
A New Parallel Vector Model, With Exact Characterizations

of NCk

Kenneth W. Regan∗

State University of New York at Buffalo

Abstract

This paper develops a new and natural parallel vector model, and shows
that for all k ≥ 1, the languages recognizable in O(logk n) time and polynomial
work in the model are exactly those in NCk. Some improvements to other
simulations in parallel models and reversal complexity are given.

1 Introduction
This paper studies a model of computation called the Block Move (BM) model,
which makes two important changes to the Pratt-Stockmeyer vector machine (VM).
It augments the VM by providing bit-wise shuffle in one step, but restricts the shifts
allowed to the VM. Computation by a BM is a sequence of “block moves,” which
are finite transductions on parts of the memory. Each individual finite transduction
belongs to uniform NC1 and is computable in at most logarithmic time on the
common parallel machine models. Hence counting the number of block moves is a
reasonable measure of parallel time. It is also natural to study restrictions on the
kinds of finite transducers S a BM can use. We write BM(gh) for the model in which
every S must be a generalized homomorphism (gh), and BM(ap) for the restriction
to S such that the monoid of transformations of S is aperiodic. Every gh is an
NC0 function, and Chandra, Fortune, and Lipton [6] showed that every aperiodic
transduction belongs to AC0. The object is to augment the the rich theory of
classes within NC1 and algebraic properties of automata which has been developed
by Barrington and others [2, 5, 4, 15, 3].

Karp and Ramachandran [14] write EREWk, CREWk, CRCWk, and VMk for
O(logk n) time and polynomial work on the three common forms of PRAM and the
VM, respectively, and cite the following results:

• For all k ≥ 1, NCk ⊆ EREWk ⊆ CREWk ⊆ CRCWk = ACk [23].

• For all k ≥ 2, NCk ⊆ VMk ⊆ ACk [24].

Now write BMk, BMk(gh), and BMk(ap) for O(logk n) time and polynomial work
on the BM forms above. The main result of this paper is:

• For all k ≥ 1, NCk = BMk(gh).

We also observe that BMk ⊆ NCk+1 and BMk(ap) ⊆ ACk. The main theorem is
noteworthy for being an exact characterization by a simple machine without using
alternation. From its proof we derive several technical improvements to results on
∗The author was supported in part by NSF Research Initiation Award CCR-9011248

Author’s current address: Computer Science Department, 226 Bell Hall, UB North Campus, Buf-
falo, NY 14260-2000. Email: regan@cs.buffalo.edu, tel.: (716) 645–3189, fax: (716) 645–3464.

Turing machine reversal complexity, with reference to [7] and [16]. Sections 2-4
define the model and give fairly full sketch proofs of the main results, and Section 5
gives other results and open problems.

2 The BM Vector Model

The model of finite transducer we use is the deterministic generalized sequential
machine (DGSM), as formalized in [12] (see also [9]). A DGSM S is like a Mealy
machine, but with the ability to output not just one but zero, two, three, or more
symbols in any one transition. A special case is when a finite function h : Σd → Γe

(d, e > 0) is extended to a function h∗ : Σ∗ → Γ∗ as follows: (1) for all x ∈ Σ∗

with |x| < d, h∗(x) = λ (the empty string), and (2) for all x ∈ Σ∗ and w ∈ Σd,
h∗(wx) = h(w)h∗(x). Then h∗ is called a generalized homomorphism (gh) with ratio
d : e. Three important examples with Σ = Γ = { 0, 1 } are A(x), which takes the
AND of each successive pair of bits and thus is 2:1, O(x) similarly for OR, and
bit-wise negation N(x), which is 1:1. Another is dilation D(x), which doubles each
bit of x and is 1:2; e.g., D(101) = 110011.

The BM model has a single tape, and an alphabet Γ in which the blank B and
endmarker $ play special roles. A BM M has four “pointers” labeled a1, b1, a2, b2,
and some number m ≥ 4 of “pointer markers.” The finite control of M consists of
“DGSM states” S1, . . . Sr and finitely many “move states.” Initially, the input x is
left-justified in cells 0 . . . n−1 of the tape with $ in cell n and all other cells blank,
one pointer marker with b1 and b2 assigned to it is in cell n, and cell 0 holds all
other pointer markers with a1 and a2 assigned there. The initial pass is by S1. The
computation is a sequence of passes, and if and when M halts, the content of the
tape up to the first $ gives the output M(x). In a move state, each pointer marker
on some cell a of the tape may be moved to cell ba/2c, 2a, or 2a + 1 or left where
it is. Then the four pointers are redistributed among the m markers, and control
branches according to the symbol in the cell now occupied by pointer a1. Each move
state adds 1 to both the work w(x) and the pass count R(x) of the computation. A
GSM state S executes the block move

S [a1 . . . b1] into [a2 . . . b2]

defined as follows: Let z be the string held in locations [a1 . . . b1]—if b1 < a1, then
z is read right-to-left on the tape. Then S(z) is written into locations [a2 . . . b2],
overwriting any previous content, except that any blank B appearing in S(z) leaves
the symbol in its target cell unchanged. Control passes to a unique move state. We
may also suppose wlog. that each move state sends control to some DGSM state. If
a1 ≤ b1 and a2 ≤ b2, the pass is called left-to-right . It falls out of our main theorem
that left-to-right passes alone suffice for all NC1 computations, extending the known
observation that strings can be reversed in O(log n) vector operations (see [11]).

The work in the move is defined to be |z|, i.e. |b1−a1|+1. The validity condition
is that the intervals [a1 . . . b1] and [a2 . . . b2] must be disjoint, and the strict boundary
condition is that the output must exactly fill the target interval; i.e., that |S(z)| =
|b2−a2|+1. The former can always be met at constant-factor slowdown by buffering
outputs to an unused portion at the right end of the tape, and so we may ignore it.

We leave the reader to check that the strict boundary condition is observed in our
simulations—in most moves, a1, b1, a2, b2 are multiples of powers of two.

The original vector model of Pratt and Stockmeyer [19] is a RAM M with
arbitrarily many arithmetical registers Ri and some number k of “vector registers”
(or tapes) Vj , each of which holds a binary string. M uses standard RAM operations
on the arithmetical registers, bitwise AND, OR, and negation on (pairs of) vector
tapes, and shift instructions of the form Vk := Ri ↑ Vj , which shift the contents of
tape Vj by an amount equal to the integer ni in Ri and store the result in Vk. If
ni is positive, ni-many 0’s are prepended, while if ni is negative (a left shift), the
first ni-many bits of Vj are discarded.1 These shift instructions essentially provide
“random access” to the vector tapes. The two main points of the BM as opposed
to the VM are the realistic provision of constant-time shuffle, and the constraint on
random-access. Having the former improves the bounds given by Hong [11] for many
basic operations, and these operations seem not to be helped by full random-access
anyway. The main theorem of this paper is that these adjustments lead to exact
characterizations of the classes NCk.

3 Basic List Operations

Much of the following is standard, but there are several innovations from Lemma
3.5 onward. These innovations come in situations where previous cited work used
quantities which are powers of 2, and where our work seems to require double powers
of 2; i.e., that lengths be normalized to numbers of the form 22b . All logs below are
to base 2. To save space we introduce a useful shorthand for hierarchical lists.

We call a sequence (x1, x2, . . . , xl) of nonempty binary strings a list , and repre-
sent it by the string X = x#

1 x
#
2 · · ·x

#
l . Here x# means that the last symbol of x is a

“compound symbol,” either (0,#) or (1,#), and similarly for the other list separa-
tor symbols $,%,@. Informally, the separators have “precedence” % < # < @ < $.
The length of the list is l, and the bit-length is

∑l
j=1 |xi|. If each string xi has the

same length s, then the list X is normal , a term used by Chen and Yap [7] when
also l is a power of 2 (see below). A normal list represents an l × s Boolean matrix
in row-major order. Many of the technical lemmas concern larger objects we call
vectors of lists, with the general notation

X = X$
1 ;X$

2 ; . . . ;X$
m

= x#
11x

#
12 · · ·x$

1l1
x#

21x
#
22 · · ·x$

2l2
· · ·x$

m−1,lm−1
x#
m1 · · ·x$

mlm
.

If each list Xi is normal with string length si, then X is a vector of Boolean matrices.
If also s1 = s2 = . . . = sm = s and l1 = l2 = . . . = lm = l, we call X fully normal .
Finally, if s and l are also powers of 2 (notation: s = 2b, l = 2c), then X is super-
normal . We often treat vectors of lists as simple lists subdivided by $, and even as
single strings. Let the bits of x be a1a2 . . . as:

Basic string operations
1It has been observed that the distinction between arithmetic and vector registers is inessen-

tial, shifts being the same as multiplication and division by powers of 2, and that left shifts are
unnecessary—see [21, 1, 25, 14, 24] for these observations and alternate forms of the VM. The
original form makes the clearest comparison to the BM.

• R stands for “replicate string”: R(x) = xx.

• D stands for “dilate” as above: D(x) = a1a1a2a2 . . . asas.

• H splits x into two halves H1(x) = a1 . . . as/2, H2(x) = as/2+1 . . . as (s even).

• J joins two strings together: J(H1(x),H2(x)) = x.

• S shuffles the first and second halves of a string x of even length; i.e., S(x) =
a1as/2+1a2as/2+2 . . . as/2as. Note that SJ shuffles two strings of equal length.

• U is “unshuffle,” the inverse of S: U(x) = a1a3a5 . . . as−1a2a4 . . . as.

List operations

• D# duplicates list elements: if X = x#
1 x

#
2 . . . x#

l , then D#(X) =
x%

1 x
#
1 x

%
2 x

#
2 . . . x%

l x
#
l . Note D2

#(x) = x%
1 x

%
1 x

%
1 x

#
1 x

%
2 x

%
2 x

%
2 x

#
2 . . . x%

l x
%
l x

%
l x

#
l .

• S# shuffles lists element-wise: S(X) = x#
1 x

#
l/2+1x

#
2 x

#
l/2+2 . . . x

#
l/2x

#
l , defined

when l is even. S#J shuffles two lists of the same length l element-wise.

• U# is the inverse of S#; HU# breaks off odd and even sublists.

• T#(a11 · · · a#
1sa21 · · · al1 · · · a#

ls) = a11a21 · · · al1a12 · · · al2 · · · a#
1sa

#
2s · · · a

#
ls.

• B%# places a % halfway between every two #s in a list, when all such distances
are even. B## inserts more #s instead.

When applied to a vector list X , these operations treat X as a single list of strings
subdivided by #, but preserve the higher-level $ separators. The operations D$, S$,
U$, T$, and B$$, however, treat X as a list of strings subdivided by $. Note that we
have allowed for marked symbols being displaced in matrix transpose T#. All the
string and list operations op above may be vectorized via the general notation

~op(X) = op(X1)$op(X2)$. . . op(Xm)$.

A convenient general property is that (~op1 ◦ op2)(X) = ~op1(~op2(X)). Sometimes
we omit the ◦ and compose operators from right to left. We note that for any X ,
~D#(X) = D#(X), but for instance with l = m = 8:

~U#(X) = x#
11x

#
13x

#
15x

#
17x

#
12 . . . x

$
18x

#
21x

#
23 . . . x

#
26x

$
28 . . . x

#
81x

#
83 . . . x

#
86x

$
88,

while
U#(X) = x#

11x
#
13x

#
15x

#
17x

#
21x

#
23x

#
25x

#
27 . . . x

#
85x

#
87x

#
12x

#
14x

#
16x

$
18x

#
22 . . . x

#
86x

$
88.

Note the displacement of $ signs in the latter. For Lemma 3.2 below we want instead
U ′#(X) = x#

11x
#
13x

#
15x

$
17x

#
21x

#
23x

#
25x

$
27 . . . x

#
85x

$
87x

#
12x

#
14x

#
16x

$
18x

#
22 . . . x

#
86x

$
88. However,

our BMs need not rely on the markers, but can use counters for b and c (prepended
to the data) to compute the long expressions given below. We omit the details of
these counters here, but note some places where B## and B%# are explicitly used.

Lemma 3.1 Let X be a normal list with s = 2b and l even. Then

(a) B%#(X) = Sb−1 ◦ (mark every 2nd bit of the first 2l with %) ◦ U b−1(X).

(b) T#(X) = U b(X).

(c) For any a ≥ 1, Da
#(X) = T−1

Da(T#(X)) = SbDaU b(X).

(d) S#(X) = Sb+1(J(U bH1(X), U bH2(X))).

(e) U#(X) = J(Sb(H1U
b+1(X)), Sb(H2U

b+1(X))).

Item (c) technically needs a final application of B%#. Alternatively, the % markers
can be introduced during the Da part. The key point of the next lemma and its
sequel is that the number of passes to compute ~S#(X) and ~U#(X) is independent
of m. Analogous operations given by Hong on pp111–115 of [11] for the Pratt-
Stockmeyer model have an O(logm) term in their time.

Lemma 3.2 Let X be super-normal with s = 2b, l = 2c, and m even. Then

(a) ~U#(X) = S$(U ′#(X)) = Sb+c+1(J(U cH1(U b+1(X)), U cH2(U b+1(X)))).

(b) ~S#(X) = S#(U$(X)) = Sb+1(J(Sc(H1U
b+c+1(X)), Sc(H2(U b+c+1(X)))).

Lemma 3.3 Assuming good initial pointer and marker placements,
(a) Each of the string operations is computable in O(1) passes by a BM(gh).
(b) With reference to Lemma 3.1, Da

#(X) is computable in O(a+ b) passes, and
the other four list operations in O(b) passes.

(c) The two vector operations in Lemma 3.2 are computable in O(b+ c) passes.

The product of two Boolean matrices X and Y of size 2b × 2b is computed by

M(X,Y) = ObASJ(Db
#(X), RbT#(Y)).

Define the outer-product of two strings x = a1 . . . a2 and y = b1 . . . bs by V (x, y) =
a1b1a1b2 · · · a1bsa2b1 . . . a2bs . . . asb1 . . . asbs. Then V (x, y) = SJ(Db(x), Rb(y)),
and AV (x, y) gives the s × s Boolean outer-product matrix. The correspond-
ing list operation is applied to adjacent pairs of strings in a list, viz.: V#(X) =
V (x1, x2)#V (x3, x4)# . . . V (xl−1, xl)#. We also vectorize these operations:

Lemma 3.4 For super-normal vector lists X with l = 2c, s = 2b:
(a) ~V#(X) = SJ(DbH1(U#X), Db

#H2(U#X)), and is computable in O(b) passes.
(b) ~M(X ,X) = ObASJ(Db

#H1(D#U#(X)), D$T#H2((D#U#(X))) provided
that b = c, and is then computable in O(b) passes.

The following way to do vectorized conversion from binary to unary notation
works for binary numbers whose lengths are powers of 2. Let X = n#

1 n
#
2 . . . n#

m,
where each ni is a string of length s = 2b in binary notation (thus 0 ≤ ni ≤ 2s − 1),
with the most significant bit first. The object is to convert each ni to 02s−ni−110ni .
Call the resulting vector Wb(X). Note that W0(X) is just the homomorphism which
maps 0→ 01 and 1→ 10 (or technically, 0# → 01# and 1# → 10#).

Lemma 3.5 For all b > 0, Wb(X) = AV#Wb−1B##(X), and is computable in O(s)
passes.

Proof. Consider any item ni = a on the list X. B## converts that item to a#
1 a

#
2 ,

such that a = a12s/2 + a2. Arguing inductively, suppose that Wb−1 then converts

a#
1 a

#
2 to 02s/2−a1−110a1

#
02s/2−a2−110a2

#
. Then the outer-product of adjacent pairs

of elements produces O2s−a10a as needed, and by Lemma 3.4(a), is computed in O(s)
passes. The time tb to compute Wb has the recursion tb = O(b) + tb−1 +O(2b), with
solution tb = O(2b) = O(s).

Lemma 3.6 The list Ib of all strings of length s = 2b in order can be generated in
O(s) passes by a BM(gh).

Proof. I0 = 0#1#, and for b ≥ 1, Ib = S#J(Ds(Ib−1), Rs(Ib−1)). The timing
recursion is similar to before.

Next, given a single-tape Turing machine M with state set Q and work alphabet
Γ, define the ID alphabet of M to be ΓI := (Q × Γ) ∪ Γ. A valid ID of M has the
form I = x(q, c)y and means that M is in state q scanning character c. The next
move function steps M through to the next ID.

Lemma 3.7 The next move function of a single-tape TM T can be extended to a
total function δM : Γ∗I → (ΓI ∪{+,−, ! })∗, and there is a 2:1 generalized homomor-
phism h : (ΓI ∪ {+,−, ! })∗ → (ΓI ∪ {+,−, ! })∗ such that

(a) δT is the composition of three 3:3 generalized homomorphisms.

(b) Consider strings I ∈ Γ∗I of length 2b. If I is a valid ID and T goes from I to
an accepting (resp. rejecting) ID within t steps, staying within the 2b allotted
cells of the tape, then hb(δtT (I)) = + (resp. −). Else hb(δtT (I)) = !.

(c) The above properties can be obtained with ΓI re-coded over { 0, 1 }.

Proof Sketch. One of the three gh’s updates cells 0, 3, 6, . . . of the tape of T , one
does 1, 4, 7, . . ., and the last does 2, 5, 8 . . . If T halts and accepts, the homomor-
phisms detect this and replace the symbol (q, c) by +, and similarly with − for
rejection. If T is detected to move its head off the tape, the homomorphisms intro-
duce a ! symbol. The same happens if T “crashes” in I or if I is a string over ΓI
with more than one “head” and two of these “heads” come within two cells of each
other. Finally h is written so that it preserves a + or − under iteration iff every
other character it reads belongs to Γ.

We note a trick needed to extend the above idea for multitape TMs. For alter-
nating TMs, it appears that the k-to-1 tape reduction theorem of Paul, Prauss, and
Reischuk [17] holds even for log-time bounds, but we still allow for multiple tapes.

Lemma 3.8 Let T be a TM with k ≥ 2 tapes, which is constrained to operate within
space s = 2b on each tape. Then b moves by T can be simulated in O(b) passes by a
BM(gh). Furthermore, this operation can be vectorized; i.e., applied to a list of IDs
of T .

Proof Sketch. The contents and head position for each tape are represented as
described before Lemma 3.7, and then IDs of T are encoded by shuffling these
representations. The difficulty in simulating one move by T is that heads of T
on different tapes may be up to s cells apart, and it is impossible to record and
propagate the information about the character each head is scanning in one pass by
a gh. Let g = |Γ|. The solution is to do gk passes, one for each k-tuple of symbols
that the heads could possibly be scanning. The simulating BM M has a special
character for each k-tuple over Γ, and all symbols in the output of each pass are
marked by the special character for the tuple assumed in that pass. Each such pass
appends its output to the right end of the tape. After the gk passes, we have gk

candidates for the next move by T . The process is repeated on the list of candidates
until it produces a tree of depth b with gbk leaves, where each branch is a possible b
moves by T . Then with b passes by a 2:1 gh on a spare copy of the tree, M can verify
for each node whether the tuple assumed for it was correct. In O(bgk) = O(b) more
passes, M can propagate the marking of bad nodes from parents to all descendents,
leaving just one correct branch. In O(b) more passes, this information is transferred
back to the original copy of the tree.

Remarks for later reference: For simulating the next b steps by T , it is not
necessary to erase all the bad leaves—the ‘!’ markings of bad IDs can be copied
forward in later passes. Now suppose g = |Γ| is a power of 2. When the next-move
operation is vectorized and applied once to a level of nodes N1, . . . , Nj of the tree,
the next level comes out in the order

[child 1 of N1]# . . . [child 1 of Nj]
$[child 2 of N1]# . . . [child gk of Nj]

$
.

Now applying S# (k log g)-many times would bring all the children of each node
together. However, since the list elements are s = 2b symbols long, this would
take O(b) passes, and since later we will have n = 2s, this would make the overall
pass count O(log n loglogn). Instead we wait until the bottom-level IDs have been
converted to single-symbol values +, −, or ! (or 0, 1, !) by b-many applications of a
2:1 gh. Then children can be brought together at each level via the string operation
Sk log g, and since k and g are independent of n, the number of passes per level is
constant. This will be used when T is an alternating TM with binary branching.

4 Main Theorem

Cook [8] made it standard to refer to the UE∗ uniformity condition of Ruzzo [20] in
defining the classes NCk and ACk for k ≥ 1. For AC1 and higher this is equivalent
to older conditions of log-space uniformity, and we use this for NCk with k ≥ 2
below. Using UE∗ uniformity gives the identity NCk = ATISP(O(logk n), O(log n))
for all k ≥ 1 [20], where ATISP refers to simultaneously time- and space-bounded
alternating Turing machines. Thus NC1 is also called ALOGTIME. A circuit is
leveled if its nodes can be partitioned into V0, . . . , Vd such any wire from a node in
some Vi goes to a node in some Vi+1. The width of a leveled circuit equals maxi |Vi|.
The circuit is layered if in addition the input level V0 consists of inputs xi and their
negations, and the remaining levels alternate AND and OR gates. For all k ≥ 1, an

NCk circuit can be converted to an equivalent layered NCk circuit, within the same
condition of uniformity.

Theorem 4.1 For all k ≥ 1, BMk(gh) = NCk.

Proof. (Sketches) (1) BMk(gh) ⊆ NCk. Let M have m markers, DGSM states
S1, . . . Sr, and a tape alphabet Γ of size g. Let p(n) be a polynomial which bounds
the work, and also the space, used by M on inputs of length n. The simulating
circuit Cn is organized vertically into blocks, each of which simulates b(n) = ε log n
moves by M . Each block is organized horizontally into segments, each of which has
p(n)+1 inputs and outputs. The extra input/output is a “flag,” where ‘1’ stands for
“good” and ‘0’ for “bad.” For simplicity we describe Cn as though gates compute
finite functions over the tape alphabet of M ; conversion to a Boolean circuit expands
size and depth by only a constant.

A setting consists of a positioning of the m markers, an assignment of the four
pointers to the markers, and the current GSM. This makes p(n)mm4r possible set-
tings. Given a setting before a pass, the total number of possible settings after the
pass and subsequent move state is at most g, one for each tape character pointer a1

might scan. Thus the total number of possible sequences of settings in the course
of b(n) moves is B(n) := gb(n) = nε log g, which is polynomial. This is the point of
constraining the machine’s “random access.”

Each block has p(n)mm4B(n) segments operating in parallel. Each individual
segment corresponds to a different initial setting and one of the B(n) sequences
which can follow. Each segment is leveled with width p(n) + 1, and has b(n) “pass
slices,” each representing p(n) tape cells plus the flag. Each pass slice corresponds
to a setting and has the “hard wiring” for the block move Si[a1 . . . b1] into [a2 . . . b2]
carried out in the DGSM state Si of that setting. Since Si is one of finitely many
gh’s, each slice has constant depth. The flag gate in a pass slice is hard-wired to
check that, based on the character scanned by a1, the subsequent move state sets
the pointers according to the setting in the next slice. If not, the flag is set to 0,
and this is propagated downward.

The circuit carries the invariant that at the beginning of the ith block, there
are p(n)mm4B(n) copies of the correct configuration of the tape of M after b(n) · i
moves. Of these, those whose initial setting is incorrect already have the flag of
their top slice set to 0; only the B(n)-many segments with the correct setting have
flag 1. After b(n) pass slices, exactly one of the segments has flag 1, namely the
one whose sequence of settings M actually followed on the particular input. The
other p(n)mm4B(n) − 1 segments have flag 0. The rest of the block must locate the
segment with flag 1 and route B(n) copies of its p(n) outputs among those segments
in the next block whose initial setting matches the final setting of the source. This
is standard: in O(log n) depth the segments with flag 0 are zeroed out, then bit-
wise comparison in an O(log n) depth butterfly pattern automatically replicates the
correct one. The interconnect pattern is explicitly defined and regular enough to
make the circuit UE∗ uniform.

(2) NCk ⊆ BMk for k ≥ 2: Let ε > 0 and a log-space uniform family [Cn]∞n=1

of layered circuits of depths d(n) be given. We claim there is an equivalent family

[C ′n]∞n=1 of circuits which have the following properties:

(a) C ′n is broken into blocks, each of depth b(n) = dε log2 ne. Let w(n) be the
next power of 2 higher than the width of Cn. Each block describes a circuit
with w(n) outputs, and is broken in parallel into w(n) formulas, one for each
output. Each formula has alternating levels of AND and OR with negations at
the inputs. The formula has input variables u1, . . . , uw(n), some of which are
dummy variables, together with their negations. (The negations are needed
only in the first block.)

(b) C ′n has a special encoding En as a vector of lists, where each list represents a
block and has w(n) elements denoting the formulas in that block. The formulas
are written in infix notation, and since they are full binary trees in which levels
of AND and OR alternate, only the variables need be written. Each variable ui
is represented by the string 0w(n)−i10i−1 %; its negation ui by 0w(n)−i−10i−1 %

(c) There is a log-space Turing machine which on input 0n outputs the string En.

The proof of this claim is similar to proofs that log-space uniformity is preserved
under other circuit normalizations, and omitted here. To finish part (2) we need
to build a BM(gh) M such that on any input x of length n, M constructs En in
O(log2 n) passes and polynomial work, and evaluates En in O(dn) passes.

Since the formulas have size 2b(n) which is polynomial, there is a polynomial
r(n) which bounds the length of En. It is well known that having En computable
from 0n in logspace is the same as having a log-space machine T which given 0n and
i ≤ r(n) decides the ith bit of En. We may then eliminate the input tape and make T
start with i and n in binary notation on a single worktape with explicit endmarkers
constraining T to logarithmic space s0(n). Let s = s(n) be the next highest power
of 2 after s0(n) ·C, where C is the constant implied by the transformation from the
ID alphabet of T to { 0, 1 } in Lemma 3.7. Then T always halts within 2s steps. Put
b = log2 s.

The BM M first calculates n from |x| and generates the list I of all binary strings
of length s(n) in lex order via Lemma 3.6. Each element in I is a potential ID of T .
M then applies the next move function of T once to every element. The resulting
list of strings of length s is no longer in lex order. Now this list can be converted to a
Boolean matrix which represents the next-move function by running binary-to-unary
on the list. This takes O(s) passes. Then the matrix is raised to the power of 2s by
iterated squaring, in O(s2) passes. After conversion from unary back to binary, this
produces a list of the final IDs reached from each given ID by T . Finally, r(n) copies
are made of this list by O(log n) replications. Then the numbers i from 1 to r(n)
are generated and aligned with successive copies. The answer given by T for each
i can be computed by iterating a 2:1 gh h like that in Lemma 3.7 which preserves
+ or − in a final ID iff the corresponding starting ID held i, n. Iterating h 2s-many
times, and then changing + to 1 and − to 0, yields exactly the string En.

The circuit is evaluated by replicating the output of the previous block, and
shuffling this with the list of unary variable identifiers ±uj = 0w(n)−j ± 10j−1. The
single ‘1’ (or −1) then pulls off the input value of uj from the previous block. The
remainder of the block is evaluated by alternating A(·) and O(·).

(3) NC1 ⊆ BM1(gh). Here we use the identity NC1 = ALOGTIME. Let T be an
ALOGTIME machine which accepts some language A. It is well known (see [22, 4])
that T can be converted to an ALOGTIME machine T ′ with the following properties:
T ′ alternates existential and universal steps, and each non-terminal configuration
has exactly two successors (called “right” and “left”). Each branch ignores the
input tape until it reaches a terminal configuration, at which point the contents
of a designated “address tape” specify in binary an integer i, 1 ≤ i ≤ n, and the
configuration accepts or rejects depending only on the value of the ith input. (Our
simulation appears not to require the additional feature that every branch records
its own sequence of left-right choices.) Now let n′ be the next number above n of the
form 22b ; then n < n′ ≤ n2. We may further modify T ′ so that each of its k-many
worktapes is constrained to s = 2b cells, each branch runs for exactly t steps, where
t = O(s) and t is a multiple of b, and each branch writes n′ − i right-justified on
the address tape instead of i. Let Γ be the alphabet of T ′ and let g := |Γ|; we may
suppose that g is a power of 2 (or even that g = 2).

The simulation begins with the single blank initial worktape ID Iλ. The com-
putation by T ′ is simulated in block of b moves by the process of Lemma 3.8, but
modified to produce both successors of every ID. Thus with reference to the proof,
every ID has 2gk children, two of which are legitimate—it is important that one
good ID is in the first gk and the other in the second gk when the tree is flattened
into a list. After t steps, there are (2gk)t IDs, of which 2t are legitimate. Since the
tapes of T ′ are shuffled, one pass by a k:1 gh leaves just the address tape contents
in these IDs, written in binary with extra trailing 0s out to length exactly s = 2b.
Then the unary-to-binary conversion of Lemma 3.5 is applied, with a slight change
to preserve ‘!’ markings in bad IDs. Now there is a polynomial-sized list of elements
of the form !n

′
or 0i−110n

′−i; the latter comes out that way because T ′ wrote n′ − i
to address the ith bit. Then trailing dummy symbols are appended to pad the input
x out to length n′, and this is replicated and shuffled bit-wise with the list. One pass
then picks up the input bit xi addressed by each good terminal ID, and writes the
value, 0 or 1, given by T ′ to that ID. Then s more passes by a 2:1 gh leave just the
values 0, 1, or ‘!’ of each terminal ID, bad ones included. The resulting string z has
length (2gk)t and contains exactly 2t 0 or 1 symbols. Per remarks following Lemma
3.8, applying S1+k log g to z brings the children of each bottom node together, and
by the “important” note above, among each 2gk children of a good node, exactly
one symbol in the left-hand gk is Boolean, and similarly for the right-hand gk.

Now let Er! be the partially defined 2:1 gh which maps

!! 7→ ! !0 7→ 0 0! 7→ 0 !1 7→ 1 1! 7→ 1,

Let A! be the total extension of Er! which behaves like AND on 00,01,10, and 11,
and let O! be similar for OR. For argument’s sake, suppose the last alternation
by T ′ in each branch is AND. After k log g applications of Er! to S1+k log g(z), the
two Boolean values under each of these nodes are brought together, and then one
application of A! evaluates this level. Under bad nodes, every character remains ‘!’.
The next level is similarly evaluated by applying O!Er

k log g
! S1+k log g, in O(1) passes.

Doing this for O(t) = O(s) = O(log n) total passes evaluates the entire tree.

Corollary 4.2 (to (1) and [6]): For all k ≥ 1, BMk(ap) ⊆ ACk.

Let “BM0” stand for BMs which are provided with any finite set of NC0 operations
to use in block moves, and which may have more than one tape. In general a machine
is oblivious if the movements of its tape heads depend only on the length of the input.

Corollary 4.3 Every BM0 which runs in polynomial work and R(n) = Ω(log n)
passes, can be simulated in polynomial work and O(R(n)) passes by a BM(gh) with
a single tape which is oblivious and only makes left-to-right passes.

5 Other Results and Conclusion

There are several definitions of reversal complexity for multitape Turing machines,
where in a given transition, each head may stay stationary (S) as well as move left
(L) or right (R). The older “strict” criterion of Kameda and Vollmer [13] is the same
as counting any S move as a reversal. The newer one [18, 11, 16, 7] counts a reversal
only when a head moves L which has previously moved R, or vice-versa. (Some
other sources do not count reversals on the input tape.)

Lemma 5.1 Every BM M which makes R(n) passes can be simulated by a 2-tape
TM T which makes O(R(n)) reversals.

Proof Sketch. The first tape of T equals the tape of M , while the second tape is
used to buffer the output in block moves. The second tape also helps T move the m
markers to new positions in at most 2m reversals.

For a BM(gh), or more generally when every GSM in M translates input symbols
to output symbols in some finite ratio d :e, R(n) corresponds in this simulation to a
notion of reversal complexity which is intuitively midway between the “strict” and
the standard one: in every interval between reversals, each tape head must operate
at some “fixed stride.”

Parberry [16] showed that TMs which run in space s(n) and r(n) reversals can
be simulated by uniform circuits of depth O(r(n) log2 s(n)) and width polynomial in
s(n). Chen and Yap [7] showed that any r(n) reversal bounded multitape TM can
be simulated by a 2-tape TM in O(r(n)2) reversals. In the case where the TM runs
in polynomial space we obtain an inprovement:

Corollary 5.2 A multitape TM which runs in polynomial space and r(n) reversals
can be simulated by a 2-tape TM in O(r(n) log2 r(n)) reversals.

Finally, we term a BM M to be a cascading finite automaton (CFA) if M consists
of a single DGSM S which is iterated left-to-right on its own output. (The validity
condition is ignored.) For instance, the language D1 of balanced parentheses is
acceptable by a CFA S which skips the leading ‘(’—writing ‘!’ to reject if the first
symbol is ‘)’—and thereafter translates

((7→ ()) 7→) () 7→ λ)(7→ λ.

Then for all x 6= λ, either S(x) = ! or x ∈ D1 ⇐⇒ S(x) ∈ D1, and always
|S(x)| ≤ |x|/2. Hence iterating S recognizes D1 in O(log n) passes and linear work.

Open Problem 1. Does every language accepted by a CFA in O(log n) passes be-
long to NC1? (Such languages do belong to one-way logspace [10].)

Open Problem 2. For k ≥ 1, is ACk = BMk(ap)? In general, how do conditions
on the structure of GSMs allowed to a BM correspond to circuit classes?

To conclude, the BM is a natural model which offers finer complexity analyses,
and we look toward its further use on basic open problems in the NC hierarchy.

References
[1] J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity Theory. Springer Verlag,

1988.

[2] D. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comp. Sys. Sci., 38:150–164, 1989.

[3] D. Mix Barrington, K. Compton, H. Straubing, and D. Thérien. Regular languages in
NC1. J. Comp. Sys. Sci., 44:478–499, 1992.

[4] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J.
Comp. Sys. Sci., 41:274–306, 1990.

[5] D. Mix Barrington and D. Thérien. Finite monoids and the fine structure of NC1. J.
ACM, 35:941–952, 1988.

[6] A. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative
functions. J. Comp. Sys. Sci., 30:222–234, 1985.

[7] J. Chen and C. Yap. Reversal complexity. SIAM J. Comp., 20:622–638, 1991.

[8] S. Cook. A taxonomy of problems with fast parallel algorithms. Info. Control, 64:2–22,
1985.

[9] T. Harju, H.C.M. Klein, and M. Latteux. Deterministic sequential functions. Acta
Informatics, 29:545–554, 1992.

[10] J. Hartmanis, N. Immerman, and S. Mahaney. One-way log tape reductions. In Proc.
19th FOCS, pages 65–72, 1978.

[11] J.-W. Hong. Computation: Similarity and Duality. Research Notes in Theoretical
Computer Science. Wiley, 1986.

[12] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison–Wesley, Reading, MA, 1979.

[13] T. Kameda and R. Vollmar. Note on tape reversal complexity of languages. Info.
Control, 17:203–215, 1970.

[14] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
J. Van Leeuwen, editor, Handbook of Theoretical Computer Science, pages 871–941.
Elsevier and MIT Press, 1990.

[15] P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata-theoretic viewpoint.
Computational Complexity, 1:330–359, 1991.

[16] I. Parberry. An improved simulation of space and reversal bounded deterministic Tur-
ing machines by width and depth bounded uniform circuits. Inf. Proc. Lett., 24:363–
367, 1987.

[17] W. Paul, E. Prauss, and R. Reischuk. On alternation. Acta Informatica, 14:243–255,
1980.

[18] N. Pippenger. On simultaneous resource bounds. In Proc. 20th FOCS, pages 307–311,
1979.

[19] V. Pratt and L. Stockmeyer. A characterization of the power of vector machines. J.
Comp. Sys. Sci., 12:198–221, 1976.

[20] W. Ruzzo. On uniform circuit complexity. J. Comp. Sys. Sci., 22:365–373, 1981.

[21] J. Simon. On some central problems in computational complexity. PhD thesis, Cornell
University, 1975.

[22] M. Sipser. Borel sets and circuit complexity. In Proc. 15th STOC, pages 61–69, 1983.

[23] L. Stockmeyer and U. Vishkin. Simulations of parallel random access machines by
circuits. SIAM J. Comp., 13:409–422, 1984.

[24] J. Trahan, M. Loui, and V. Ramachandran. Multiplication, division, and shift instruc-
tions in parallel random access machines. Theor. Comp. Sci., 100:1–44, 1992.

[25] P. van Emde Boas. Machine models and simulations. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 1–66. Elsevier and MIT Press, 1990.

