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Abstract

We show that all the basic facts about the Berman-Hartmanis Isomorphism Conjecture
carry over from polynomial to quasilinear time bounds. However, we show that the connection
between unique-accepting NTMs and one-way functions, which underlies much subsequent work
on the B-H conjecture, breaks down for quasilinear time under relativizations. Hence we have
a whole new ballgame, on a tighter playing field.

1 Why Quasilinear Time?

Polynomial-time algorithms have been widely accepted as efficient algorithms in computer science.
In practice, many “polynomial-time” algorithms have small exponent: O(n), O(n2), up to O(n3)
or O(n4) at most, and usually the constant factors hidden in the O notation are reasonable.1

The concept of polynomial time is basically independent of machine model (e.g. RAM or Turing
machine), and of differences in encoding conventions for problems, such as adjacency matrix versus
edge-list for graphs. Polynomial time bounds have nice closure properties: The sum or product or
composition of two polynomials is a polynomial, so one can sequence or compose two polynomial-
time routines, or insert one into the body of a “FOR i := 1 TO n” loop or a binary search, and
obtain a new polynomial-time routine. A host of polynomial-based complexity theory papers have
been built on these properties. However, free use of these constructions can quickly bump up the
exponent past what a practitioner would call reasonable. An n100-time algorithm is “polynomial”
but not desirable. These caveats have motivated a handful of theoretical papers on time bounds
less than “polynomial.”

Of all such time bounds, the one with the best balance of importance, convenience, attractive-
ness, and attention in the literature appears to be quasilinear time, namely time qlin = n(log n)O(1).
Natural algorithmic primitives that run in qlin-time and are believed not to be in linear time in-
clude: sorting, integer multiplication and division, Fast Fourier Transforms, computing ab + c in
finite fields, and universal hashing. (For evidence of lower bounds see [FP74, MNT93].) The Hennie-
Stearns reduction from k Turing machine tapes to two runs in time O(n log n), and this extends
to show that qlin-time problems have qlin-sized circuits, as observed by Schnorr [Sch76, Sch78].
Quasilinear time bounds are closed under addition and composition, though not under product;
divide-and-conquer and binary search over polynomial-sized domains are OK, but nesting inside
“FOR i := 1 TO n” loops is verboten.
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1For many problems the exponents have been improved over the years, though often at steep costs in constant
factors. There is also the “Robertson-Seymour phenomenon” of problems whose low-exponent algorithms apparently
must have stunningly high constants; for a survey, see Johnson [Joh87].
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As with polynomial time, machines running in qlin-time can be efficiently enumerated. Some
machine-independence may be lost because the class DQL of languages accepted in qlin-time by de-
terministic TMs appears to be smaller than the analogous class DNLT for log-cost RAMs. However,
Gurevich and Shelah [GS89] showed that DNLT 2 is the same for many RAM-like models, and more
strikingly, that the analogous nondeterministic classes NQL for TMs and NNLT for RAMs are equal .
Schnorr [Sch78] showed that Cook’s Theorem can be made to run with quasilinear time overhead,
which improves the quadratic or cubic simulations of the proofs in [Coo71, GJ79, HU79]. So SAT
and 3SAT are complete for NQL under DQL many-one reductions (≤ql

m). The standard reduction
from 3SAT to Independent Set runs in qlin-time if one uses the edge-set encoding for graphs; with
similar provisions, Clique and Hamiltonian Circuit and Vertex Cover and Graph 3-Colorability are
likewise NQL-complete. Indeed, the catalogues of Dewdney [Dew81, Dew82, Dew89] show that
“most” of the familiar NP-complete problems belong to NQL and are complete under ≤ql

m , and re-
lated observations have been made by by Stearns and Hunt [SH90] and Grandjean [Gra93, Gra94].

We contribute the observation that all these problems are qlin-isomorphic, meaning that they
are images of each other under bijections from Σ∗ to Σ∗ that are computable and invertible in
qlin-time. After showing in Section 2 that all the fundamental results of Berman and Hartmanis
[BH77] carry over to quasilinear time, we formulate a “Quasilinear Time Isomorphism Conjecture.”
However, in Section 3 we show that most of the subsequent work on the original Berman-Hartmanis
conjecture does not carry over, because the connection to one-way functions breaks down under
relativizations. We construct an oracle C such that NQLC = UQLC = DQLC , and yet quasilinear
one-way functions exist (even in a strong sense)! We believe that our notion of a strong qlin-one-
way function is important in itself. Thus our answer to “why quasilinear time?” here is not merely
more chart-making for the theoretician, but a meaningful new twist on a famous problem.

2 Quasilinear Time Isomorphisms

The original theory in Berman and Hartmanis’ paper is based around the notion of a function f
being length-increasing , namely for all x, |f(x)| ≥ |x|+1. Instead we define: f is length-doubling if
for all x, |f(x)| ≥ 2|x|.

Theorem 2.1 Let f and g be one-one, qlin-time computable and invertible reductions of A to B
and B to A respectively such that f ◦ g and g ◦ f are length-doubling. Then A and B are qlin-
isomorphic.

Proof. Following [BH77], let

R1 = {(g ◦ f)k(x) : k ≥ 0, x 6∈ g(Σ∗)},
R2 = {g ◦ (f ◦ g)k(x) : k ≥ 0, x 6∈ f(Σ∗)},
S1 = {(f ◦ g)k(x) : k ≥ 0, x 6∈ f(Σ∗)},
S2 = {f ◦ (g ◦ f)k(x) : k ≥ 0, x 6∈ g(Σ∗)}.

We have Σ∗ = R1 ∪ R2 and also Σ∗ = S1 ∪ S2. It is easy to see that φ defined by
φ(z) = f(z) if z ∈ R1, g

−1(z) if z ∈ R2 is a qlin-time isomorphism between A and B, where
φ−1(z) = g(z) if z ∈ S1, f

−1(z) if z ∈ S2. Here φ and φ−1 are qlin-time computable because f ◦ g
and g ◦ f are length-doubling.

2We have added a ‘D’ to their notation ‘NLT’ for deterministic “nearly-linear time.”
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Given a language A, define Z to be a qlin-padding function for A if Z is one-one and computable
in qlin time, and for all x, Z(x) ∈ A iff x ∈ A.

Lemma 2.2 Let f be a one-one, qlin-time computable and invertible reduction from A to B. As-
sume also that either A or B has a qlin padding function Z such that for all x, |Z(y)| > |y| log |y|+1.
Then there is a function f ′ : A→ B such that f ′ is one-one, length-doubling, and both computable
and invertible in qlin time.

Proof. Following [BH77], first suppose Z is a qlin padding function for A. Given f as above, let
q(n) be a qlin time bound in which f and f−1 can be computed. Then there is a fixed r ≥ 1 such
that for all x, |Zr(x)| > q(2|x|), where Zr means composition of Z for r times. It follows that
|f ◦ Zr(x)| > 2|x|. The desired f ′ is f ◦ Zr.

Alternatively suppose Z is a qlin padding function for B. Since f is qlin-time computable and
invertible, f must be qlin-honest , meaning that there is a quasilinear function h such that for all x,
h(|f(x)|) ≥ |x|. Hence there is a quasilinear function q such that for all x, q(|f(x)|) ≥ 2|x|. Then
for some fixed r and all x, |Zr(x)| > q(|x|). The desired f ′ is Zr ◦ f .

The following condition suffices for the existence of qlin-time invertible reductions.

Lemma 2.3 Let A be a set for which two qlin-time computable functions SA(·, ·) and DA(·) exist
with the following properties: (a) (∀x)(∀y)[SA(x, y) ∈ A ⇐⇒ x ∈ A]. (b) (∀x)(∀y)[DA(SA(x, y)) =
y]. Then if f is any qlin-time reduction of some set C to A, then f ′(x) = SA(f(x), x) is one-one
and qlin-time computable and invertible and reduces C to A.

Proof. The proof is exactly the same as that of Lemma 5 in [BH77], using the fact that quasilinear
functions are closed under composition.

Theorem 2.4 Let A ≤ql
m B and B ≤ql

m A. Let A have a qlin padding function ZA satisfying Lemma
2.2 and functions SA and DA satisfying Lemma 2.3. Then B is qlin-isomorphic to A iff B has
functions SB and DB satisfying Lemma 2.3.

Proof. As in Theorem 7 of [BH77].

Lemma 2.5 3SAT has a padding function Z3SAT satisfying Lemma 2.2 and functions S3SAT and
D3SAT satisfying Lemma 2.3.

Proof. We follow Theorem 8 of [BH77]. Let A denote 3SAT . Given a string w, check if w is a
3SAT Boolean formula. If yes, let x1, ..., xr be variables appearing in w. If not, let r = 0. Let y
be a binary string and y(j) be the jth digit of the string y. Let SA(w, y) = w ∧ (xr+1 ∨ x̄r+1) ∧
z1 ∧ z2 ∧ · · · ∧ z|y|, where zj is a literal: zj = xr+1+j if y(j) = 1, zj = x̄r+1+j otherwise. Thus, w
is in 3SAT iff SA(w, y) is in 3SAT . SA(·, ·) is clearly qlin-time computable. Let DA be the function
that examines a string to determine whether it has a suffix of the proper form and if so translates
it appropriately. Clearly, DA(·) is qlin-time computable. Both SA(·, ·) and DA(·) satisfy Lemma
2.3. The desired ZA is defined by ZA(w) = SA(w, 0|w| log |w|+1), and this satisfies Lemma 2.2.

In consequence,

Theorem 2.6 An NQL-complete set B is qlin-isomorphic to 3SAT iff it has two qlin-time com-
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putable functions SB and DB satisfying Lemma 2.3.

We note that the alternative formulation of Mahaney and Young [MY85] also carries over to
quasilinear time. Say a language B has qlin-binary padding if there is a one-one function qB(·, ·),
computable and invertible in qlin-time, such that for all x, y ∈ Σ∗, x ∈ B ⇐⇒ qB(x, y) ∈ B.

Theorem 2.7 An NQL-complete set B is qlin-isomorphic to 3SAT iff B has qlin-binary padding.

Proof. Let A be 3SAT with its qlin-binary padding function qA, and take qB as above for B. Let
A ≤ql

m B via f , and let B ≤ql
m A via g. Then for all y ∈ Σ∗ define:

f1(y) =

{
qB(f(y), qA(qA(x, z), w0|w|)) if y = qA(x, qA(z, w))
qB(f(y), qA(y, y1|y|)) otherwise,

g1(y) =

{
qA(g(y), qA(qA(x, z), w0|w|)) if y = qB(x, qA(z, w))
qA(g(y), qA(y, y1|y|)) otherwise.

(This is well-defined since w, x, and z are implicit and qA and qB are one-one. The inner occurrences
of qA can be all changed to qB without affecting the result.) The only difference from the formulation
in [MY85] is our having w0|w| and y1|y| in place of w0 and y1 (or as written in [MY85], 2w and
2y+1). This makes the recursion in [MY85] bottom out in log n rather than n steps. The remainder
of the proof is as in [MY85] and is very similar to the above.

Berman and Hartmanis [BH77] give the impression in their paper of trying to obtain linear-
time versions of their results, but there seems to be no way to make the recursion bottom out in
linear time, so it is really a quasilinear-time phenomenon.

We observe, with reference also to [Sch78, Dew82, Dew89, SH90], that all of the NP-complete
languages used as evidence in [BH77] belong to NQL and are complete under qlin-time many-one
reductions, and that the “polynomial time” padding functions in [BH77] all run in qlin-time. The
same goes for the great many NP-complete problems in [GJ79] that belong to NQL. Hence they
are all qlin-isomorphic. This emboldens us to make the

Conjecture All NQL-complete languages are quasilinear time isomorphic.

The truth of this conjecture implies NQL 6= DQL, which seems to be just as hard as showing
NP 6= P. However, we actually suspect that this should be an Un-Conjecture, since the next section
gives hope for refuting it absolutely, even under all relativizations.

3 Quasilinear One-Way Functions and Oracles

We note the following provision about oracle Turing machines M adopted in the standard refer-
ences [WW86] and [BDG88] (see also [LL76, Wra78]): Whenever M enters its query state with
the query string z on its query tape, z is erased when the oracle gives its answer. As shown in
[NRS94], this makes quasilinear-time Turing reducibility transitive, and yields the theorem that
the definition of the quasilinear time hierarchy DQL, NQL,

∑ql
2 := NQLNQL, ..., by oracles coin-

cides with the definition via quasilinear length-bounded quantifiers. The hierarchy QLH has the
downward separation property (i.e.,

∑ql
k =

∏ql
k =⇒ QLH =

∑ql
k ), and the standard SAT -like∑p

k-complete languages are also complete for
∑ql
k under ≤ql

m reductions. The class UQL may be
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defined analogous to UP as the class of languages accepted by quasilinear-time NTMs N such that
on all inputs x, N(x) has at most one accepting computation. The same oracles A = QBF and B
constructed in [BGS75, HU79] to give NPA = PA and NPB 6= PB also give NQLA = DQLA and
UQLB 6= DQLB (hence NQLB 6= DQLB). Thus most of the familiar, cozy, well-developed world of
polynomial-based complexity carries over to quasilinear time, even under relativizations.

There is, however, a very meaningful exception regarding one-way functions. The “weak”
notion of polynomial one-way functions f used in structural complexity is that f is one-one,
polynomially honest (meaning that f for some polynomial p and all x, |f(x)| ≥ p−1(|x|)), and
polynomial-time computable, but f−1 is not polynomial-time computable. The basic fact is that
such functions exist iff P 6= UP. If DQL 6= UQL, then taking N to accept a language L in
UQL \DQL, the function f(x, y) := x0 if y is a string of nondeterministic moves that makes N ac-
cept x, and f(x, y) := (x, y)1 otherwise, is one-one, quasilinearly honest, qlin-computable, but not
qlin-invertible. That is to say, f is “qlin-one-way” in the above weak sense. However, the converse
fails under relativizations—it is possible to have UQL = DQL and yet there exist functions that
are “qlin-one-way” in a strong sense closer to how cryptographers use the term:

Theorem 3.1 There exists an oracle C such that NQLC = UQLC = DQLC (and also NPC = PC),
and a linearly-honest one-one function f such that f is computable in linear time with oracle C,
but every oracle machine MC computing f−1 requires at least quadratic time on “many” inputs.

The proof actually shows that the total number of bits in queries to the oracle must be
quadratic, and the “query-erase” proviso makes this a lower bound on running time. Our point here
is not to justify the query-erase proviso further, but to emphasize that the oracle gives a good expla-
nation of why the unrelativized implication “UQL = DQL =⇒ all one-one honest qlin-computable
functions are qlin-invertible” may not hold.

Proof. We begin by constructing a length-preserving function g such that no oracle allows g to be
computed in less than quadratic time. This is done in [NRS94] by taking, for each n, a Kolmogorov-
random string Gn of length n2n. Then the first n bits of Gn define g(0n), the next n bits define
g(0n−11), and so on, up to the last n bits that define g(1n). Let D be any oracle set and suppose
M is an OTM such that MD computes g. Then the following determines the string Gn:

1. A string of length 2n − 1 that defines D on all strings of length up to n−1.

2. A string of some constant size k (independent of n) that specifies the code of M and “this
discussion” (in the style of Li and Vitanyi [LV93]).

3. For each x ∈ { 0, 1 }n, the string dx giving the answers to all oracle queries of length ≥ n
made by MD(x), or the string g(x), whichever is shorter.

By the choice of Gn to be K-random (technically, so that K(Gn|n) ≥ n2n), this description must
have length at least n2n. Hence nearly all of the strings dx representing answers to long queries made
by M must have length at least n−1. (There is some slack because of the need to insert delimiters
between successive strings dx or g(x) in item 3, costing roughly 2 log n bits per delimiter.) Since
each such query takes at least n steps to write and submit, MD must take at least n2 − n steps on
all these inputs.

Now define A to be the graph of g, namely A := { (x, y) : g(x) = y }. And define the function
f for all strings z ∈ Σ∗ by: if z = xy such that |x| = |y| and (x, y) ∈ A then f(z) = x0, else
f(z) = z1. Then f is one-one and linearly honest, and f is computable in linear time with oracle
A. However, inverting f on an input of the form x0 requires computing g(x).
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Last, let C := { 〈M,x, 0n〉 : the Turing machine M accepts x in space n with oracle set A },
where queries count against the space bound. To show NQLC = DQLC , let the oracle NTM NC

run in quasilinear time q(n) and accept some language L. Define a deterministic OTM ML as
follows: ML uses one tape to cycle through all strings in { 0, 1 }q(n) representing nondeterministic
moves made by N . ML has all the tapes of N , including its query tape, and some tapes on which
it uses its oracle A to answer queries of the form 〈M, z, 0r〉 made by N , by directly simulating of
MA(z). The simulation of M onto, say, two tapes carries a linear space overhead, so each query by
N can be answered in quasilinear space. Hence MA runs in some quasilinear space bound q′, and
the mapping x 7→ 〈ML, x, 0q

′(|x|)〉 many-one reduces L to C in quasilinear time. Hence L ∈ DQLC

(with one query, in fact).
Then f is still computable in linear time relative to C. However, because the computation of

g requires quadratic time with any oracle set, f requires quadratic time to invert, on nearly all
inputs of the form x0. A last note is that the oracle C can be made recursive via judicious use of
time-bounded Kolmogorov complexity.

Now we observe how this throws a spanner into the works of papers on relativizations of the
original B-H conjecture. The result of Kurtz-Mahaney-Royer [KMR89] that the conjecture fails for
random oracle sets R turns upon an analysis of the “Bennett and Gill function”

ξR(x) = R(x1)R(x10) · · ·R(x103|x|),

where R(·) stands for the characteristic function of R. However, for random R, ξR(x) is not
computable in quasilinear (or even subquadratic) time relative to R, owing to the query-erase
proviso. The attempt to mimic the above proof by defining f(x, y) := x0 if ξR(x) = y (etc.) has
the same problem.

The theorem of Fenner-Fortnow-Kurtz [FFK92] that the conjecture holds relative to every
“sp-generic” oracle set A uses the fact that PA = UPA =⇒ every one-one length-increasing P-
computable function is P-invertible. But the quasilinear analogue of this is falsified by (a length-
increasing patch to) the above construction of f . Analogous parts of the paper by Homer and
Selman [HS92] on P-inseparable sets also fail to carry over. So we may pose a

Challenge: Can these oracle results be shown for our qlin-isomorphism conjecture?

It is also interesting to consider other quasilinear m-degrees besides the complete one for NQL,
and to explore analogues of the results of Ko-Long-Du [KLD86], Kurtz-Mahaney-Royer [KMR88],
Fenner-Kurtz-Royer [FKR89], Ganesan [Gan92], or Wang [Wan90, Wan93, Wan94].

4 Conclusions

Isomorphism problems for other reducibilities stronger than polynomial-time have attracted much
recent attention, and the results have tended to be positive. To wit, all languages that are NP-
complete under first-order reductions are first-order isomorphic [ABI93], all complete for NP un-
der one-way log-space reductions are polynomial-time isomorphic [AB93], and related results for
PSPACE and NL-complete sets are given by Agrawal [Agr94]. We have stated the problem for
a stronger reducibility that preserves most of the original landscape of [BH77], where it may be
possible to give an absolute negative answer.3

3A negative answer of a different kind is shown in [WB94]: there are NP-complete problems that are not p-
isomorphic with respect to their natural distributions on instances.
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In approaching this, we still subscribe to the original idea of Joseph and Young [JY85] that
one-way functions should be involved in a negative answer. One form of this idea is that if f is
polynomial [quasilinear] one-way then f(SAT ) is still NP-complete [NQL-complete], but to compute
an isomorphism between f(SAT ) and SAT may require the power to invert f . The oracle A of
[HH91] for which UPA = PA and the conjecture fails for NPA is also moot for time qlin. Besides,
what we’re after is not a “weak” one-way function, but something that meets our second

Challenge: Prove that there exist linearly-honest one-one functions f that are computable in
qlin-time, but require quadratic time to invert, on “many” inputs.

On the meaning of “many,” the function f−1 in Theorem 3.1 has a large “hard set,” namely strings
ending in 0, but it also has a large “easy set” of strings ending in 1. We want the easy set to be
“small” in some pertinent sense, such as for average-case complexity or cryptographic hardness.
Even with strong notions of “many” and the stricter requirement that f be a length-preserving
permutation, we see no way to construct an oracle relative to which such f do not exist. So this is an
eminently fair challenge. Homer and Wang [HW89] studied sub-polynomial time one-way functions,
and gave a combinatorial construction of some promise, but this does not work in qlin-time.

There are indeed candidates for one-way functions that take quasilinear time to compute
and are believed to require exponential time to invert on “many” inputs. Integer multiplication
vs. factoring provides one of them. We draw attention, however, to the lesser requirement that
inversion take quadratic time, because on large inputs this might be just as good a notion of
intractability. This notion of a one-way function seems natural and theoretically important in its
own right. We look forward to further research on consequences of the existence (or nonexistence)
of such functions. A more general point, supported by results in [FHOS93, Sel94, NRS94, Pap94],
is that functions have complexity-theoretic lives of their own that cannot be captured by studying
languages, and we hope the above will provoke attention to this.
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