
A Protocol for Serializing Unique Strategies

Marcel Crasmaru1, Christian Glaßer ?2, Kenneth W. Regan ??3, and Samik
Sengupta3

1 Tokyo Inst. of Technology, marcelis.titech.ac.jp
2 Universität Würzburg, glasserinformatik.uni-wuerzburg.de

3 University at Buffalo, {regan,samik}cse.buffalo.edu

Abstract. We devise an efficient protocol by which a series of two-
person games Gi with unique winning strategies can be combined into
a single game G with unique winning strategy, even when the result
of G is a non-monotone function of the results of the Gi that is un-
known to the players. In computational complexity terms, we show that
the class UAP of Niedermeier and Rossmanith [NR98] of languages ac-
cepted by unambiguous polynomial-time alternating TMs is self-low, i.e.,

UAPUAP = UAP. It follows that UAP contains the Graph Isomorphism
problem, nominally improving the problem’s classification into SPP by
Arvind and Kurur [AK02] since UAP is a subclass of SPP [NR98]. We
give some other applications, oracle separations, and results on problems
related to unique-alternation formulas.

1 Introduction

Consider the simple form of Nim where players alternate removing 1 or 2 stones
from an initial pile of N stones, and the player who takes the last stone wins. A
position N of this game is a win for the player to move iff N is not a multiple
of 3, and the unique winning strategy for this player is to take the number that
leaves a multiple of 3. Moreover, if the first player errs, the second player has a
unique winning rejoinder. This extends to say that in the entire game tree of all
possible plays from any initial position N , every non-terminal position reached
either loses for the player to move or has a unique winning move. We term a
game with this property globally unique, insofar as winning strategies wherever
they exist are unique.

A two-person game is definable formally via an alternating Turing machine
(ATM) M , which is coded like a nondeterministic TM but has separate existen-
tial and universal states. By convention the ∃-player moves first—i.e., the start
state is existential—and the ∃-player wins a play from a starting game position
x iff the computation path given by the players’ moves ends in an accepting final
configuration of M . Nim is coded by an ATM M that on input 0N uses ∃-states
and ∀-states that give options to mark off 1 or 2 cells, halts on reading the blank
? Supported by a postdoctoral grant from the German Academic Exchange Service

(Deutscher Akademischer Austauschdienst—DAAD).
?? Supported in part by NSF grants INT 9726724 and CCR-9821040.



at the end of the input, and accepts iff it just came from an ∃-state. The defi-
nition of x being a first-player win, i.e. being in the language L(M), recursively
defines an existential configuration to be positive iff it has at least one move to a
positive configuration, and a universal configuration to be positive iff all moves
lead to a positive configuration. Then x ∈ L(M) iff the start configuration on
input x is positive. Niedermeier and Rossmanith [NR98] defined:

Definition 1. An ATM is unambiguous if every positive non-final existential
configuration has exactly one move to a positive configuration, and every nega-
tive non-final universal configuration has exactly one move to a negative config-
uration.

They denoted by UAP the class of languages accepted by unambiguous
polynomial-time bounded ATMs, since it is the natural alternating analogue of
the class UP of languages accepted by unambiguous NTMs. They showed that
FewP ⊆ UAP ⊆ SPP.1 The polynomial time bound on the ATMs enforces that
each play of the corresponding game finishes within a reasonable amount of time.
Thus languages in UAP comprise all denotations of reasonable globally-unique
games.

The main intellectual problem solved by this paper is whether highly general
combinations of globally-unique games are globally unique. Suppose Player 1
and Player 2 play a tournament G∗ of Nim-style games G1, . . . , Gm, under the
strange condition that the winner of the tournament is determined by an un-
known Boolean function f(x1, . . . , xm) of the results of the individual games.
The function f from Player 1’s perspective may even be non-monotone, mean-
ing that it could benefit Player 1 to play to lose the first game in order to win
the tournament. Note that in Definition 1 there is no constraint on existential
configurations (Player 1 to move) that are negative, nor on universal configura-
tions (Player 2 to move) that are positive. What general rule and incentive can
one give to induce uniquely optimal play in a position of G1 where the player to
move is losing?

Difficulties can be seen in the case of just two games where f is OR, so that
Player 1 wins G∗ if he wins either G1 or G2. The initial position of G∗ may be
a pair of initial positions σ1, σ2 of G1 and G2 respectively, except that σ2 may
not be known to the players at the start of G1, and may even depend on the
outcome of the actual play of G1. If σ1 and σ2 are (both known and are) first-
player wins, Player 1 seems to have two winning strategies: win G1, or not care
about G1 and win G2. We can attempt to force unique play in G by requiring
Player 1 to win the winnable game with lowest index. But now what happens
if Player 1 makes a mistaken move in some position π1 of G1 (possibly π1 = σ1

itself), and the given σ2 turns out to be a second-player win? Now Player 2
1 FewP is the class of languages accepted by polynomial-time NTMs that have only

polynomially-many accepting computations on any input. SPP [FFK94] comprises
those L defined by polynomial-time NTMs whose number of accepting computations
either equals or surpasses by 1 its number of rejecting computations, with the latter
case putting an input x into L.



seems to have two winning strategies: point out Player 1’s mistake in G1 or wait
for G2. Because G1 is a globally-unique game, Player 2 can prove the mistake
by switching roles with Player 1 and showing that some other move wins from
π1. We can stipulate that Player 2 must take the “prove a mistake” option when
it works. But what if Player 2 errs by not doing so? Since any error must be
punished uniquely, we must allow Player 1 to be able to win by pointing out
his own mistake in G1 at π1. In case σ2 turns out to be a first-player win after
all, we must similarly stipulate that Player 1 must take the point-out-mistake
option. But what if Player 1 now errs by not doing so? Can we avoid an infinite
regress of artificial new rules?

When the number m of constituent games varies with the complexity pa-
rameter “n,” there is also the danger that permitting players to review previous
play will lead to exponential backtracking. The protocol for converting general
alternating-P (i.e., PSPACE) computations into plays of globally-unique games
in [ACRW02] involves exponential backtracking—it cannot be improved to poly-
nomial unless PSPACE collapses into UAP, hence into SPP, thence into ⊕P and
PP, which is generally disbelieved. The only advantage in our setting is that the
individual games Gi already have global uniqueness of winning strategies.

Main Theorem 1. Given unambiguous polynomial-time ATMs defining
games G1, . . . , Gm, and a polynomial-time referee function f , we can construct
an unambiguous polynomial-time ATM M∗ such that for all starting positions
x1, . . . , xm of G1, . . . , Gm respectively, (x1, . . . , xm) ∈ L(M∗) ⇐⇒ (x1, . . . , xm)
wins for the ∃-player in G∗. Moreover, only a final deterministic part of M∗

depends on f .

We prove this in greater generality by allowing x1, . . . , xm to arise dynami-
cally from an overall starting position x given to M∗. Technically M∗ becomes
an oracle ATM and x1, . . . , xm become the oracle queries made by M∗—and the
difference is that the oracle computation can be adaptive. “Adaptive” means that
the starting position xi for Gi can depend on the play of lower-indexed games,
and so not be a fixed function of the input x. We lose no generality by supposing
that “i” is encoded into xi and all subsequent positions of each game Gi, so
that we can picture a single globally-unique process controlling the constituent
games.

Doing so lends our main theorem the denotation that the class UAP is self-
low , and we state and prove it this way in the next section. Our proof still relies
on the game formulation embodied in the statement of Theorem 1. A standard
strategy for self-lowness in complexity theory is to show the class to be closed un-
der (complements and) polynomial-size conjunctions and under “‘one query,” but
in the adaptive case this strategy makes a step of existentially guessing queries
that we do not know UAP a-priori to be closed under (note that NP ⊆ SPP is
disbelieved in [FFK94]). Moreover we have not found a great simplification of
our proof even just for conjunctions as posed above—and closure of UAP under
intersection was not noted in [NR98].



2 Main Theorem

For any oracle set A, UAPA is the class of languages accepted by polynomial-
time oracle ATMs that are unambiguous with oracle A. We re-state:

Theorem 1. UAPUAP = UAP.

Proof. Let M be a polynomial-time bounded oracle ATM that has the global
uniqueness property with oracle A ∈ UAP, and let MA be a polynomial-time
bounded non-oracle ATM with global uniqueness that accepts A. The following
protocol implicitly defines a polynomial-time bounded non-oracle ATM M∗ with
global uniqueness that accepts L(MA). The ∃-player and ∀-player initially and
always make their corresponding moves in M until M makes a query. The sub-
game Gi arises when M makes the i-th query yi in its computation path, and
commences from the position σi corresponding to the initial configuration of MA

on input yi. Although the games Gi may appear uniform and dependent since
MA is the same machine in all instances, the query strings yi may contain the
actual rules of the game Gi with MA used intuitively only as a universal reader.
Thus no generality seems to be lost by our technical setting, compared to the
motivational description above.

Before describing the protocol, we need to define its ingredients. First, a
global total ordering of legal moves at every possible position of every game Gi
is imposed. We picture the lowest legal move at a position as “leftmost.” The
∃-player and ∀-player play each Gi in sequence, except that either has the option
at any time to “trump previous play.” At every move of a game Gi, the player to
move declares “Win” or “Lose”—and in the latter case, must play the leftmost
legal move on pain of otherwise being liable for “trumping.” If the plays of each
Gi and the intervening simulation of M all finish without either player using the
trump option, then the overall winner is determined by the final configuration
of M that is reached. When M is an oracle P-machine, it helps to picture M as
a neutral referee who determines the overall winner based only on the outcomes
of the games (i.e., queries).

Trumping means to backtrack to a previous position π in some game Gj—
with either the same or the opposite player to move at π—and change the decla-
ration and/or move that was made there. The essence is that the following three
rules avoid the infinite-regress problems described in Section 1.

(a) If the original player to move at π declared “Lose,” then either player can
trump by declaring “Win” and playing a move.

(b) If the original player to move at π declared “Win,” then either player can
trump by declaring “Win” and playing a different move.

(c) If the original player to move at π declared “Win,” then either player can
trump by playing that move, declaring “Win” at the succeeding position π′,
and making a move from π′.

Once “trump” is declared at π, future “trump” options may return only to games
Gi with i < j, to positions earlier than π in the original play of Gj , or:



In any ensuing play after a case-(c) trump move, it is legal to make
a “counter-trump” move of type (b) by returning to π, declaring “Win,”
and making a move—which again must be different from the move that
was originally made at π.

In all cases, if the trumping player wins the ensuing play of game Gj , then
he wins the entire game G∗. Note, however, that terminal positions of Gj still
allow the above (counter-)trumping options. The key idea of the proof is that
whenever a victorious trumping move is legal, it is the unique optimal play .

These provisos ensure that plays of the expanded game G∗ have length poly-
nomial in both m and the maximum length of any play of any Gj . Every position
of the game G∗ encodes not only the corresponding position of the current game
Gj , but also the entire game history of G∗ to that point—this in particular
determines all possible trumping moves. Moreover, the number of legal (trump-
ing) moves available in any position expands by only a polynomial factor. This
completes the description of the game G∗.

To prove that G∗ has the global uniqueness property—regardless of the ref-
eree’s verdict in plays where all m sub-games are completed without trumping—
we make the following observations:

1. There is a unique play α0 of the sequence of games that allows no successful
trumping opportunities. In this play, each player makes the correct declara-
tion at every step, and a player declaring “Win” makes the unique winning
move. The play α0 has no trumping moves itself.

2. If a play α deviates from α0 at a position π by an incorrect move or decla-
ration, then in any play forward from π, either player can win by rewinding
to position π and trumping. Here are the possible deviations and trump
responses:
(a) Declaring “Lose” in a winning position. Trump by declaring “Win” and

playing a winning move. Trump option (a) is the only one that applies,
and by global uniqueness of Gj itself, the winning move is unique. (It
may be the leftmost move itself—i.e., the one that was played.)

(b) Declaring “Win” in a winning position, but not playing the winning
move. Trump by declaring “Win” and playing the correct move—which
again is unique by global uniqueness of Gj . This option (b) is the unique
correct reply.

(c) Declaring “Win” in a losing position. Trump by playing the move that
was played (which need not be the leftmost move), then declaring “Win,”
and making a winning move. Trump option (a) doesn’t apply and (b) is
false, so (c) is unique—as is the winning move in the second position.

The other kind of deviation from α0 that can occur is a trumping move. We
distinguish between a “virgin” deviation and one in reply to an earlier deviation
at the same position π. We first argue inductively that a virgin deviation (by
trumping) always loses for the trumping player. If it is a trumping move of type
(a) or (b), then the resulting position is a win for the responding player. Since (by



induction) trumping at a position earlier than π along α0 would be virgin and
thus lose, and since no “counter-trump” at π is available, winning the ensuing
play of the game Gj is the only winning option for the responder—and it is
unique by global uniqueness of Gj . If the virgin deviation is of type (c), then the
position π is winning in Gj for the player P to move there, and P originally made
the right move µ—because it was not a deviation. The trumper makes µ and
then declares that the resulting position π′ is a win for him, making a move µ′

there. Here the trumper is wrong about π′, so the responder can win the ensuing
play of Gj . The responder does have the “counter-trump” option available, but
since µ was the right move, it would lose. Thus winning the ensuing play of Gj
is the unique way to punish a virgin deviation of type (c).

To finish the argument, consider any position ρ in which the player P to
move can win. If ρ is along the unique optimal play α0, then all alternatives to
furthering α0 lose, so a fortiori the unique winning move must be the one that
furthers α0. If not, then there is a first position π at which the play α deviates
from α0. If the deviation at π was by a bad move, or by a move accompanying the
wrong declaration, and there has been no trumping at π already, then trumping
at π is legal and winning for either player. Since all other moves by P either
leave trumping at π open to the other player, or are virgin trumps at positions
earlier than π along α0, trumping at π is the unique winning move for P .

Otherwise, a trumping move has occurred at π, and position ρ is immediately
afterward or in ensuing play from that move. If the trump move was of type (a) or
(b), virgin or not, then since there is no counter-trump at π, and since trumping
below π is virgin and hence losing, there is no option other than the ensuing
play in game Gj , whose global uniqueness carries through here. If it was a virgin
trump of type (c), then it was incorrect, and ensuing play is globally unique as
argued above. It remains to cover cases where ρ ensues from a trump of type
(c) at π that comes after an incorrect “Win” declaration and/or move at π that
represented the original deviation from α0.

(i) The “Win” declaration was incorrect—i.e., position π is losing in Gj for the
player to move. In this case the type-(b) counter-trump option loses. As in
the cases above of a type (a) or (b) trump at π, the only way ρ can be
winning for the player to move is for it to be winning in Gj , and the unique
winning play in Gj is the unique way to win G∗.

(ii) The “Win” declaration was correct, but the original player made the wrong
move. Then the counter-trump option at π is winning. Since it is available
to both players at all times in the ensuing play of Gj , it is always the unique
optimal reply.

This finishes the argument that G∗ represents a general protocol for playing
a series of globally-unique games in a globally-unique way. Note the symmetry
between the two players in all aspects of the argument, and the use of “leftward-
ness” only to constrain options when a player declares “Lose.” This already
amounts to a proof that PUAP = UAP.



For UAPUAP = UAP we need only describe the machine M∗ a little further.
If a trumping move occurs during the play, then M∗ follows the resolution of
this trump—and all possible counter-trumps and trumps at earlier positions—
and gives the result as its own final answer (accept iff the ∃-player wins). If not,
then the play βi from σi ends with a winner of that game, and M∗ takes the
result as the answer to the oracle query yi. If the sub-games for all queries reach
their conclusion and no trumps are made, then eventually a terminal position of
the game GM represented by M is reached. If it is winning for the player who
just moved, then the opposing player still has the option of trumping; if not,
then the game ends and the opposing player wins the game GM∗ right there.
(This last proviso preserves global uniqueness even at the terminal position of
GM∗ .)

For each oracle query yi, there is a unique “correct” play αi from σi, being a
segment of “α0” as established above. If βi deviates from αi, then in any ensuing
configuration of M∗, either side has the winning option of trumping at the (first)
point of deviation, and this winning option is unique. If not, then M∗ gets the
correct answer to the oracle query yi ∈?A. Putting this all together, the global
uniqueness that M has with oracle A carries through to global uniqueness of
M∗, and L(M∗) = L(MA). ut

We remark that coming into or exiting a sub-game Gi may give two consecutive
moves to one of the players, but (i) this does not matter to the above analysis, (ii)
it is easy to avoid beforehand by modifying MA and M to avoid this, and (iii) it
is fixable afterwards by padding methods used here and in results of [ACRW02]
quoted below anyway.

Corollary 1. UAP is closed under all Boolean operations.

One consequence of self-lowness is that several hierarchies based on Tur-
ing reductions with uniqueness are contained in UAP. Niedermeier and Ross-
manith [NR98] define “AUΣp

k” to be the subclass of UAP of languages de-
fined by games that start with the ∃-player and have at most k − 1 alter-
nations in any play between the ∃-player and the ∀-player. They credit to
“Hemaspaandra [unpublished]” the observation that these coincide with the lev-
els UP,UP[co-UP],UP[co-UP[UP]], . . . defined by quantifiers on UP and co-UP
predicates. Lange and Rossmanith [LR94] define “AUPH ” to be the union of

these classes, “UPH ” to be the union of the levels UP,UPUP,UPUPUP
, . . ., and

“UPH” to be the union of the “smart-reduction” levels UP,UPUSAT
s ,UPUSAT2

s

(where “USAT2” characterizing UPUSAT
s was described above following Theo-

rem 3). They give SPP as an upper bound for these hierarchies, and Theorem 1
allows us immediately to improve this to:

Corollary 2. UPH ⊆ UAP, and also UAPUSAT
s = UAP.

Our main corollary, with application to the complexity of the Graph Isomor-
phism problem, needs its own section.



3 Logic games, smart reductions, and graph isomorphism

In [ACRW02], UAP was characterized as the class of languages that polynomial-
time many-one reduce to the following promise problem GUQBF :

Instance: A Boolean formula F in variables x1, . . . , xd for some
d ≥ 0 that induces the quantified Boolean formula ψ =
(∃xd)(∀xd−1) · · · (Qx1) F .

Promise: The logic game on ψ has the global uniqueness property.
Question: Is ψ true?

Here “Q” is ∃ if d is odd, else it is ∀. In the usual logic game, the ∃-player goes
first and assigns 0 or 1 to xd, then the ∀-player assigns to xd−1, and the players
alternate moves until F is either made true, a win for ∃, or false, a win for ∀. A
family of small formulas (wins for ∃) in which the promise holds is typified by

F = x1 ∨ x2(x3 ∨ x4(x5 ∨ x6(x7 ∨ x8))),

where we have written AND as multiplication binding tighter than OR to im-
prove visual intuition. The ∃-player must assign 1 to even-numbered variables,
whereupon the ∀-player’s next choice is immaterial; but if the ∃-player wrongly
assigns 0 to (say) x8, then the ∀-player succeeds uniquely by assigning 0 to x7

and so on, whereupon the ∃-player’s moves become immaterial and losing.
The promise problem USAT can be regarded as a sub-promise of GUQBF :

Instance: A Boolean formula F in variables x1, . . . , xd, here
viewed as inducing the quantified Boolean formula ψ =
(∃xd)(∃xd−1) · · · (∃x1)F .

Promise: F has zero or one satisfying assignment (which implies that
the logic game on ψ has the global uniqueness property).

Question: Is F satisfiable—i.e., is ψ true?

Abstractly, a promise problem (Q,R) has promise set Q and property set R,
and a language S is a solution if S ∩ Q ⊆ R and Q \ S ⊆ R̄. A reduction to a
promise problem is required to be simultaneously a reduction to every solution.
For a many-one reduction f this entails Ran(f) ⊆ Q [Sel88], but for reductions
of Turing type it is possible that allowing queries to strings outside of Q makes
a difference, as discussed by Grollman and Selman [GS88]. They called a Turing
reduction to a promise problem smart if it never queries strings outside the
promise set. A many-one reduction is a special case of a smart Turing reduction.

Note that a language A belongs to UP if and only if A ≤pm USAT, so that
USAT characterizes UP by many-one reductions the same way GUQBF char-
acterizes UAP. However, the class PUSAT

s of languages with smart polynomial-
time Turing reductions to USAT is apparently larger: it is closed under comple-
ments, contains FewP [CHV93],2 and contains the graph-isomorphism problem:
2 Here and in [NR98] the class is written “PUP ,” but we write “PUSAT

s ” to avoid

possible font confusion with PUP and to emphasize the role of USAT.



Theorem 2 (after [AK02]). GI ∈ PUSAT
s .

Proof. The main lemma of [AK02] creates an oracle reduction to a group-
theoretically defined language L such that every query w to L has a unique
witnessing answer. Arvind and Kurur remark that the queries are “UP-like.”
Because their language L belongs to NP, the w can be transformed to queries
w′ to USAT, and the “UP-like” property is preserved and makes this a “smart”
polynomial-time Turing reduction to USAT. Their algorithm computes what
they call a “UP-single-valued function with SPP oracle,” but the use of this
function to decide Graph Isomorphism stays within the bounds of PUSAT

s . ut

Corollary 3 (to Theorem 1). PUSAT
s ⊆ UAP (hence GI ∈ UAP).

Proof. The oracle P-machine accomplishing a smart reduction to USAT initiates
only those plays of the logic game on existential formulas that have (global)
uniqueness, so it becomes a non-oracle UAP-machine via Theorem 1. ut

4 Globally Unique Formulas

We note first that the promise problem GUQBF is invariant under equivalence
of Boolean formulas F and F ′, since the PQBFs induced from F and F ′ de-
fine the same logic game. Thus we can characterize game positions with global
uniqueness by selecting representatives from each equivalence class. Let True

(resp., False) denote a constant Boolean formula whose value is 1 (resp., 0).
We define inductively A0 = {False }, B0 = {True }, and for d ≥ 1,

Ad = { (xd ∧ ¬F1) ∨ (x̄d ∧ ¬F0) : F0, F1 ∈ Bd−1 },
Bd = { (xd ∧ ¬F1) ∨ (x̄d ∧ ¬F0) :

(F0 ∈ Ad−1 and F1 ∈ Bd−1) or (F0 ∈ Bd−1 and F1 ∈ Ad−1) }.

Here Bd comprises those d-variable Boolean formulas that induce globally-unique
logic games with the ∃-player to move that are wins for the ∃-player, while Ad
comprises those in which the ∃-player is to move but loses. Note that Ad says
that both substitutions for xd leave Boolean formulas whose negations are in
Bd−1, meaning the negations are unique wins with the ∃-player to move, which
implies that the resulting formulas themselves are unique ∀-player wins with the
∀-player to move. The recursion for Bd is interpreted similarly.

For example, A1 = { (x1 ∧ False) ∨ (x̄1 ∧ False) }, which is equivalent
to A1 = {False } and (mentioning x1) to A1 = {x1 ∧ x̄1 }. Also

B1 = { (x1 ∧ True) ∨ (x̄1 ∧ False), (x1 ∧ False) ∨ (x̄1 ∧ True) },

which reduces to B1 = {x1, x̄1 }. The following is shown in [ACRW02] by
straightforward induction.



Lemma 1 ([ACRW02]). The formulas in Ad ∪ Bd are pairwise inequivalent,
and when interpreted as logic games with the ∃-player to move, those in Ad are
∃-player losses with global uniqueness, while those in Bd are ∃-player wins with
global uniqueness.

Every formula in Ad has exactly Nd satisfying assignments, where Nd =
(2/3)(2d − 1) if d is even, while Nd = Nd−1 if d is odd. Moreover, every formula
in Bd has exactly Nd + 1 satisfying assignments. The journal version [ACRW02]
shows that UAP ⊆ SPP also follows from this. Counting Ad and Bd shows they
contain Boolean functions all of whose formulas have bit-size Ω(2d).

Here we study the analogues of Ad and Bd for polynomials in arithmetic
mod 2, under the standard correspondence H(True) = 1, H(False) = 0,
H(xi) = xi, H(¬f) = 1−H(f), H(f ∧ g) = H(f)H(g), and H(f ∨ g) = H(f)+
H(g)−H(f)H(g). Define Id to be the ideal generated by {x2

1−x1, . . . , x
2
d−xd }

in F [x1, . . . , xd], where we take the field F to be the integers mod 2 or any field
of characteristic 2. We observe (proofs from here on are in the full paper):

Lemma 2. Over F , for d ≥ 1, every polynomial in H(Ad) has degree d − 1
modulo Id, while every polynomial in H(Bd) has degree d modulo Id.

It is curious that the cancellation is guaranteed only in characteristic 2. This
leads to the following decision problem “Degree Mod In” about representa-
tions of Boolean functions by polynomials, which we have not seen studied in
the literature on the “polynomial method” (see [Bei93] for stem references).

Instance: A formula for a polynomial f ∈ F [x1, . . . , xn].
Question: Does f have degree n when reduced modulo the ideal In?

Theorem 3. Degree Mod In is polynomial-time many-one hard for UAP.

What is the exact complexity of Degree Mod In? Note that f is a tautology
or unsatisfiable iff H(f) reduces to 1 or 0, so that the related question of whether
the degree mod In is positive is NP-hard. It seems not to follow simply, however,
that our problem of whether the degree is n is NP-hard. The problem of whether
a given set of polynomials reduces to 1 under the Gröbner basis algorithm belongs
to the second level of the polynomial hierarchy [Koi96], but the same for Degree

Mod In would put UAP inside PH, which also seems questionable. Nor do we
even know whether Degree Mod In belongs to polynomial space! This problem
deserves further study, and its hardness for UAP provides a context.

Now defineAd to be the set of d-variable Boolean formulas that are equivalent
to a formula in Ad, and Bd similarly with regard to Bd. Then set A = ∪dAd, B =
∪dBd. Clearly both languages are UAP-hard, and by the recursive definitions,
A ∪ B is polynomial-time self-reducible. We prove something stronger:

Theorem 4. A and B are polynomial-time isomorphic and self-reducible.

It is not clear whether these equations yield conjunctive or disjunctive self-
reductions that are polynomially well-founded. Many other questions pop to
mind about the sets A and B. Are they NP-hard? Is their complexity tied to
that of the promise problem GUQBF? Are they learnable? We note:



Proposition 1. For every formula F ∈ Bd with d even, there are 2d/2 satisfying
truth assignments α such that flipping the value on that assignment to False

leaves a formula in Ad.

The 2d/2 assignments are those reached by unique winning play by ∃ against the
2d/2 possible different plays by the ∀-player. Being able to compute any one of
them deterministically is equivalent to telling whether the QBF induced from F
is true, i.e. to solving GUQBF on that instance. Thus unless UAP = P these
ranges must avoid polynomial-time computable functions in some sense. Does
that give them any pseudo-random properties?

5 Oracles and the UAP vs. SPP problem

Since SPP is intuitively just above UAP and is also self-low, the natural next
question to attack is whether UAP = SPP. Niedermeier and Rossmanith [NR98]
noted that UAP meets their definition of locally definable classes, while SPP
is the smallest class thrust out by a notion of gap-definability [FFK94] that
seemed (to them) inherently non-local. Put simply, the difference is that the gap-
counting condition that defines SPP need only count the results of computation
paths, while that defining UAP depends on all internal configurations of the
computation tree. Thus equality may seem surprising. Inequality, however, would
mean that we have found another self-low counting class, one below the level of
“gap-definability” (see discussion in [FFK94,FFL96]).

We have separated UAP by oracle from its lower neighbor PUSAT
s . This

follows on constructing an oracle A such that UPUPA

6⊆ PNPA

, which is not
subsumed by oracle results for UP-based hierarchies in [CHV93] and [NR98]:

Theorem 5. There exists an oracle relative to which UAP 6= UPUSAT
s .

This extension makes plausible that further levels of the smart-reductions hier-
archy “UPH” are also different from UAP. The proof is in the full paper.

6 Conclusions and Open Problems

Our results enhance the value of UAP as a natural complexity class. It resides
just below SPP and is likewise self-low. The jump from UAP to SPP, however,
may go from a large “locally-definable” class [NR98] to the smallest gap-definable
class [FFK94]. If they are equal, this contrast makes the equality interesting; if
they are different, why are they so structurally alike? We have tried to separate
them by an oracle, and not found it easy. Even if UAP turns out to equal
SPP, our protocol itself—which appears markedly different from the proof of
self-lowness of SPP in [FFK94]—would likely retain independent interest.

The property of global uniqueness itself—of an ATM or of (the QBF induced
by) a Boolean formula—also deserves study. Is GUQBF a case of a promise
problem with a promise more difficult, no more difficult, or incomparable with



the problem being solved? Does the promise problem GUQBF even have solu-
tions in UAP? The isomorphic languages A and B of Boolean formulas seem to
have many interesting properties for further exploration.

Last, we look to further applications of the game-playing protocol behind
Theorem 1. It remains serial even in the non-adaptive case where the initial
game positions x1, . . . , xm are known in advance, since “trumping” relies on a
fixed total ordering of the games Gi and temporal order of their plays. Extending
it for parallel or “asynchronous” plays of the Gi might impact (unambiguous)
computation in classes below P.

Acknowledgments We thank Steve Fenner for helpful conversations at Complex-
ity’02 and afterward, and several authors of [CHV93,LR94,NR98] for answering
our precedent-search queries. We thank all referees for helpful comments.

References

[ACRW02] S. Aida, M. Crasmaru, K. Regan, and O. Watanabe. Games with a unique-
ness property. In Proc. 19th Annual Symposium on Theoretical Aspects of
Computer Science, volume 2285 of Lect. Notes in Comp. Sci., pages 396–
407. Springer Verlag, 2002.

[AK02] V. Arvind and P. Kurur. Graph isomorphism is in SPP. In Proc. 43rd
Annual IEEE Symposium on Foundations of Computer Science, pages 743–
750, 2002. Also ECCC TR02-037.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proc. 8th
Annual IEEE Conference on Structure in Complexity Theory, pages 82–95,
1993. Revised version, 1995.

[CHV93] J.-Y. Cai, L. Hemachandra, and J. Vyskoc. Promise problems and guarded
access to unambiguous computation. In Complexity Theory: Current Re-
search, Edited by Klaus Ambos-Spies, Steven Homer, and Uwe Schöning,
Cambridge University Press. Springer Verlag, 1993.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. J.
Comp. Sys. Sci., 48:116–148, 1994.

[FFL96] S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure property.
Inform. and Comp., 130:1–17, 1996.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryp-
tosystems. SIAM J. Comput., 17:309–335, 1988.

[Koi96] Pascal Koiran. Hilbert’s Nullstellensatz is in the polynomial hierarchy. Jour-
nal of Complexity, 12(4):273–286, December 1996.

[LR94] K.-J. Lange and P. Rossmanith. Unambiguous polynomial hierarchies and
exponential size. In Proc. 9th Annual IEEE Conference on Structure in
Complexity Theory, pages 106–117, 1994.

[NR98] Rolf Niedermeier and Peter Rossmanith. Unambiguous computations and
locally definable acceptance types. Theoretical Computer Science, 194(1–
2):137–161, 1998.

[Sel88] A. Selman. Promise problems complete for complexity classes. Inform. and
Comp., 78:87–98, 1988.


