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Abstract. The classes W [t] of the Downey-Fellows W hierarchy are defined,

for each t, by fixed-parameter reductions to the weighted-assignment satisfia-
bility problem for weft-t circuits. This paper proves that for each t ≥ 1, W [t]
equals the closure under fixed-parameter reductions of the class of languages

L definable by formulas of the form φ = (∃U)ψ, where U is a set variable and
ψ is a first-order formula in

∏
t prenex form. This is a fixed-parameter ana-

logue of Fagin’s well-known characterization of NP by second-order existential

formulas. An equivalent form of this result states that the fixed-parameter
“slices” Lk of L are definable by a family {φk } of first-order formulas in

∑
t

prenex form, subject to the restriction that the quantifier blocks in φk after
the leading existential block are independent of k. Whether this restriction

can be removed is connected to open problems in other recent papers on the

W hierarchy.

1. Parameterized Problems and the W Hierarchy

Many important and familiar problems have the general form
Instance: An object x, a natural number k.
Question: Does x have some property Πk that depends on k?

For example, the NP-complete Clique problem asks: given an undirected graph
G = (V,E) and natural number k, is there a subset U ⊆ V of size k that forms a
clique in G? The Vertex Cover problem asks whether G has a vertex subset U
of size k that covers every edge, while the Dominating Set problem asks whether
there is a U of size k such that every vertex in V \ U is adjacent to a member of
U . Here k is called the parameter .

Formally, a parameterized language L is a subset of Σ∗ × N. Via a simple
bijective encoding from Σ∗ ×N to Σ∗, one can identify a parameterized language
with an ordinary language over Σ∗, but we prefer to emphasize parameterized
languages as entities in their own right.

Definition 1.1 ([DF95]). A parameterized language L is fixed-parameter
tractable if there is a polynomial p, a function f : N → N, and a Turing machine
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M such that on any input (x, k), M decides whether (x, k) ∈ L within f(k)·p(|x|)
steps. FPT stands for the class of fixed-parameter tractable languages.

This definition does not require f to be computable, and does not impose any
limit on the growth rate of f(k). When f is computable, L is said to belong to
strongly uniform FPT. Languages L in FPT for which no f is computable are
constructed in [DF93], while [DF95] gives natural problems in FPT for which
no computable f is known. However, if (the ordinary language corresponding to)
L belongs to P, then we can arrange that f is computable in time polynomial
in the length (i.e., logarithm) of k, and further that f(k) itself is polynomial in
log k. Thus P is contained in strongly-uniform FPT. In this paper we try to
skirt the technicalities involving these and other notions of “uniformity” for FPT
from [DF95, DF93], except to note that the issues are roughly similar to those of
uniform versus non-uniform circuit classes.

If NP = P, then Clique and the other two NP-complete languages belong to
FPT. The converse, however, need not hold. Indeed, Vertex Cover does belong
to (strongly uniform) FPT, via an algorithm that runs in time 2k · O(n): Given a
graph G = (V,E), number V and E separately. To any string w in { 0, 1 }k, there
corresponds a size-k subset Vw of V defined as follows: To choose the ith element
of Vw, let e be the least-numbered edge not yet covered. If wi = 0 then add the
lower-numbered vertex on e to Vw, while if wi = 1, then add the higher-numbered
one. Then G has a vertex cover of size k iff one of the Vw forms such a cover, and
the algorithm follows. (This has been credited to several people; see [DF94].) Note
that f is exponential in k. Quite a few other NP-complete problems, with natural
parameter k, are in FPT via algorithms of time f(k)·O(n) through f(k)·O(n3)—see
the compendia in [DF95, HW96].

The best known method for solving the parameterized Clique problem is an
algorithm due to Nesetril and Poljak [NP85] that runs in time O(n( 2+ε

3 )k), where
2 + ε represents the exponent on the time for multiplying two n× n matrices (best
known is 2.376 . . . , see [CW90]). For Dominating Set we know of nothing better
than the trivial O(n1+k)-time algorithm that tries all vertex subsets of size k, using
O(n) time per try. Many other problems listed in the appendix of [DF95] seem to
be hard in the manner of Clique and Dominating Set. In order to compare the
difficulty of problems for fixed-parameter complexity, Downey and Fellows [DF95]
took the time-honored route of defining appropriate notions of reducibility and
completeness. For the reducibility relation, we select the “many-one” rather than
the “Turing” kind of FPT-reductions to talk about in this paper.

Definition 1.2 ([DF95]). A parameterized language A FPT-many-one re-
duces to a parameterized language B, written A ≤fptm B, if there are a polynomial
q, functions f, g : N → N, and a Turing machine T such that on any input (x, k),
T runs for f(k) · q(|x|) steps and outputs (x′, g(k)) such that (x, k) ∈ A ⇐⇒
(x′, g(k)) ∈ B.

The reduction is strongly uniform if f is computable. Then (strongly uniform)
FPT is closed downward under (strongly uniform) FPT reductions. Note that g is
computable, and the parameter k′ = g(k) in the reduction does not depend on x.

Definition 1.3. For any class C of languages, the downward closure of C under
strongly uniform FPT many-one reductions is denoted by 〈C〉fpt .



DESCRIPTIVE COMPLEXITY AND THE W HIERARCHY 3

For the completeness notion, Downey and Fellows [DF95] defined a hierarchy
of classes of parameterized languages

(1.1) FPT ⊆W [1] ⊆W [2] ⊆W [3] ⊆ · · · ⊆W [poly ],

and showed that the parameterized version of Clique is complete for W [1] under
FPT reductions, while that of Dominating Set is complete for W [2]. This gives
a sense in which Dominating Set is apparently harder than Clique.

This paper provides a third support for parameterized complexity theory by
giving a descriptive logical characterization of the W [t] classes, one that is analogous
to the important theorems of Fagin and Stockmeyer for NP and the polynomial-
time hierarchy [Fag74, Sto76]. There are several twists that make our results
interesting and not routine. First, they relate second-order formulas to sequences
of first-order formulas in a way that shows a subtle effect of the parameter k.
Second, our results open new ways to understand the W classes and solve problems
about them, as we show with some preliminary applications in Section 5. Third,
they hint at the possibility that the W hierarchy “collapses” to W [2], by analogy
with a “collapse” that is implicit in Fagin’s theorem itself.

Although we have not yet defined the W hierarchy, we can convey the spirit of
the results by expanding the Clique and Dominating Set examples. For each
k, the language Lk of graphs with a clique of size k is defined by the first-order
existential formula

φk := (∃u1 . . . uk) :
∧
i,j≤k

E(ui, uj),

where u1 . . . uk range over vertices in V . That is, we have a sequence [φk]∞k=1 of∑FO
1 formulas such that each φk defines the kth “slice” Lk of the parameterized

language Clique. Now we can also represent Clique itself by the single second-
order formula

Φ = (∃U)(∀v, w)[(U(v) ∧ U(w) ∧ w 6= v)→ E(v, w)],

where U ranges over monadic relations on V—equivalently, over subsets of V . For
standard languages this formula is trivial, since Φ holds for all graphs with U = ∅,
but it faithfully represents the parameterized language Clique under the following
stipulation:

For all k, the slice Lk equals the set of strings x (encoding graphs
Gx) such that Φ holds for Gx with a set U of size k.

Note that Φ has the form (∃U)ϕ where ϕ is a
∏FO

1 formula, so we call Φ a SO∃·
∏FO

1

formula.
Dominating Set is similarly represented by the sequence [ψk] of

∑FO
2 formulas

with
ψk := (∃u1 . . . uk) (∀v) :

∨
i≤k

(v = ui ∨ E(v, ui)),

and by the SO∃ ·
∏FO

2 formula

Ψ = (∃U)(∀v)(∃w)[U(v) ∨ (U(w) ∧ E(v, w))].

Thus we can write that the W [1]-complete language Clique belongs to SO∃ ·
∏FO

1 ,
and also to

∑FO
1 -seq . Similarly the W [2]-complete language Dominating Set
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belongs to SO∃ ·
∏FO

2 , and also to
∑FO

2 -seq . The pattern is suggestive, and indeed
the first main theorem of our paper is:

Theorem 1.4. For all t ≥ 1, W [t] = 〈SO∃ ·
∏FO
t 〉fpt .

One is tempted to go on to conjecture a “yes” answer to the following question:

Problem 1.1. For all t ≥ 1, does W [t] = 〈
∑FO
t -seq〉fpt?

However, this is not what we obtain. Rather, we obtain a first-order characteriza-
tion of W [t] by sequences of

∑FO
t formulas φk that obey the following “niceness

condition”: for each of the (t − 1) quantifier blocks after the leading existential
block, the number of variables quantified is independent of k. All

∑
1 families are

trivially nice, so the t = 1 case of Problem 1.1 holds. The
∑

2 formulas ψk defining
Dominating Set above are nice, since the “(∀v)” block is the same for all of them.
The second main theorem of this paper is:

Theorem 1.5. For all t ≥ 1, W [t] equals the FPT-closure of the class of
parameterized languages defined by nice sequences of

∑FO
t formulas.

The “niceness” condition seems to arise by virtue of how the sequences of first-
order formulas are related to the single second-order formulas in Theorem 1.4: The
first existential block of a

∑FO
t formula ψk depends on k since it corresponds to the

size-k set U in the SO∃ ·
∏FO
t formula Ψ = (∃U)ϕ. The remaining (t−1) quantifier

blocks of ψk then correspond to blocks in the first-order part ϕ of Ψ, which are
the same for all k. However, the correspondence is not so straightforward because
ϕ has t-many quantifier blocks, so there is one left over, and even in the case of
Dominating Set it takes some thought. In Section 5 we show how Theorem 1.5
classifies two problems related to Dominating Set that were previously not known
to belong to W [2].

In any event, the main open question of this paper becomes: What kinds of
(parameterized) languages are represented by sequences of

∑FO
t formulas with the

niceness condition removed? A second important matter is raised by the link to
Fagin’s Theorem, which can be stated for standard languages as NP = SO∃·

∏FO
2 =

SO∃·
∏FO
t for all t ≥ 2. By our Theorem 1.4, if a similar “SO∃·

∏FO
2 = SO∃·

∏FO
t ”

collapse happens under the above stipulation for representations of parameterized
languages, then W [t] = W [2] for all t ≥ 2. We note that the compendium [HW96]
still lists no problems as W [t]-complete for t ≥ 3, and indeed we have moved some
problems from the “W [2]-hard” section into W [2]. For t ≤ 2, connections similar
to our Theorem 1.4 were observed by Cai and Chen [CC93], via the link between
second-order formulas and optimization versions of NP problems that was first
observed by Papadimitriou and Yannakakis [PY91]. We take all this to mean that
the role of the parameter k deserves much further scrutiny, both at the level of NP-
complete problems and also at the level of very-low-complexity languages defined
by FO formulas.

Section 2 defines the W hierarchy, and Section 3 gives details on descriptive
complexity and logic. Section 4 proves the above two theorems, and Section 5 gives
applications and connections to open problems in other recent papers on the W [t]
classes.
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2. Parameterized Circuit Complexity and the W [t] Classes

Boolean circuits are said to be of mixed type if they may contain both small
gates of fan-in ≤ 2 and large AND and/or OR gates of unbounded fan-in. We
consider only decision circuits; i.e., those with a single output gate. The weft of
such a circuit is the maximum number of large gates on a path from an input to
the output. The n inputs are labeled by variables x1, . . . , xn, and the Hamming
weight wt(x) of an assignment x ∈ { 0, 1 }n equals the number of bits that are set
to 1. The circuit is monotone if it has no NOT gates, and anti-monotone if all
wires from an input go to a NOT gate, and these are the only NOT gates in the
circuit. A pure

∑
t circuit as defined by Sipser [Sip83] consists of t levels of large

gates that alternate ∧ and ∨ with a single ∨ gate at the top (i.e., the output),
and with the bottom-level gates connected to the input gates x1, . . . , xn and their
negations x̄1, . . . , x̄n. A pure

∏
t circuit is similarly defined with a large ∧ gate

at the output. In both cases, “pure” means that the circuit has no small gates.
A Boolean expression is the same as a circuit in which each gate has fan-out 1.
We call a Boolean expression t-normalized if it forms a pure

∏
t circuit. For t = 2

this is the same as an expression in conjunctive normal form. For t = 3 this is
product-of-sums-of-products (P-o-S-o-P) form; for t = 4 this is P-o-S-o-P-o-S form,
and so on.

For all constants h, t > 0, the parameterized Weighted Circuit Satisfia-

bility problem is defined by:
WCS (t, h)
Instance: A circuit C of weft t and overall depth t+ h.
Parameter: k.
Question: Does C accept some input of Hamming weight exactly k?
Then for all t ≥ 1, W [t] may be defined to be the class of parameterized

languages A such that for some h, A ≤fptm WCS (t, h) (see [BFH94]). Also W [poly ]
equals the class of problems that FPT many-one reduce to the problem WCS with
no restriction on depth or weft. WCS is the parameterized version of the standard
NP-complete Circuit Satisfiability problem, of which SAT is the specialization
to the case where the circuit is a Boolean formula (in conjunctive normal form).
An interesting aspect of the W [·] theory is that more-extreme special cases of the
parameterized WCS problems remain complete. For all t ≥ 2 define:

Weighted t-Normalized Boolean Expression Satisfiability

(WBES (t))
Instance: A t-normalized Boolean expression E.
Parameter: k.
Question: Is there a satisfying assignment to E of Hamming weight exactly k?

Monotone WBES (t) (MWBES (t))
Restriction of WBES (t) to instances E that are monotone.

Anti-Monotone WBES (t) (AWBES (t))
Restriction of WBES (t) to instances E that are anti-monotone.
For t = 1, also define AWBES (1, 1) to be the restriction of WCS (t, 1) to in-

stances consist of a single large AND gate, with input from a layer of binary OR
gates, with the OR gates connected to negated inputs only.



6 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND KENNETH W. REGAN

Theorem 2.1 ([DF95, ADF93], see also [ADF95]). (a) For all even t ≥
2, MWBES (t) is complete for W [t] under ≤fptm . Hence so is WBES (t).

(b) For all odd t ≥ 3, the problem AWBES (t) is complete for W [t] under
≤fptm . Hence so is WBES (t).

(c) The problem AWBES (1, 1) is complete for W [1] under ≤fptm .
For t = 1, the extra level of small OR gates is necessary (unless W [1] = FPT)

[ADF93]. The methods there and in Section 4 in [ADF95] remove this layer of
small gates from earlier completeness proofs for odd t ≥ 3.

We point out one important aspect of FPT reductions that strongly governs
the size of the objects one can produce. Suppose A ≤fptm WCS (t, h), and take the
polynomial q and functions f, g : N → N from Definition 1.2. Since T on input
(x, k) must run in time f(k)q(n) (n = |x|), the circuits Cx,k it produces have size
polynomial in n for fixed k, and most important, the exponent of the polynomial
is independent of k. Moreover, setting k′ = g(k), k′ becomes the Hamming weight
parameter for Cx,k and is independent of x.

Definition 2.2. A parameterized family of circuits is a bi-indexed family of
circuits F = {Cn,k } such that for some functions f, g : N → N and a polynomial q,
each Cn,k has n inputs and has size at most f(k)q(n). We say that such a family is
FPT-uniform if there is an algorithm to produce the circuit Cn,k in time O(q(n)).

The idea of bounded Hamming weight in the weighted circuit satisfiability
problems has been very successful in classifying many problems to belong to, and
be complete for, the W [t] classes [DF95, ADF93, DF94]. Our results support
the assertion that Hamming weight is a “universal parameter.”

3. W [t] and Descriptive Complexity

The system of first-order logic for strings used by Immerman et al. [Imm83,
Imm87, BIS90] to characterize the log-time hierarchy , and to provide a robust
definition for “uniform AC0,” consists of the following:

• Constants 0,1, and n; n stands for the length of the string.
• A supply of first-order variables u, v, w, . . . , which range over elements of

the universe V = { 1, . . . , n }.
• In addition to the usual quantifiers and Boolean connectives, a special

unary predicate symbol X(·), binary predicate symbols =,≤, and ternary
predicate symbols PLUS (u, v, w) and TIMES (u, v, w).

Given a sentence φ with these constituents, whether a binary string x belongs to
the language Lφ is determined as follows. Instantiate the constant symbol n to be
the length of x. Let us number the bits of x beginning with 1. Then the variables
u, v, w, . . . run over the domain { 1, . . . , n }. An atom X(u) is made true by an
assignment that sets u to the value i iff the ith bit of x is 1. The truth values of
the other atoms depend only on the assignment to the variables, not on the input
x; e.g. TIMES (u, v, w) is made true by any assignment of values to u, v that makes
their product equal the value assigned to w. Hence each x induces a truth value on
the sentence φ, and x ∈ Lφ iff that value equals true.

A formula in this system that has no quantifiers is called a “matrix,” and is
also called both a

∑FO
0 formula and a

∏FO
0 formula. For t ≥ 1, a

∑FO
t formula

has the form (∃u)ψ, where ψ is either a
∏
t−1 formula or another

∑FO
t formula.∏FO

t formulas are similarly inductively defined in terms of
∑FO
t−1 formulas, and
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are equivalent to the negations of
∑FO
t formulas. We may combine two or more

adjacent quantifiers of the same kind into one block , e.g. writing (∃u, v) for (∃u)(∃v).
Then the “logical complexity” of the formula equals the minimum number of blocks
needed to write (something equivalent to) the formula. The only second-order
formulas we consider will have the form Φ = (∃R)φ, where the second-order variable
R ranges over relations on the universe V , and φ is a

∑FO
t or

∏FO
t formula for some

t. The formula Φ is monadic if R is unary, so that Φ essentially quantifies over
subsets of V .

The presence of the PLUS and TIMES predicates has two simplifying effects.
First, it enables us to translate between formulas over strings and formulas over
graphs, which have a binary relation E(·, ·) in place of X(·), without affecting the
above notion of “logical complexity.” Namely, encode an n-vertex graph G by its
adjacency matrix in “row-major” order, yielding a binary string of length n2. For
each pair of vertex variables u, v, introduce a string variable w and maintain the
property w = (v− 1) ∗ n+ u. Then E(u, v)↔ X(w). This functional use of + and
∗ can be represented via the PLUS and TIMES predicates with the help of some
quantifiers that can be chosen to be either existential or universal. For all t ≥ 1,
a
∑
t formula in the graph system is converted into a

∑
t formula over strings,

with extra existential quantifiers for the conversion. Thus to prove that a language
encoding of a graph property belongs to

∑FO(+,∗)
t for strings, it suffices to write a∑

t formula in the system for graphs themselves. Interestingly, it will suffice in our
main results to use just E and = as predicates for the graphs—PLUS and TIMES
are only needed to relate the results to Immerman’s systems for strings. Thus we
are using “pure FO” for graphs, and this lends extra force to our writing “FO” in
place of “FO(+, ∗)” in what follows.

Second, it is now known that FO(+, ∗) is equivalent to the system FO(BIT ,≤)
originally used by Immerman, where BIT (u, v) expresses that the vth bit of u
in binary notation is a ‘1.’ This follows from known tricks about encoding the
graph of the exponential function via PLUS and TIMES , summarized by Lindell
[Lin94] (see also [Smo91, HP93]), and from the result by Lindell [Lin92] that
exponentiation suffices to simulate BIT .

Some of the features given above are redundant. For example, = can be sim-
ulated via ≤, or alternatively ≤ via = and PLUS . The constants 1 and n can
be dispensed with by introducing a fresh variable v and adding the assertions
‘(∀w)[v ≤ w],’ respectively ‘(∀w)[w ≤ v].’ However, the above description is most
convenient for our purposes.

These remarks apply also to second-order formulas, since the graph-to-string
conversion can be bundled into the first-order parts of such formulas. For a second-
order formula Φ = (∃R)φ in the language of graphs, R refers to an m-ary relation
on the vertex set V , for some V . Our proofs going from W [t] classes to formulas
will produce formulas in the language of graphs. However, our proofs going from
formulas φk or Φ to W [t] classes will apply to formulas over any class of finite
structures, including graphs and strings. This element of generality is best explained
at the appropriate junctures of the proofs themselves.
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Definition 3.1. For all t ≥ 1:

(a) A parameterized language L belongs to
∑FO
t -seq if there is a sequence of∑FO

t formulas φk such that for each k, φk defines the language Lk = {x :
(x, k) ∈ L }.

(b) The language L belongs to
∑FO
t -nice if in addition, all quantifier blocks

in all φk after the leading existential block have size independent of k.
(c) The language L belongs to SO∃·

∏FO
t if there is an existential second-order

formula Φ of the form Φ = (∃R)φ, where R is an m-ary relation symbol
(for some m ≥ 1), φ is a

∏
t first-order formula (naturally including the

symbol R), and for all k ≥ 1,

Lk = {x : for some R̄ ⊆ { 1, . . . , n }m with |R̄| = k, x satisfies φ(R̄) }.

If Φ has the more-general form (∃R1)(∃R2) · · · (∃R`)φ(R1, . . . , R`), then we
stipulate that Lk comprises those structures x (strings or graphs or etc.) that can
satisfy φ(R̄1, . . . , R̄`) for some choice of relations R̄1, . . . , R̄` such that

∏`
i=1 |R̄i| =

k. However, PLUS and TIMES supply enough arithmetic to encode tuples of re-
lations into a single relation, so we stay with the simpler form above. Indeed, the
proofs of the two directions in our main theorems convert everything down to the
case of a single monadic relation (which happens likewise for standard languages
when PLUS and/or TIMES are present—see e.g. Lynch [Lyn82]). One interpre-
tation of our results is that both the cardinality of a set and the Hamming weight
of a string serve as a “universal parameter” for the W classes.

4. Main Results

Going from the W [t] classes to the FPT-closures of the logic classes is rel-
atively easy, since we need only find an appropriate logical specification of one
W [t]-complete problem. The monotone and anti-monotone forms of the WBES
problems are used crucially in this direction. We combine both the second-order
and the first-order statements of our main results into one theorem and proof for
each direction.

Theorem 4.1. For all t ≥ 1, W [t] ⊆ 〈
∑FO
t -nice〉fpt , and also W [t] ⊆ 〈SO∃·∏FO

t 〉fpt .

Proof. First suppose t is even. We show that the W [t]-complete problem
Monotone WBES (t) is definable by a family of

∑
t formulas in FO. An instance

C of this problem is a tree with edges directed away from the root r and n sink
nodes. The root represents an AND gate at level 1, and is connected to a layer
of OR gates at level 2, alternating down to a layer of OR gates at level t (since
t is even), which in turn is connected to the positive-only inputs. The layering
enables us to avoid having to refer to the label of a gate node at all, and it is not
even necessary to quantify that the nodes u1, . . . , uk are sinks in the graph. More
importantly, because the instance C is monotone, it is not necessary to add to the
quantifier-free matrix of the formula a term of the form ∧ i 6=j(ui 6= uj) saying
that the ui are all distinct. The formula φk expressing that C has a satisfying
assignment of Hamming weight k is:



DESCRIPTIVE COMPLEXITY AND THE W HIERARCHY 9

(∃u1, . . . , uk)
(∀v2) : E(r, v2)→

(∃v3) : E(v2, v3) ∧
(∀v4) : E(v3, v4)→

. . .
(∀vt) : E(vt−1, vt)→

E(vt, u1) ∨ E(vt, u2) ∨ . . . ∨ E(vt, uk),
which is equivalent to

(∃u1, . . . , uk)(∀v2)(∃v3) . . . (∀vt) :
( ∧ i 6=j(ui 6= uj)) ∧
E(r, v2)→ E(v2, v3) ∧ [E(v3, v4)→ E(v4, v5) ∧ [. . .
[. . . E(vt−3, vt2)→ E(vt−2, vt−1) ∧ [E(vt−1, vt)→ E(vt, u1) ∨ . . . ∨ E(vt, uk)]
] . . . ].

This yields a family {φk } of
∑FO
t sentences defining Monotone-WBES (t),

one for each parameter k. The corresponding single second-order existential formula
defining Monotone-WBES (t), per Definition 3.1(c), is

Φ = (∃U)(∀v2)(∃v3) . . . (∀vt)(∃u) :
E(r, v2)→ E(v2, v3) ∧ [E(v3, v4)→ E(v4, v5) ∧ [. . .
[. . . E(vt−3, vt2)→ E(vt−2, vt−1) ∧ [E(vt−1, vt)→ (U(u) ∧ E(vt, u))]
] . . . ].

Among the cases of t odd, we first consider the case t = 1, which involves the
“extra” layer of small OR gates. An instance to Anti-Monotone WBES (1, 1) has
the form C = ∧ m

j=1(x̄j1 ∨ x̄j2), where the subscripts j1 and j2 run over { 1, . . . , n }.
This has a satisfying assignment of weight k iff there is a set S ⊆ { 1, . . . , n } of
size k such that for all j, at least one of j1, j2 does not belong to S. In terms of
the graph, this says that every ∨ node has at most one link to S. Following the
above scheme with a directed tree, this yields the condition that C has a satisfying
assignment of Hamming weight k iff

(∃u1, . . . , uk)(∀v)[E(r, v) =⇒ ∧ i 6=j(Ē(v, ui) ∨ Ē(v, uj))].

However, this has
∑

2 form, not
∑

1. The key is that there are at most ( n2 ) distinct
small ∨ gates, and we can convert C into a DAG C ′ that has exactly ( n2 ) small
∨ gates. Not all of these ∨ gates may be connected to the ∧ gate—and in the
analogous C ′ for t ≥ 3 the graph is no longer a directed tree—but the point is that
the instances of Anti-Monotone WBES (t, 1) in the proof of the main theorem
of [DF95] can be given this C ′ form to begin with. Now (in the t = 1 case) we
draw attention to the ( k2 ) of these ∨ gates that have both of their input lines
coming from S. The idea is to accept iff none of these gates is connected to the
∧ gate at the root. It does not work to define φk to be the assertion “there exist
( k2 )-many distinct nodes not connected to r,” because there can be sets of ( k2 )-
many ∨ gates that link to more than k negated inputs, in a way that defeats the
assertion that a weight-k satisfying assignment exists. (For the same reason, one
cannot simply regard the ∨ gates as a virtual input layer for the anti-monotone
formula.) Instead, taking ` = ( k2 ), we define φk to be
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(∃u1, . . . , uk, w1, . . . , w`)
[These k + ` nodes are all distinct and the u1, . . . , uk are all sinks
and each wi has exactly two out-links and these two belong to {u1, . . . , uk }
and ∧ `

i=1Ē(r, wi)].

This does the job, and is a
∑FO

1 formula. The second-order formula is actually
simpler:

(∃U)(∀u1, u2, w) : (U(u)→ Ē(u, v)) ∧
(U(u1) ∧ U(u2) ∧ u1 6= u2 ∧ E(w, u1) ∧ E(w, u2))→ Ē(r, w).

This says that all nodes in the set U are sinks, and all nodes w that have two out-
edges into the set U are not connected to r. By above remarks on promises about
the structures of the graphs in the theorem that Anti-Monotone WBES (1, 1) is
W [1]-complete, this suffices for W [1] ⊆ 〈SO∃·

∏FO
1 〉fpt .

In the case of odd t ≥ 3, level t consists of large ∧ gates, and the quantified vt
from this level plays the role of r in the above. It turns out not to matter whether
the instance circuit has the layer of small OR gates below the inputs or not; the
only change to the first-order formulas above is:

(∃u1, . . . , uk, w1, . . . , w`) [...as above and..]
(∀v2) : E(r, v2)→

(∃v3) : E(v2, v3) ∧
. . .

(∃vt) : E(vt−1, vt) ∧
∧ `
i=1Ē(vt, wi)].

This converts to
∑FO
t form. The second-order formula is similar to before. As

remarked in the last section, all of these formulas can be converted to equivalent
ones of the same quantifier structure over strings rather than graphs, with the help
of the PLUS and TIMES operations. �

Remarks: The above definitions of [anti-]monotone WBES (t) do not include
the formal definition of being t-normalized (nor of being [anti-]monotone); rather,
we have treated this condition on the underlying graph as a “promise.” Adding
this still leaves a

∑FO
t formula, however. The monotonicity of the instance to

WBES (t) for even t appears to be vital to this construction, and likewise the anti-
monotonicity in the case of t odd. The existential second-order formulas obtained
are monadic in the language of graphs, and can be converted to monadic formulas in
the language of strings with help from the arithmetical operations PLUS ,TIMES .
However, for standard languages, monadic second-order existential formulas in the
language of strings using just the ordering ≤ on string positions define only the
class of regular languages (Büchi [Büc60]).

Now we show the converse directions:
Theorem 4.2. (a) Let L be a parameterized language defined by a uni-

form family {φk } of
∑FO
t formulas whose quantifier blocks after the lead-

ing existential block have size independent of k. Then L ∈W [t].
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(b) Alternatively, let L be represented, per Definition 3.1(c), by a second-order
existential formula Φ = (∃R)φ, where φ is a single

∏FO
t formula. Then

L ∈W [t].

Proof. We need only show that L ≤fptm WCS (t, h) for some fixed h. We sup-
pose that the formulas φk and Φ are written in the language of strings, using the
fixed (interpreted) relational symbols {X(·),=,≤,PLUS ,TIMES }. It will, how-
ever, be clear how to modify this proof for formulas involving other fixed relations,
such as E(·, ·) for graphs. We give a general construction that takes x and k and
lays out a circuit Cx,k of size nO(1) ·g(k) and the required form for WCS (t, h) such
that Cx,k has a weight-f(k) satisfying assignment iff x makes φk true; here the
functions f and g come from the family {φk } of formulas.

First we consider the case of t even, t ≥ 2. By assumption, each formula φk
has the form

(∃u1, . . . , uf(k))(∀v2,1, . . . , v2,i2) . . . (∀vt,1, . . . , vt,it) Mk,

where i2, . . . , it are constants independent of k, and Mk is a quantifier-free Boolean
formula that can depend on k. In this even-t case, we write each Mk in conjunctive
normal form (CNF); i.e., as an AND of clauses, where each clause is an OR of
atoms, and each atom is a possibly-negated instance of one of the relations in
{X(·),=,≤,PLUS ,TIMES }. Let c(k) stand for the number of clauses in φk, and
a(k) for the maximum number of atoms in a clause. The functions c(k) and a(k)
may be arbitrary (computable) functions; the main point is that these quantities
do not depend on the length n of x.

The circuit C = Cx,k that we build has nf(k) input nodes, thought of as f(k)
rows of n nodes, one row for each variable in the leading existential quantifier
block. It has circuitry involving one large ∧ gate of size f(k)( n2 ) that enforces
the condition that at most one input in each row is set to ‘1’; this entails that
any weight-f(k) satisfying assignment to C must specify exactly one value in the
domain { 1, . . . , n } for each variable.

Level 1 of the circuit is a single ∧ gate with ni2 fan-in lines. Each of the ni2 ∨
gates at level 2 corresponds to a different assignment to the variables v2,1, . . . , v2,i2 .
Each of these ∨ gates has ni3 fan-in lines, and so on in a tree down to the ∧
gates at level t − 1, each of which has fan-in lines to nit ∧ gates, called matrix
nodes. The size of this part of the circuit is O(ni2+···+it). Now we concentrate on
the ∧ gates for the matrix nodes at level t.

Each of these ∧ gates connects to c(k) CNF clause nodes. Each CNF clause
node is an ∨ gate with fan-in from at most a(k) atomic nodes. Each atomic node
A is an OR gate and represents an atomic formula of the form X(v), v = w, v ≤ w,
PLUS (u, v, w), or TIMES (u, v, w), where u, v, and w are variables or constants. If
A involves r of the variables u1, . . . , uf(k), then A has fan-in “from all r-tuples of
the input nodes that make A true.” To explain this, first if A does not involve any
of the variables u1, . . . , uf(k), then it is determined completely by the given x and
the assignments to v21, . . . , vt,it along the unique path to that node from the root,
and so A is filled in as a logical constant. If A has just one variable ui from the
leading block, then it is an ∨ gate connected to precisely those nodes in input row
i whose corresponding value of ui makes the atom true. If it has ui and uj where
i 6= j, then it is an ∨ gate with fan-in lines to ∧ gates for each pair of input
values for ui, uj that makes the atom true. If it has three different variables, ui,
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uj , and uk, then there is an ∧ gate for each triple of values that makes the atom
true. Note that r ≤ 3 in our string case, so the fan-in to A is at most n3.

This completes the description of C. The two layers of AND gates for level
t− 1 and the matrix nodes can be coalesced into one layer, as can the two layers of
OR gates for clause and atomic nodes. This C is a

∏
t circuit plus a layer of small

ANDs right at the inputs. The size of C, counting the number of gates, is bounded
by

ni2+···+it · a(k) · c(k) · n3 · 3 + nf(k),

which in turn is bounded for all n and k by an expression of the form g(k)nα with
α independent of k. Thus C is in the correct form for WCS (t, h), and C has a
weight-f(k) satisfying assignment iff x makes φk true. Hence L ∈W [t].

For odd t, we write the matrices Mk in disjunctive normal form (DNF). Now
each matrix node is an OR gate of fan-in t(k), and sends output to an OR gate at
level t−1. Each input to a matrix node is a term node, which is an AND gate from
a(k)-many atomic nodes. The problem now is that we want each atomic node A to
be an AND gate.

If A involves one variable ui from the leading block, then let A be an AND gate
with negated input lines to all of the values in row i of the nf(k) input nodes that
make A(ui) false. Since there is “extra circuitry” enforcing that exactly one node
in row i is set equal to 1, this has the same effect as before. If A uses ui and uj ,
then let A have an input line for every pair of values in those two rows that makes
A(ui, uj) false, and use an OR of two negated input wires to the nodes for each
such pair. The case of three (or any fixed number of) occurrences of the uis in an
atom is handled similarly. The size of C and the rest of the analysis is the same as
before. Note that in the case t = 1, the “extra circuitry” is an AND of small ORs
(again, with negated input lines), and so this does not prevent the whole circuit
from belonging to WCS (1, h).

(b) In the case where we are given a second-order formula Φ = (∃R)φ, with
φ ∈

∏FO
t , φ has the form

(∀v1,1, . . . , v1,i1)(∃v2,1, . . . , v2,i2) . . . (Qtvt,1, . . . , vt,it) M,

where Qt is ‘∃’ if t is odd, Qt is ‘∀’ if t is even, and the matrix M now has additional
atoms of the form R(vj1,k1 , . . . , vjm,km), where m is the arity of R. Now the circuit
C has t, not t− 1, levels at the top (beginning with an AND gate of fan-in ni1 at
the output) for the first-order variables. Things are actually simpler here insofar
as there is no dependence of any first-order variables on the parameter k, and all
assignments are determined by the path through the first t levels. Hence each atom
other than R(· · · ) is filled in as a constant. Only the nodes for each occurrence
of R(· · · ) in M are connected to the input nodes. There are nm input nodes, one
for each possible sequence of m values a1, . . . , an to the arguments of R. Every
assignment (of weight k) to these nodes determines a unique relation R (of size k).
So for each occurrence of R(vj1,k1 , . . . , vjm,km) below a given level-t node, we read
off the values a1, . . . , an to vj1,k1 , . . . , vjm,km from the path to that level-t node, and
send a single input line to the corresponding input node. �
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5. Applications and Conclusions

For an example of how these theorems can be used to classify problems in the
W [t] hierarchy, consider the following.

Dominating Threshold Set

Instance: An undirected graph G = (V,E), and integers k, r > 0.
Parameter: k, r.
Question: Is there a set U of at most k vertices such that for all v ∈ V ,

the neighborhood of v contains at least r elements of U?

This is defined by the family {φk,r } of
∑FO

2 formulas given by

φk,r = (∃u1, u2, . . . , uk)(∀v)M,

where

M = ( ∨ distinct i1, . . . , ir ∈ { 1, . . . , k })( ∧ r
q=1)[v = uiq ∨ E(v, uiq )].

Hence Dominating Threshold Set belongs to W [2]. Since it was previously
known to be W [2]-hard under ≤fptm , this classifies it as W [2]-complete. The same
result was obtained by Downey, Fellows, and Koblitz [DF96, DFK96] by other
techniques.

For a second example, from the section of the compendium [HW96] titled
“W [2]-Hard,” consider

Dominating Clique

Instance: An undirected graph G = (V,E), and an integer k > 0.
Parameter: k.
Question: Is there a set U of at most k vertices that forms a clique in G,

such that for all v ∈ V , there is an edge from v to a node in U?
This is defined by the sequence [φk] with

φk = (∃u1, u2, . . . , uk)(∀v)M,

where
M = [ ∧ 1≤i<j≤kE(ui, uj)]

∧
[ ∨ 1≤i≤kE(v, ui)].

Since this is also a “nice” sequence of formulas, Dominating Clique belongs to
W [2], and since it is W [2]-hard, this classifies it as W [2]-complete.

Finally, the problem of “internal quantifier blocks that depend on k” provided
part of the motivation for the following work in [DF96]. For any sequence of
numbers (a1, a2, . . . , ar), where we intend each ai to be either “k” or “n”, define

(a1, a2, . . . , ar)-Weighted Satisfiability

Instance: A Boolean expression F that consists of an
AND of a1-many ORs of a2-many ANDs of . . . of ar literals.

Parameter: k.
Question: Is there an assignment a of weight exactly k that satisfies F?

In particular, (n, k, n)-WSat is the case where F is an n-ary AND of k-ary ORs,
with each of the k-many inputs to each OR being an AND of n literals. As before, if
all of the literals are positive, the formula F is monotone; if they are all negated, F
is anti-monotone. Downey and Fellows [DF96], starting with a more-general circuit
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definition of a classesW ∗[t] that extend the definition ofW [t], show that for all t ≥ t,
(n, k)t-WSat is complete for W ∗[t] under ≤fptm , so W ∗[t] = 〈(n, k)t-WSat〉fpt . By
techniques similar to those from [DF95] that we referenced in Section 3, they show
that anti-monotone (n, k, n, k)-WSat remains W ∗[2]-complete. Finally they show
that anti-monotone (n, k, n, k)-WSat is in W [2], thus proving W ∗[2] = W [2]. That
W ∗[1] = W [1] was shown in [DFT96]. They inquire whether W ∗[t] = W [t] for all
t.

We can show that anti-monotone (n, k, n)-WSat and (n, k, n, k)-WSat belong
to W [2], by applying the proof (if not the statement) of Theorem 4.2. Let us
represent an anti-monotone (n, k, n)-WSat formula F by a leveled graph as before,
with n nodes for the negated inputs at level 0, and a single node at level 3 for the
n-ary output AND gate. Intuitively let “w” range over the k-ary OR gates at level
2, “v” over the n-ary AND gates at level 1, and “u” over the inputs. Then the
formula F has a satisfying assignment of Hamming weight k if and only if

(∃u1, . . . , uk)(∀w)(“let v1, . . . , vk be the k nodes connected to w”)M,

where M is the Boolean matrix ∨ k
i=1 ∧ k

j=1[¬E(vi, uj)]. Except for the funny

“let” construct, this yields a “nice” sequence of
∑FO

2 formulas, since the (∀w) part
is unchanged. Because the v1, . . . , vk are uniquely determined once w is fixed, the
presence of the “let” does not affect the counting in the proof of Theorem 4.2, and
the conclusion that (n, k, n)-WSat belongs to W [2] follows. The case of (n, k, n, k)-
WSat is analogous to how the “extra” level of OR gates was handled in the t = 1
case of Theorem 4.1—both the leading existential block and the matrix become
larger and more complicated, but the form is the same.

For t ≥ 3, however, the similar treatment of (anti-)(monotone) (n, k)t-WSat

leads to formulas with internal quantifiers that depend on k, where this dependence
carries through on attempting to interchange quantifier blocks and reduce the for-
mula. Thus the problem of

∑FO
t formulas that are not “nice” relates to the open

problems in [DF96]. There appear to be other connections to the fixed-parameter
hierarchies over constant-depth circuit classes defined in [DFR96]. Finally, we
note that Cai, Chen, Downey, and Fellows [CCDF94] have characterized the W [t]
classes via a certain model of alternating log-time Turing machines. By well-known
connections between these machines and constant-depth circuit classes, we feel there
should be a closer connection between the W [t] classes and uniform AC0 than we
have shown, such as might follow from removal of the “niceness” restriction in our
main results. All of this points to interesting new challenges posed by the param-
eter k in parameterized complexity, ones that may also yield much new knowledge
about “standard” complexity classes.
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