a nondeterministic machine. Furthermore, DTIME

�

t

�

n

�� �

DSPACE

�

t

�

n

��

and
NTIME

�

t

�

n

�� �

NSPACE

�

t

�

n

��

, because at each step, a k-tape Turing machine can write
on at most k � O

�

1

�

previously unwritten cells. The next theorem presents additional im-
portant relationships between classes.

Theorem 2.3 Let t

�

n

�

be a time-constructible function, and let s

�

n

�

be a space-
constructible function, s

�

n

� �

logn.

(a) NTIME

�

t

�

n

�� �

DTIME

�

2O

�

t

�

n

� � �

.

(b) NSPACE

�

s

�

n

�� �

DTIME

�

2O

�

s

�

n

� � �

.

(c) NTIME

�

t

�

n

�� �

DSPACE

�

t

�

n

��

.

(d) (Savitch’s Theorem) NSPACE

�

s

�

n

�� �

DSPACE

�

s

�

n

� 2�

.

As a consequence of the first part of this theorem, NP

�

EXP. No better general
upper bound on deterministic time is known for languages in NP, however. See Figure 2
for other known inclusion relationships between canonical complexity classes—the classes
AC0, TC0, and NC1 are defined in Section 3.4.

Although we do not know whether allowing nondeterminism strictly increases the class
of languages decided in polynomial time, Savitch’s Theorem says that for space classes,
nondeterminism does not help by more than a polynomial amount.
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2.5 Complementation

For a language A over an alphabet Σ, define A to be the complement of A in the set of words
over Σ: A � Σ

�

� A. For a class of languages C , define co-C =

�

A : A  C
�

. If C � co-C ,
then C is closed under complementation.

In particular, co-NP is the class of languages that are complements of languages in
NP. For the language

� ��

of satisfiable Boolean formulas,
� ��

is the set of unsatis-
fiable formulas, whose value is

�� 	
 � for every truth assignment, together with the syn-
tactically incorrect formulas. A closely related language in co-NP is the set of Boolean
tautologies, namely, those formulas whose value is

�� � � for every truth assignment. The
question of whether NP equals co-NP comes down to whether every tautology has a short
(i.e., polynomial-sized) proof. The only obvious general way to prove a tautology φ in m
variables is to verify all 2m rows of the truth table for φ, taking exponential time. Most
complexity theorists believe that there is no general way to reduce this time to polynomial,
hence that NP

�
� co-NP.

Questions about complementation bear directly on the P vs. NP question. It is easy
to show that P is closed under complementation (see the next theorem). Consequently, if
NP

�
� co-NP, then P

�
� NP.

Theorem 2.4 (Complementation Theorems) Let t be a time-constructible function, and
let s be a space-constructible function, with s

�

n

� �

logn for all n. Then

(a) DTIME
�

t
�

is closed under complementation.

(b) DSPACE

�

s

�

is closed under complementation.

(c) (Immerman-Szelepcsényi Theorem) NSPACE

�

s

�

is closed under complementa-
tion.

The Complementation Theorems are used to prove the Hierarchy Theorems in the next
section.

2.6 Hierarchy Theorems and Diagonalization

Diagonalization is the most useful technique for proving the existence of computationally
difficult problems. In this section, we will see examples of two rather different types of
arguments, both of which can be called “diagonalization,” and we will see how these are
used to prove hierarchy theorems in complexity theory.

A hierarchy theorem is a theorem that says “If you have more resources, you can com-
pute more.” As we saw in Section 2.3, this theorem is possible only if we restrict attention
to constructible time and space bounds. Next, we state hierarchy theorems for deterministic
and nondeterministic time and space classes. In the following, � denotes strict inclusion
between complexity classes.
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Theorem 2.5 (Hierarchy Theorems) Let t1 and t2 be time-constructible functions, and let
s1 and s2 be space-constructible functions, with s1

�

n

�

� s2

�

n

� �

logn for all n.

(a) If t1

�

n

�

logt1

�

n

�

� o

�

t2

�

n

� �

, then DTIME

�

t1

� � DTIME

�

t2

�

.

(b) If t1

�

n

�

1

�

� o

�

t2

�

n

� �

, then NTIME

�

t1

� � NTIME

�

t2

�

.

(c) If s1

�

n

�

� o

�

s2

�

n

� �

, then DSPACE

�

s1

� � DSPACE

�

s2

�

.

(d) If s1

�

n

�

� o

�

s2

�

n

� �

, then NSPACE

�

s1

� � NSPACE

�

s2

�

.

As a corollary of the Hierarchy Theorem for DTIME,

P

�

DTIME

�

nlogn� � DTIME

�

2n� �

E;

hence we have the strict inclusion P � E. Although we do not know whether P � NP,
there exists a problem in E that cannot be solved in polynomial time. Other consequences
of the Hierarchy Theorems are NE � NEXP and NL � PSPACE.

In the Hierarchy Theorem for DTIME, the hypothesis on t1 and t2 is t1

�

n

�

log t1

�

n

�

�

o

�

t2

�

n

� �

, instead of t1

�

n

�

� o

�

t2

�

n

� �

, for technical reasons related to the simulation of ma-
chines with multiple worktapes by a single universal Turing machine with a fixed number
of worktapes. Other computational models, such as random access machines, enjoy tighter
time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For exam-
ple, the proof for DTIME constructs a Turing machine M of time complexity t2 that consid-
ers all machines M1� M2� � � � whose time complexity is t1; for each i, the proof finds a word xi

that is accepted by M if and only if xi

�  L

�

Mi

�

, the language decided by Mi. Consequently,
L

�

M

�

, the language decided by M, differs from each L

�

Mi

�

, hence L

�

M

� �  DTIME

�

t1

�

. The
diagonalization technique resembles the classic method used to prove that the real numbers
are uncountable, by constructing a number whose jth digit differs from the jth digit of the
jth number on the list. To illustrate the diagonalization technique, we outline proofs of the
Hierarchy Theorems for DSPACE and for NTIME. In this subsection,

�

i� x

�

stands for the
string 0i1x, and zeroes

�

y

�

stands for the number of 0’s that a given string y starts with. Note
that zeroes

� �

i� x

� �

� i.

Proof. (of the DSPACE Hierarchy Theorem)
We construct a deterministic Turing machine M that decides a language A such that

A  DSPACE

�

s2

�

� DSPACE

�

s1

�

.
Let U be a deterministic universal Turing machine, as described in Chapter 26, Sec-

tion 2.2. On input x of length n, machine M performs the following:

1. Lay out s2

�

n

�

cells on a worktape.

2. Let i � zeroes

�

x

�

.
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3. Simulate the universal machine U on input

�

i� x

�

. Accept x if U tries to use more
than s2 worktape cells. (We omit some technical details, such as interleaving multi-
ple worktapes onto the fixed number of worktapes of M, and the way in which the
constructibility of s2 is used to ensure that this process halts.)

4. If U accepts

�

i� x

�

, then reject; if U rejects

�

i� x

�

, then accept.

Clearly, M always halts and uses space O

�

s2

�

n

� �

. Let A � L
�

M
�

.
Suppose A  DSPACE

�

s1

�

n

��

. Then there is some Turing machine M j accepting A
using space at most s1

�

n

�

. The universal Turing machine U can easily be given the property
that its space needed to simulate a given Turing machine M j is at most a constant factor
higher than the space used by M j itself. More precisely, there is a constant k depending
only on j (in fact, we can take k �

�

j

�

), such that U , on inputs z of the form z �
�

j� x

�

, uses
at most ks1

� �

x

� �

space.
Since s1

�

n

�

� o

�

s2

�

n

� �

, there is an n0 such that ks1

�

n

� �

s2

�

n

�

for all n

�

n0. Let x be a
string of length greater than n0 such that the first j

�

1 symbols of x are 0 j1. Note that the
universal Turing machine U , on input

�

j� x

�

, simulates M j on input x and uses space at most
ks1

�

n

� �

s2

�

n

�

. Thus, when we consider the machine M defining A, we see that on input x
the simulation does not stop in step 3, but continues on to step 4, and thus x  A if and only
if U rejects

�

j� x

�

. Consequently, M j does not accept A, contrary to our assumption. Thus
A

�  DSPACE

�

s1
�

n
��

.
�

A more sophisticated argument is required to prove the Hierarchy Theorem for NTIME.
To see why, note that it is necessary to diagonalize against nondeterministic machines, and
thus it is necessary to use a nondeterministic universal Turing machine as well. In the
deterministic case, when we simulated an accepting computation of the universal machine,
we would reject, and if we simulated a rejecting computation of the universal machine, we
would accept. That is, we would do exactly the opposite of what the universal machine
does, in order to “fool” each simulated machine Mi. If the machines under consideration
are nondeterministic, then Mi can have both an accepting path and a rejecting path on input
x, in which case the universal nondeterministic machine would accept input

�

i� x

�

. If we
simulate the universal machine on an input and accept upon reaching a rejecting leaf and
reject if upon reaching an accepting leaf, then this simulation would still accept (because
the simulation that follows the rejecting path now accepts). Thus, we would fail to do the
opposite of what Mi does.

The following careful argument guarantees that each machine Mi is fooled on some
input. It draws on a result of [Book et al., 1970] that every language in NTIME

�

t

�

n

��

is
accepted by a two-tape nondeterministic Turing machine that runs in time t

�

n

�

.

Proof. (of the NTIME Hierarchy Theorem)
Let M1� M2� � � � be an enumeration of two-tape nondeterministic Turing machines run-

ning in time t1

�

n

�

. Let f be a rapidly-growing function such that time f

�

i� n� s

�

is enough
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time for a deterministic machine to compute the function

�

i� n� s

��� �
�

1 if Mi accepts 1n in

�

s steps
0 otherwise

Letting f

�

i� n� s

�

be greater than 22i

�

n

�

s
is sufficient.

Now divide Σ

�

into regions, so that in region j �
�

i� y

�

, we try to “fool” machine Mi.
Note that each Mi is considered infinitely often. The regions are defined by functions
start

�

j

�

and end

�

j

�

, defined as follows: start

�

1

�

� 1, start

�

j

�

1

�

� end

�

j

� �

1, where
taking i � zeroes

�

j

�

, we have end

�

j

�

� f

�

i� start

�

j

�

� t2

�

start

�

j

� � �

. The important point is
that, on input 1end

�

j

�

, a deterministic machine can, in time t2

�

end

�

j

� �

, determine whether
Mi accepts 1start

�

j

�

in at most t2

�

start

�

j

� �

steps.
By picking f appropriately easy to invert, we can guarantee that, on input 1n, we can in

time t2

�

n

�

determine which region j contains n.
Now it is easy to verify that the following routine can be performed in time t2

�

n

�

by a
nondeterministic machine. (In the pseudo-code below, U is a “universal” nondeterministic
machine with 4 tapes, which is therefore able to simulate one step of machine Mi in O

�

i3

�

steps.)

1. On input 1n, determine which region j contains n. Let j �
�

i� y

�

.

2. If n � end

�

j

�

, then accept if and only if Mi does not accept 1start

�

j

�

within t2

�

start

�

j

� �

steps.

3. Otherwise, accept if and only if U accepts

�

i� 1n

�

1 �

within t2

�

n

�

steps. (Here, it
is important that we are talking about t2

�

n

�

steps of U , which may be only about
t2

�

n

� �

i3 steps of Mi.)

Let us call the language accepted by this procedure A. Clearly A  NTIME

�

t2

�

n

��

. We
now claim that A

�  NTIME

�

t1

�

n

��

.
Assume otherwise, and let Mi be the nondeterministic machine accepting A in time

t1

�

n

�

. Recall that Mi has only two tapes. Let c be a constant such that i3t1

�

n

�

1

�� t2
�

n
�

for all n

�

c. Let y be a string such that

�

y

� �

c, and consider stage j �
�

i� y

�

. Then for all
n such that start

�

j

� �

n� end

�

j

�

, we have 1n  A if and only if 1n

�

1  A. However this
contradicts the fact that 1start

�

j

�  A if and only if 1end

�

j

� �  A.

�

Although the diagonalization technique successfully separates some pairs of complex-
ity classes, diagonalization does not seem strong enough to separate P from NP. (See
Theorem 7.1 in Chapter 28.)

2.7 Padding Arguments

A useful technique for establishing relationships between complexity classes is the
padding argument. Let A be a language over alphabet Σ, and let # be a symbol not in
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Σ. Let f be a numeric function. The f -padded version of A is the language

A

�
�

�

x# f

�

n

�

: x  A and n �
�

x

� �

That is, each word of A

�

is a word in A concatenated with f

�

n

�

consecutive # symbols. The
padded version A

�

has the same information content as A, but because each word is longer,
the computational complexity of A

�

is smaller!
The proof of the next theorem illustrates the use of a padding argument.

Theorem 2.6 If P � NP, then E � NE.

Proof. Since E

�

NE, we prove that NE

�

E.
Let A  NE be decided by a nondeterministic Turing machine M in at most t

�

n

�

� kn

time for some constant integer k. Let A
�

be the t

�

n

�

-padded version of A. From M, we
construct a nondeterministic Turing machine M

�

that decides A

�

in linear time: M

�

checks
that its input has the correct format, using the time-constructibility of t; then M

�

runs M on
the prefix of the input preceding the first # symbol. Thus, A

�  NP.
If P � NP, then there is a deterministic Turing machine D

�

that decides A

�

in at most
p

� �

n

�

time for some polynomial p

�

. From D

�

, we construct a deterministic Turing machine
D that decides A, as follows. On input x of length n, since t

�

n

�

is time-constructible,
machine D constructs x#t

�

n

�

, whose length is n

�

t

�

n

�

, in O

�

t

�

n

� �

time. Then D runs D

�

on this input word. The time complexity of D is at most O

�

t

�

n

� � �

p

� �

n

�

t

�

n

� �

� 2O

�

n

�

.
Therefore, NE

�

E.

�

A similar argument shows that the E � NE question is equivalent to the question of
whether NP � P contains a subset of 1

�

, that is, a language over a single-letter alphabet.
Padding arguments sometimes can be used to give tighter hierarchies than can obtained

by straightforward diagonalization. For instance, Theorem 2.5 leaves open the question of
whether, say, DTIME

�

n3 log1

�

2 n

�

� DTIME

�

n3�

. We can show that these classes are not
equal, by using a padding argument. We will need the following lemma, whose proof is
similar to that of Theorem 2.6.

Lemma 2.7 (Translational Lemma) Let t1, t2, and f be time-constructible functions. If
DTIME

�

t1

�

n

��

� DTIME

�

t2

�

n

��

, then DTIME

�

t1

�

f

�

n

� ��

� DTIME

�

t2

�

f

�

n

� ��

.

Theorem 2.8 For any real number a � 0 and natural number k

�

1, DTIME

�

nk� �

DTIME

�

nk loga n

�

.

Proof. Suppose for contradiction that DTIME

�

nk�

� DTIME

�

nk loga n

�

. For now let us
also suppose that a � 1

�

2. Taking f

�

n

�

� 2n

�

k, and using the linear speed-up property, we
obtain from the Translational Lemma the identity DTIME

�

2nna�

� DTIME

�

2n�

. This does
not yet give the desired contradiction to the DTIME Hierarchy Theorem—but it is close.
We’ll need to use the Translational Lemma twice more.
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Assume that DTIME

�

2nna�

� DTIME

�

2n�

. Using the Translational Lemma with
f

�

n

�

� 2n yields DTIME

�

22n
2an�

� DTIME

�

22n�

. Applying the Lemma once again
on the classes DTIME

�

2nna�

� DTIME

�

2n�

, this time using f

�

n

�

� 2n �

an, we ob-
tain DTIME

�

22n
2an f

�

n

� a�

� DTIME

�

22n
2an�

. Combining these two equalities yields
DTIME

�

22n
2an f

�

n

� a�

� DTIME

�

22n�

. Since f

�

n

� a � 2an, we have that 2an f

�

n

� a � 22an �

2n2bn for some b � 0 (since a � 1

�

2). Thus DTIME

�

22n
2n2bn�

� DTIME

�

22n�

, and this
result contradicts the DTIME Hierarchy Theorem, since 22n

log22n � o

�

22n
2n2bn �

.
Finally, for any fixed a � 0, not just a � 1

�

2, we need to apply the Translational Lemma
several more times.

�

One consequence of this theorem is that within P, there can be no “complexity gaps”
of size

�

logn

� Ω

�

1

�

.

2.8 Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing ma-
chines, and we show how these classes are related to the classes introduced already. Alter-
nating Turing machines and their configurations are defined in Chapter 24, Section 2.4.

The possible computations of an alternating Turing machine M on an input word x can
be represented by a tree Tx in which the root is the initial configuration, and the children
of a nonterminal node C are the configurations reachable from C by one step of M. For a
word x in L

�

M

�

, define an accepting subtree S of Tx as follows:

� S is finite.

� The root of S is the initial configuration with input word x.

� If S has an existential configuration C, then S has exactly one child of C in Tx; if S
has a universal configuration C, then S has all children of C in Tx.

� Every leaf is a configuration whose state is the accepting state qA.

Observe that each node in S is an accepting configuration.
We consider only alternating Turing machines that always halt. For x  L

�

M
�

, define
the time taken by M to be the height of the shortest accepting tree for x, and the space to be
the maximum number of non-blank worktape cells among configurations in the accepting
tree that minimizes this number. For x

� L

�

M

�

, define the time to be the height of Tx, and
the space to be the maximum number of non-blank worktape cells among configurations in
Tx.

Let t

�

n

�

be a time-constructible function, and let s

�

n

�

be a space-constructible function.
Define the following complexity classes:

� ATIME

�

t

�

n

��

is the class of languages decided by alternating Turing machines of time
complexity O

�

t

�

n

� �

.
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� ASPACE

�

s

�

n

��

is the class of languages decided by alternating Turing machines of
space complexity O

�

s

�

n

� �

.

Because a nondeterministic Turing machine is a special case of an alternating Turing
machine, for every t

�

n

�

and s

�

n

�

, NTIME

�

t

� �

ATIME

�

t

�

and NSPACE
�

s

� �

ASPACE

�

s

�

.
The next theorem states further relationships between computational resources used by al-
ternating Turing machines, and resources used by deterministic and nondeterministic Tur-
ing machines.

Theorem 2.9 (Alternation Theorems) Let t

�

n

�

be a time-constructible function, and let
s

�

n

�

be a space-constructible function, s

�

n

� �

logn.

(a) NSPACE

�

s

�

n

�� �

ATIME

�

s

�

n

� 2�

(b) ATIME

�

t

�

n

�� �

DSPACE

�

t

�

n

��
(c) ASPACE

�

s

�

n

�� �

DTIME
�

2O
�

s
�

n

� � �

(d) DTIME

�

t

�

n

�� �

ASPACE
�

log t

�

n

��

In other words, space on deterministic and nondeterministic Turing machines is poly-
nomially related to time on alternating Turing machines. Space on alternating Turing ma-
chines is exponentially related to time on deterministic Turing machines. The following
corollary is immediate.

Theorem 2.10

(a) ASPACE

�

O

�

logn

��

� P.

(b) ATIME

�

nO

�

1

� �

� PSPACE.

(c) ASPACE

�

nO

�

1

� �

� EXP.

Note that Theorem 2.9(a) says, for instance, that NL is contained in ATIME

�

log2 �

n

� �

.
For this to make sense, it is necessary to modify the definition of alternating Turing ma-
chines to allow them to read individual bits of the input in constant time, rather than requir-
ing n time units to traverse the entire input tape. This has become the standard definition
of alternating Turing machines, because it is useful in establishing relationships between
Turing machine complexity and circuit complexity, as explained in the upcoming section.
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3 Circuit Complexity

Up to now, this chapter has been concerned only with complexity classes that were defined
in order to understand the nature of sequential computation. Although we called them “ma-
chines,” the models discussed here and in Chapter 24 are closer in spirit to software, namely
to sequential algorithms or to single-processor machine-language programs. Circuits were
originally studied to model hardware. The hardware of electronic digital computers is
based on digital gates, connected into combinational and sequential networks. Whereas a
software program can branch and even modify itself while running, hardware components
on today’s typical machines are fixed and cannot reconfigure themselves. Also, circuits
capture well the notion of non-branching, straight-line computation.

Furthermore, circuits provide a good model of parallel computation. Many machine
models, complexity measures, and classes for parallel computation have been devised, but
the circuit complexity classes defined here coincide with most of them. Chapter 45 in this
volume surveys parallel models and their relation to circuits in more detail.

3.1 Kinds of Circuits

A circuit can be formalized as a directed graph with some number n of sources, called
input nodes and labeled x1� � � �� xn, and one sink, called the output node. The edges of the
graph are called wires. Every non-input node v is called a gate, and has an associated gate
function gv that takes as many arguments as there are wires coming into v. In this survey
we limit attention to Boolean circuits, meaning that each argument is 0 or 1, although
arithmetical circuits with numeric arguments and

�
� � (etc.) gates have also been studied in

complexity theory. Formally gv is a function from

�

0� 1

� r to

�

0� 1

�

, where r is the fan-in
of v. The value of the gate is transmitted along each wire that goes out of v. The size of a
circuit is the number of nodes in it.

We restrict attention to circuits C in which the graph is acyclic, so that there is no “feed-
back.” Then every Boolean assignment x  �

0� 1

� n of values to the input nodes determines
a unique value for every gate and wire, and the value of the output gate is the output C

�

x
�

of the circuit. The circuit accepts x if C

�

x

�

� 1.
The sequential view of a circuit is obtained by numbering the gates in a manner that

respects the edge relation, meaning that for all edges

�

u� v

�

, gu has a lower number than
gv. Then the gate functions in that order become a sequence of basic instructions in a
straight-line program that computes C

�

x

�

. The size of the circuit becomes the number of
steps in the program. However, this view presumes a single processing unit that evaluates
the instructions in sequence, and ignores information that the graphical layout provides. A
more powerful view regards the gates as simple processing units that can act in parallel.
Every gate whose incoming wires all come from input nodes can act and compute its value
at step 1, and every other gate can act and transmit its value at the first step after all gates
on its incoming wires have computed their values. The number of steps for this process
is the depth of the circuit. Depth is a notion of parallel time complexity. A circuit with
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small depth is a fast circuit. The circuit size in this view is the amount of hardware needed.
Chapter 45 gives much more information on the the correspondence between circuits and
parallel machines, and gives formal definitions of size and depth.

A circuit family C consists of a sequence of circuits

�

C1� C2� � � �
�

, where each Cn has n
input nodes. The language accepted by the family is L

�

C

�

�
�

x : C �
x

� accepts x

�

. (Circuit
families computing functions f :

�

0� 1

� � � �

0� 1

� �

are defined in Chapter 45.)
The size complexity of the family is the function z

�

n

�

giving the number of nodes in Cn.
The depth complexity is the function d

�

n

�

giving the depth of Cn.
Another aspect of circuits that must be specified in order to define complexity classes

is the underlying technology. By technology we mean the types of gates that are used as
components in the circuits. Three types of technology are considered in this chapter:

(1) Bounded fan-in gates, usually taken to be the “standard basis” of binary

�

(AND),
binary

�

(OR), and unary � (NOT) gates. A notable alternative is to use NAND
gates.

(2) Unbounded fan-in

�

and
�

gates (together with unary � gates).

(3) Threshold gates. For our purposes, it suffices to consider the simplest kind of thresh-
old gate, called the MAJORITY gate, which also uses the Boolean domain. A
MAJORITY gate outputs 1 if and only if at least r

�

2 of its r incoming wires have
value 1. These gates can simulate unbounded fan-in

�

and

�

with the help of
“dummy wires.” Threshold circuits also have unary � gates.

The difference between (1) and (2) corresponds to general technological issues about high-
bandwidth connections, whether they are feasible and how powerful they are. Circuits of
type (1) can be converted to equivalent circuits that also have bounded fan-out, with only
a constant-factor penalty in size and depth. Thus the difference also raises issues about
one-to-many broadcast and all-to-one reception.

Threshold gates model the technology of neural networks, which were formalized in
the 1940s. The kind of threshold gate studied most often in neural networks uses Boolean
arguments and values, with ‘1’ for “firing” and ‘0’ for “off.” It has numerical weights
w1� � � �� wr for each of the r incoming wires and a threshold t. Letting a1� � � �� ar stand for the
incoming 0-1 values, the gate outputs 1 if ∑r

i � 1 aiwi

�

t, 0 otherwise. Thus the MAJORITY
gate is the special case with w1

� � � � � wr

� 1 and t � r

�

2. A depth-2 (sub-)circuit of
MAJORITY gates can simulate this general threshold gate.

3.2 Uniformity and Circuit Classes

One tricky aspect of circuit complexity is the fact that many functions that are not com-
putable have trivial circuit complexity! For instance, let K be a non-computable set of num-
bers, such as the indices of halting Turing machines, and let A be the language

�

x :

�

x

�  K

�

.
For each n, if n  K, then define Cn by attaching a � gate to input x1 and an OR gate whose
two wires come from the � gate and x1 itself. If n

�  K, then define Cn similarly but with
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an AND gate in place of the OR. The circuit family

�

Cn

�

so defined accepts A and has size
and depth 2. The rub, however, is that there is no algorithm to tell which choice for Cn to
define for each n. A related anomaly is that there are uncountably many circuit families.
Indeed, every language is accepted by some circuit family

�

Cn

�

with size complexity 2O

�

n

�

and depth complexity 3 (unbounded fan-in) or O

�

n

�

(bounded fan-in). Consequently, for
general circuits, size complexity is at most exponential, and depth complexity is at most
linear.

The notion of uniform circuit complexity avoids both anomalies. A circuit family

�

Cn

�

is uniform if there is an easy algorithm Q that, given n, outputs an encoding of Cn.
Either the adjacency-matrix or the edge-list representation of the graphs of the circuits
Cn, together with the gate type of each node, may serve for our purposes as the standard
encoding scheme for circuit families. If Q runs in polynomial time, then the circuit family
is P-uniform, and so on.

P-uniformity is natural because it defines those families of circuits that are feasible
to construct. However, we most often use circuits to model computation in subclasses of
P. Allowing powerful computation to be incorporated into the step of building C �

x

� may
overshadow the computation done by the circuit C �

x

� itself. The following much more
stringent condition has proved to be most useful for characterizing these subclasses, and
also works well for circuit classes at the level of polynomial time.

Definition 3.1. A circuit family

�

Cn

�

is DLOGTIME-uniform if there is a Turing machine
M that can answer questions of the forms “Is there a path of edges from node u to node v
in Cn?” and “What gate type does node u have?” in O

�

logn

�

time.

This uniformity condition is sufficient to build an encoding of Cn in sequential time roughly
proportional to the size of Cn, and even much faster in parallel time. We will not try to
define DLOGTIME as a complexity class, but note that since the inputs u� v to M can be
presented by strings of length O

�

logn

�

, the computation by M takes linear time in the
(scaled down) input length. This definition presupposes that the size complexity z

�

n

�

of the
family is polynomial, which will be our chief interest here. The definition can be modified
for z

�

n

�

more than polynomial by changing the time limit on M to O

�

logz

�

n

� �

. Many
central results originally proved using L-uniformity extend without change to DLOGTIME-
uniformity, as explained later in this section. Unless otherwise stated, “uniform” means
DLOGTIME-uniform throughout this and the next two chapters. We define the following
circuit complexity classes:

Definition 3.2. Given complexity functions z

�

n

�

and d

�

n

�

,

� SIZE

�

z

�

n

��

is the class of all languages accepted by DLOGTIME-uniform bounded
fan-in circuit families whose size complexity is at most z

�

n

�

;

� DEPTH

�

d

�

n

��

is the class of all languages accepted by DLOGTIME-uniform
bounded fan-in circuit families whose depth complexity is at most d

�

n

�

;
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� SIZE,DEPTH

�

z

�

n

�

� d

�

n

��

is the class of all languages accepted by DLOGTIME-
uniform bounded fan-in circuit families whose size complexity is at most z

�

n

�

and
whose depth complexity is at most d

�

n

�

.

Non-uniform circuit classes can be approached by an alternative view introduced by
[Karp and Lipton, 1982], by counting the number of bits of information needed to set up
the preprocessing. For integer-valued functions t� a, define DTIME

�

t

�

n

�� �

ADV

�

a

�

n

��

to be
the class of languages accepted by Turing machines M as follows: for all n there is a word
yn of length at most a

�

n

�

such that for all x of length n, on input

�

x� yn

�

, M accepts if and
only if x  L, and M halts within t

�

n

�

steps. Here yn is regarded as “advice” on how to
accept strings of length n. The class DTIME

�

nO

�

1
� � �

ADV

�

nO

�

1

� �

is called P/poly. Karp and
Lipton observed that P/poly is equal to the class of languages accepted by polynomial-sized
circuits. Indeed, P/poly is now the standard name for this class.

3.3 Circuits and Sequential Classes

The importance of P/poly and uniformity is shown by the following basic theorem. We
give the proof since it is used often in the next chapter.

Theorem 3.1 Every language in P is accepted by a family of polynomial-sized circuits
that is DLOGTIME-uniform. Conversely, every language with P-uniform polynomial-sized
circuits belongs to P.

Proof. Let A  P. By Theorem 2.4 of Chapter 24, A is accepted by a Turing machine M
with just one tape and tape head that runs in polynomial time p

�

n

�

. Let δ be the transition
function of M, whereby for all states q of M and characters c in the worktape alphabet Γ of
M, δ

�

q� c

�

specifies the character written to the current cell, the movement of the head, and
the next state of M. We build a circuit of “δ-gates” that simulates M on inputs x of a given
length n as follows, and then show how to simulate δ-gates by Boolean gates.

Lay out a p

�

n

� � p

�

n

�

array of cells. Each cell

�

i� j

�

(0

�

i� j

�

p

�

n

�

) is intended to hold
the character on tape cell j after step i of the computation of M, and if the tape head of M is
in that cell, also the state of M after step i. Cells

�

0� 0

�

through

�

0� n �1

�

are the input nodes
of Cn, while cells

�

0� n

�

through

�

0� p

�

n

� �

can be treated as “dummy wires” whose value is
the blank B in the alphabet Γ. The key idea is that the value in cell

�

i� j

�

for i

�

1 depends
only on the values in cells

�

i �1� j �1

�

,

�

i �1� j

�

, and

�

i �1� j

�

1

�

. Cell

�

i �1� j �1

�

is relevant in
case its value includes the component for the tape head being there, and the head moves
right at step i; cell

�

i �1� j

�

1

�

similarly for a left move.
When the boundary cases j � 0 or j � p

�

n

�

are handled properly, each cell value is
computed by the same finite function of the three cells above, and this function defines a
“δ-gate” for each cell. (See Figure 1.) Finally, we may suppose that M is coded to signal
acceptance by moving its tape head to the left end and staying in a special state qa. Thus
node

�

i� 0

�

becomes the output gate of the circuit, and the accepting output values are those
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with qa in the state component. Since in p

�

n

�

steps M can visit at most p

�

n

�

tape cells, the
array is large enough to hold all the computations of M on inputs of length n.

Since each argument and value of a δ-gate comes from a finite domain, we may take
an (arbitrary) binary encoding of the domain, and replace all δ-gates by identical fixed-size
sub-circuits of Boolean gates that compute δ under the encoding. If the alphabet Σ over
which A is defined is

�

0� 1

�

then no re-coding need be done at the inputs; otherwise, we
similarly adopt a binary encoding of Σ. The Boolean circuits Cn thus obtained accept A.
They also are DLOGTIME-uniform, intuitively by the very regular structure of the identical
δ-gates.

Conversely, given a P-uniform family C, a Turing machine can accept L

�

C

�

in polyno-
mial time given any input x by first constructing C �

x

� in polynomial time, and then evaluating
C �

x

�
�

x

�

.

�

A caching strategy that works for Turing machines with any fixed number of tapes
yields the following improvement:

Theorem 3.2 If t

�

n

�

is a time-constructible function, then DTIME

�

t

� �

SIZE

�

t log t

�

.

Connections between space complexity and circuit depth are shown by the next result.

Theorem 3.3 (a) If d

�

n

� �

logn, then DEPTH

�

d

�

n

�� �

DSPACE

�

d

�

n

��

.

(b) If s

�

n

�

is a space-constructible function and s

�

n

� �

logn, then NSPACE

�

s

�

n

�� �

DEPTH

�

s

�

n

� 2�

.

3.4 Circuits and Parallel Classes

Since the 1970s, research on circuit complexity has focused on problems that can be solved
quickly in parallel, with feasible amounts of hardware—circuit families of polynomial size
and depth as small as possible. Note, however, that the meaning of the phrase “as small
as possible” depends on the technology used. With unbounded fan-in gates, depth O

�

1

�

is
sufficient to carry out interesting computation, whereas with fan-in two gates, depth less
than logn is impossible if the value at the output gate depends on all of the input bits. In
any technology, however, a circuit with depth nearly logarithmic is considered to be very
fast. This observation motivates the following definitions. Let logk n stand for

�
logn

� k.

Definition 3.3. For all k

�

0,

(a) NCk denotes the class of languages accepted by DLOGTIME-uniform bounded fan-
in circuit families of polynomial size and O

�

logk n

�

depth. In other words, NCk �

SIZE,DEPTH

�

nO

�

1

�
� O

�

logk n

��

. NC denotes

�

k

�

0NCk.

(b) ACk denotes the class of languages accepted by DLOGTIME-uniform families of
circuits of unbounded fan-in

�

,

�

, and � gates, again with polynomial size and
O

�

logk n

�

depth.
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Figure 1: Conversion from Turing machine to Boolean circuits
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(c) TCk denotes the class of languages accepted by DLOGTIME-uniform families of
circuits of MAJORITY and � gates, again with polynomial size and O

�

logk n

�

depth.

The case k � 0 in these definitions gives constant-depth circuit families. A function
f is said to belong to one of these classes if the language A f

�

� �

x� i� b

�

: 1

�

i

�

�

f

�

x

� �

and bit i of f

�

x

�

is b

�

belongs to the class. NC0 is not studied as a language class in
general, since the output gate can depend on only a constant number of input bits, but NC0

is interesting as a function class.
Some notes on the nomenclature are in order. Nicholas Pippenger was one of the first

to study polynomial-size, polylog-depth circuits in the late 1970s, and NC was dubbed
“Nick’s Class.” There is no connotation of nondeterminism in NC. The “A” in ACk con-
notes both alternating circuits and alternating Turing machines for reasons described below.
The “T” in TCk stands for the presence of threshold gates.

The following theorem expresses the relationships at each level of the hierarchies de-
fined by these classes.

Theorem 3.4 For each k

�

0,

NCk �

ACk �

TCk �

NCk

�

1 �

Proof. The first inclusion is immediate (for each k), and the second conclusion follows
from the observation noted above that MAJORITY gates can simulate unbounded fan-in
AND and OR gates. The interesting case is TCk �

NCk

�

1. For this, it suffices to show
how to simulate a single MAJORITY gate with a fan-in two circuit of logarithmic depth.
To simulate MAJORITY

�

w1� � � �� wr

�

, we add up the one-bit numbers w1� � � �� wr and test
whether the sum is at least r

�

2. We may suppose for simplicity that the fan-in r is a power
of 2, r � 2m. The circuit has m distinguished nodes that represent the sum written as an m-
bit binary number. Then the sum is at least r

�

2 � 2m � 1 if and only if the node representing
the most significant bit of the sum has value 1.

To compute the sum efficiently, we use a standard “carry-save” technique: There is a
simple O

�

1

�

depth fan-in two circuit that takes as input three b-bit binary numbers a1� a2� a3

and produces as output two (b

�

1)-bit numbers b1� b2 such that a1

�

a2

�

a3

� b1
�

b2.
Thus in one phase, the original sum of r bits is reduced to taking the sum of 2

3r num-
bers, and after O

�

logr

�

additional phases, the problem is reduced to taking the sum of two
logr-bit numbers, and this sum can be produced by a full carry-lookahead adder circuit of
O

�

logr

�

depth. Finally, since the circuits have polynomial size, r is polynomial in n, and
so O

�

logr

�

� O

�

logn

�

.

�

Thus in particular,

�

kACk � �

kTCk � NC. The only proper inclusion known, besides
the trivial case NC0 � AC0, is AC0 � TC0, discussed in Section 3.5 below. For all we
know at this time, TC0 may be equal not only to NC, but even to NP!

Several relationships between complexity classes based on circuits and classes based
on Turing machines are known:
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Theorem 3.5 NC1 �

L

�

NL

�

AC1.

In fact, the connection with Turing machines is much closer than this theorem sug-
gests. Using alternating Turing machines (see Section 2.8 above), we define the following
complexity classes:

� ASPACE,TIME

�

s

�

n

�

� t

�

n

��

is the class of languages recognized by alternating Turing
machines that use space at most s

�

n

�

and also run in time at most t

�

n

�

.

� ASPACE,ALTS

�

s

�

n

�

� a

�

n

��

is the class of languages recognized by alternating Turing
machines that use space at most s

�

n

�

and make at most a

�

n

�

alternations between
existential and universal states.

� ATIME,ALTS

�

s

�

n

�

� a

�

n

��

is the class of languages recognized by alternating Turing
machines that run in time t

�

n

�

and make at most a

�

n

�

alternations between existential
and universal states.

Theorem 3.6 (a) For all k
�

1, NCk � ASPACE,TIME

�

O

�

logn

�

� O

�

logk n

��

.

(b) For all k

�

1, ACk � ASPACE,ALTS

�

O

�

logn

�

� O

�

logk n

��

.

(c) NC1 � ATIME
�

O
�

logn

��

.

(d) AC0 � ATIME,ALTS

�

O

�

logn

�

� O

�

1

��

.

For AC1 and the higher circuit classes, changing the uniformity condition to L-uniformity
does not change the class of languages. However, it is not known whether L-uniform NC1

differs from NC1, nor L-uniform AC0 from AC0. Thus the natural extension (c,d) of the
results in (a,b) is another advantage of DLOGTIME-uniformity. Insofar as the containment
of NC1 in L is believed to be proper by many researchers, the definition of L-uniform
NC1 may allow more computing power to the “preprocessing stage” than to the circuits
themselves. Avoiding this anomaly is a reason to adopt DLOGTIME-uniformity.

As discussed in Chapter 45, many other models of parallel computation can be used
to define NC. This robustness of NC supports the belief that NC is not merely an artifact
of some arbitrary choices made in formulating the definitions, but instead captures a fun-
damental aspect of parallel computation. The criticism has been made that NC is overly
generous in allowing polynomial size. Again, the justification in complexity theory is that
the ultimate goal is to prove lower bounds, and a lower bound proved against a generous
upper-bound notion is impervious to this criticism.

3.5 Why Focus on These Circuit Classes?

The class AC0 is particularly important for the following reasons:

� It captures the complexity of important basic operations such as integer addition and
subtraction.
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� It corresponds closely to first-order logic, as described in Chapter 29, Section 4.

� Most important, it is one of the few complexity classes for which lower bounds are
actually known, instead of merely being conjectured.

It is known that AC0 circuits, even non-uniform ones, cannot recognize the language�� �� �� of strings that have an odd number of 1’s. Consequently, constant depth un-
bounded fan-in AND/OR/NOT circuits for

� � �� � � must have super-polynomial size.
However,

�� �� �� does have constant-depth polynomial-size threshold circuits; indeed,
it belongs to TC0.

Note that this also implies that AC0 is somehow “finer” than the notion of constant
space, because the class of regular languages, which includes

� � �� � � , can be decided in
constant space. There has been much progress on proving lower bounds for classes of
constant-depth circuits. Still, the fact that TC0 is not known to differ from NP is a wide
gulf in our knowledge. Separating NC from P, or L from P, or L from NP would imply
separating TC0 from NP.

TC0 is important because it captures the complexity of important basic operations such
as integer multiplication and sorting. Further, integer division is known to be in P-uniform
TC0, and many suspect that DLOGTIME-uniformity would also be sufficient. Also, TC0

is a good complexity-theoretic counterpart to popular models of neural networks.
NC1 is important because it captures the complexity of the basic operation of evaluating

a Boolean formula on a given assignment. The problem of whether NC1 equals TC0 thus
captures the question of whether basic calculations in logic are harder than basic operations
in arithmetic, or harder than basic neural processes. Several other characterizations of NC1

besides the one given for ATIME

�

O

�

logn

��

are known. NC1 equals the class of languages
definable by polynomial-size Boolean formulas (as opposed to polynomial-sized circuits; a
formula is equivalent to a circuit of fan-out 1). Also, NC1 equals the class of languages rec-
ognized by bounded-width branching programs, for which see [Barrington, 1989]. Finally,
NC1 captures the circuit complexity of regular expressions.

4 Research Issues and Summary

The complexity class is the fundamental notion of complexity theory. What makes a com-
plexity class useful to the practitioner is the close relationship between complexity classes
and real computational problems. The strongest such relationship comes from the con-
cept of completeness, which is a chief subject of the next chapter. Even in the absence of
lower bounds separating complexity classes, the apparent fundamental difference between
models such as deterministic and nondeterministic Turing machines, for example, provides
insight into the nature of problem solving on computers.

The initial goal when trying to solve a computational problem is to find an efficient
polynomial-time algorithm. If this attempt fails, then one could attempt to prove that no
efficient algorithm exists, but to date nobody has succeeded doing this for any problem in
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PSPACE. With the notion of a complexity class to guide us, however, we can attempt
to discover the complexity class that exactly captures our current problem. A main theme
of the next chapter is the surprising fact that most natural computational problems are
complete for one of the canonical complexity classes. When viewed in the abstract setting
provided by the model that defines the complexity class, the aspects of a problem that make
an efficient algorithm difficult to achieve are easier to identify. Often this perspective leads
to a redefinition of the problem in a way that is more amenable to solution.

Figure 2 shows the known inclusion relationships between canonical classes. Perhaps
even more significant is what is currently not known. Although AC0 differs from TC0,
TC0 (let alone P!) is not known to differ from NP, nor NP from EXP, nor EXP from
EXPSPACE. The only other proper inclusions known are (immediate consequences of)
L

�
� PSPACE

�
� EXPSPACE, P

�
� E

�
� EXP, and NP

�
� NE

�
� NEXP—and these follow

simply from the hierarchy theorems proved in this chapter.
We have given two examples of diagonalization arguments. Diagonalization is still the

main tool for showing the existence of hard-to-compute problems inside a complexity class.
Unfortunately, the languages constructed by diagonalization arguments rarely correspond
to computational problems that arise in practice. In some cases, however, one can show that
there is an efficient reduction from a difficult problem (shown to exist by diagonalization)
to a more natural problem—with the consequence that the natural problem is also difficult
to solve. Thus diagonalization inside a complexity class (the topic of this chapter) can
work hand-in-hand with reducibility (the topic of the next chapter) to produce intractability
results for natural computational problems.

5 Defining Terms

Canonical complexity classes: The classes defined by logarithmic, polynomial, and
exponential bounds on time and space, for deterministic and nondeterministic ma-
chines. These are the most central to the field, and classify most of the important
computational problems.

Circuit A network of input, output, and logic gates, contrasted with a Turing machine in
that its hardware is static and fixed.

Circuit complexity The study of the size, depth, and other attributes of circuits that decide
specified languages or compute specified functions.

Diagonalization: A proof technique for showing that a given language does not belong
to a given complexity class, used in many separation theorems.

Padding argument: A method for transferring results about one complexity bound to
another complexity bound, by padding extra dummy characters onto the inputs of
the machines involved.
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Figure 2: Inclusion relationships between the canonical complexity classes.
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Polynomial-Time Church-Turing Thesis: An analogue of the classical Church-Turing
Thesis, for which see Chapter 26, stating that the class P captures the true notion of
feasible (polynomial time) sequential computation.

Separation theorems: Theorems showing that two complexity classes are distinct. Most
known separation theorems have been proved by diagonalization.

Simulation theorems: Theorems showing that one kind of computation can be simu-
lated by another kind within stated complexity bounds. Most known containment or
equality relationships between complexity classes have been proved this way.

Space-constructible function: A function s
�

n
�

that gives the actual space used by some
Turing machine on all inputs of length n, for all n

Time-constructible function: A function t

�

n

�

that is the actual running time of some
Turing machine on all inputs of length n, for all n.

Uniform circuit family: A sequence of circuits, one for each input length n, that can be
efficiently generated by a Turing machine.

Uniform circuit complexity The study of complexity classes defined by uniform circuit
families.
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Further Information
Primary sources for the results presented in this chapter are: Theorem 2.1 [Trakht-

enbrot, 1964, Borodin, 1972]; Theorem 2.2 [Blum, 1967]; Theorems 2.3 and 2.4
[Hartmanis and Stearns, 1965, Lewis II et al., 1965, Savitch, 1970, Immerman, 1988,
Szelepcsényi, 1988]; Theorem 2.5 [Hartmanis and Stearns, 1965, Ibarra, 1972, Seiferas
et al., 1978]; Theorem 2.6 [Book, 1974]; Lemma 2.7 [Ruby and Fischer, 1965]; The-
orems 2.9 and 2.10 [Chandra et al., 1981]; Theorem 3.1 [Savitch, 1970]; Theorem 3.2
[Pippenger and Fischer, 1979]; Theorem 3.3 [Borodin, 1977]; Theorem 3.6 [Ruzzo, 1981,
Chandra et al., 1984, Sipser, 1983, Barrington et al., 1990]. Theorems 3.4 and 3.5 are
a combination of results in the last four papers; see also the influential survey by Cook
[Cook, 1985]. Our proof of Theorem 2.5(b) follows [Zak, 1983].

For Section 3.1, a comparison of arithmetical circuits with Boolean circuits may be
found in [von zur Gathen, 1991], the result that bounded fan-in circuits can be given
bounded fan-out is due to [Hoover et al., 1984], and the sharpest simulation of general
weighted threshold gates by MAJORITY gates is due to [Hofmeister, 1996]. The theorem
in Section 3.5 that

� � �� � � is not in AC0 is due to [Furst et al., 1984, Ajtai, 1983], and the
strongest lower bounds known on the size of constant-depth circuits for Parity are those in
[Håstad, 1989]. The results mentioned for TC0 may be found in [Barrington et al., 1990,
Reif and Tate, 1992, Immerman and Landau, 1995].

The texts [Hopcroft and Ullman, 1979] and [Papadimitriou, 1994] present many of
these results in greater technical detail. Three chapters of the Handbook of Theoretical
Computer Science, respectively [Johnson, 1990], [van Emde Boas, 1990], and [Boppana
and Sipser, 1990], describe more complexity classes, compare complexity measures for
more machine models, and present more information on circuit complexity. Relation-
ships between circuits and parallel and neural models are covered very accessibly in [Par-
berry, 1994]. Average-case complexity is discussed by [Wang, 1997, Impagliazzo, 1995,
Gurevich, 1991]. See also Chapter 29 and the notes at the end of that chapter for further
sources.

Two important new research areas that challenge our arguments about feasible compu-
tation in Section 2.2 are quantum computing and DNA computing. Two new survey articles
on these fields are [Berthiaume, 1997] and [Kurtz et al., 1997].
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