“Resistant” Polynomials and Stronger Lower Bounds for
Depth-Three Arithmetical Formulas

Maurice J. Jansen Kenneth W.Regan*
University at Buffalo University at Buffalo

Abstract

We derive quadratic lower bounds on the x-complexity of sum-of-products-of-sums (X1I¥X)
formulas for classes of polynomials f that have too few partial derivatives for the (near-)quadratic
lower bound techniques of Shpilka and Wigderson [SW99, Shp01] (after [NW96]). Our techniques
introduce a notion of “resistance” which connotes full-degree behavior of f under any projection
to an affine space of sufficiently high dimension. They also show stronger lower bounds over the
reals than the complex numbers or over arbitrary fields. Separately, by applying a special form
of the Baur-Strassen Derivative Lemma tailored to XIIY formulas, we obtain sharper bounds on
+, x-complexity than those shown for x-complexity in [SW99], most notably for the lowest-degree
cases of the polynomials they consider.

1 Introduction

In contrast to the exponential size lower bounds on constant-depth Boolean circuits for majority and
related functions [FSS81, Yao85, Has86], Shpilka and Wigderson [SW99] observed that in arithmetic
complezity, over fields of characteristic zero, super-quadratic lower bounds are not even known for
constant-depth formulas. Indeed they are unknown for unbounded fan-in, depth 3 formulas that
are sums of products of affine linear functions, which they call XII¥ formulas. These formulas
have notable upper-bound power because they can carry out forms of Lagrange interpolation. As
they ascribed to M. Ben-Or, SIIY formulas can compute the elementary symmetric polynomials S¥
(defined as the sum of all degree-k monomials in n variables, and analogous to majority and threshold-
k Boolean functions) in size O(n?) independent of k. Thus YIIY formulas present a substantial
challenge for lower bounds, as well as being a nice small-scale model to study.

Shpilka and Wigderson defined the multiplicative size of an arithmetical (circuit or) formula ¢
to be the total fan-in to multiplication gates. We denote this by £*(¢), and write ¢(¢) for the total
fan-in to all gates, i.e. + gates as well. The best known lower bound for general arithmetical circuits
has remained for thirty years the Q(nlogn) lower bound on ¢* by the “Degree Method” of Strassen
[Str73] (see also [BS82, BCS97]). However, this comes nowhere near the exponential lower bounds
conjectured by [Val79] for the permanent and expected by many for other NP-hard arithmetical
functions. For polynomials f of total degree n©() the method is not even capable of Q(n'*t€) circuit
lower bounds, not for any ¢ > 0. Hence it is notable that [SW99] achieved lower bounds on #5(f),
where the subscript-3 refers to YIIY formulas, of Q(n?) for f = S¥ when k = O(n), n>~% for
Sk with small values of k, and Q(N?2/polylog(N)) for the determinant, with N = n2?. However,
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their methods have a similar limitation of (n?) for XIIY formulas. Shpilka [Shp01] got past this
only in some further-restricted cases, and also considers a depth-2 model consisting of an arbitrary
symmetric function of sums. This barrier provides another reason to study the XII¥ model, in order
to understand the obstacles and what might be needed to surpass them.

The techniques in [NW96, SW99, Shp01] all depend on the set of dth-order partial derivatives
of f being large. This condition fails for functions such as f(z1,...,z,) = 27 + ... + 2]}, which has
only n dth-order partials for any d. We refine the analysis to show the sufficiency of f behaving
like a degree-r polynomial on any affine subspace A of sufficiently high dimension (for this f, r =n
and any affine line suffices). Our technical condition is that for every polynomial g of total degree
at most r — 1 and every such A, there exists a d-th order partial of f — g that is non-constant on
A. This enables us to prove an absolutely sharp n? bound on #(f) for this f computed over the
real or rational numbers, and a lower bound of n2/2 over any field of characteristic zero. Note the
absence of “O,€)” notation. We prove similar tight bounds for sums of powered monomial blocks,
powers of inner-products, and functions depending on /,-norm distance from the origin, and also
replicate the bounds of [SW99, Shp01] for symmetric polynomials. Even in the last case, we give an
example where our simple existential condition may work deeper than the main question highlighted
in [Shp01] on the maximum dimension of subspaces A on which S¥ vanishes.

In the second half, we prove lower bounds on +, * complexity ¢3(f) that are significantly higher
(but still sub-quadratic) than those given for £5(f) in [SW99] when the degree r of f is small. This
is done intuitively by exploiting a closed-form application of the Baur-Strassen “Derivative Lemma”
[BS82] to XIIX formulas, showing that f and all of its n first partial derivatives can be computed
with only a constant-factor increase in ¢ and ¢* over XII¥ formulas for f.

2 Preliminaries

A YII¥-formula is an arithmetic formula consisting of four consecutive layers: a layer of inputs, next
a layer of addition gates, then a layer of multiplication gates, and finally the output sum gate. The
gates have unbounded fan-in from the previous layer (only), and individual wires may carry arbitrary
constants from the underlying field. Given a XII3-formula for a polynomial p, we can write

S
d.
p = > M, where  M; = II5% 1; and
=1
lij = cijimi+¢ijare+ ...+ CijnTn + Cijo.

Here d; is the in-degree of the ith multiplication gate (fix any order on the multiplication gates),
and ¢; ;1 is nonzero iff there is a wire from zj, to the addition gate computing [; ;. Note that [; ; is
homogeneous of degree 1, i.e. strictly linear, if ¢; jo = 0, and is affine linear otherwise.

2.1 Affine Linear Subspaces and Derivatives

An affine linear subspace A of F™ is a set of the form A=V +w={v+w:v €V}, where Vis a
linear subspace of F™, and w is a vector in F™. The dimension of A is defined to be the vector space
dimension of V.

Let X = (x1,...,2,) be an n-tuple of variables. For any affine subspace A, we can always find
a set of variables B C X, and affine linear forms [, in the variables X \ B, for each b € B, such that
A is the set of solutions of {xp =} : b € B}. This representation is not unique. The set B is called
a base of A. The size | B| always equals the co-dimension of A.



In the following, whenever we consider an affine linear subspace A, we assume we have fixed
some base B of A. Any of our numerical “progress measures” used to prove lower bounds will not
depend on the choice of a base. The following notion does depend on the choice of a base:

Definition 2.1 ([SW99]). Let A be an affine linear subspace of F", and let f € Flxi,...,x,].
Then the restriction of f to A is the polynomial obtained from f by substituting /; for the variable
xp, for each b € B, is denoted by f|,. If W is a set of polynomials, define W), = {f|, | f € W}.

For linear polynomials I = cyx1 + ... 4+ ¢cpxp + cg, We denote " = cizy + ... 4 cpx,. For a set
S of linear polynomials, S = {I* : 1 € S}. Observe that if S” is an independent set, then the set of
common zeroes of S is affine linear of dimension n — |S].

3 Resistance of polynomials

We state our new definition in the weakest and simplest form that suffices for the lower bounds,
although the functions in our applications all meet the stronger condition of Lemma 3.3 below.

Definition 3.1. A polynomial f in variables z1,xa, ...,z is (d,r, k)-resistant if for any polynomial
g(z1,22,...,2y) of degree at most r — 1, for any affine linear subspace A of co-dimension k, there
exists a dth order partial derivative of f — ¢ that is non-constant on A.

For a multiset X of size d with elements taken from {z1,x9,...,z,}, we will use the notation
% to indicate the dth-order derivative with respect to the variables in X. As our applications
all have r = deg(f), we call f simply (d, k)-resistant in this case. Then the case d = 0 says that
f itself has full degree on any affine A of co-dimension k, and in most cases corresponds to the
nonvanishing condition in [SW99]. We separate our notion from [SW99] in applications and notably
in the important case of the elementary symmetric polynomials in Section 3.2 below.

The conclusion of Definition 3.1 is not equivalent to saying that some (d 4 1)st-order partial of
f — g is non-vanishing on A, because the restriction of this partial on A need not be the same as
a first-partial of the restriction of the dth-order partial to A. Moreover, (d, k)-resistance need not
imply (d— 1, k)-resistance, even for d, k = 1: consider f(x,y) = zy and A defined by z = 0. We have
the following theorem:

Theorem 3.1 Suppose f(x1,x2,...,xy,) is (d,r, k)-resistant, then

k+1

Proof. Consider a XII¥-formula that computes f. Remove all multiplication gates that have degree
at most r — 1. Doing so we obtain a X113 formula F computing f — g, where g is some polynomial
of degree at most r — 1. Say F has s multiplication gates. Write:

S
f-g = Y M,  where M;=TJl; and
=1
lij = cijizm+cijora+ ...+ CijnTn + Cijo-

The degree of each multiplication gate in F is at least r, i.e. d; > r, for each 1 < i < s. Now select
a set S of input linear forms using the following algorithm:



S=10
for i =1to s do
repeat d 4 1 times:
if(35 € {1,2,...,d;}) such that S" U {lzhj} is a set of independent vectors then
S=S5U {li’j}

Let A be the set of common zeroes of the linear forms in S. Since S” is an independent set, A is
affine linear of co-dimension |S| < (d + 1)s.

Claim 3.2 If at a multiplication gate M; we picked strictly fewer than d + 1 linear forms, then any
linear form that was not picked is constant on A.

Proof. Each linear form [ that was not picked had (" already in the span of S, for the set S built
up so far. Hence we can write | = ¢+ 1" = ¢ + >_ges cggh, for certain scalars c,. Since each g" is
constant on A, we conclude [ is constant on A. ]

We conclude that for each multiplication gate at least one of the following holds:

1. (d+ 1) input linear forms vanish on A, or

2. fewer than (d + 1) linear form vanishes on A, and all others are constant on A.

For each multiset X of size d with elements from { z1,z9,...,x, }, the dth order partial derivative
(f —9) (1)
0X

is in the linear span of the set

d;
{Il: 1<i<s, JC{L2,....d}, |J|=d}
j=1

2
This follows from the sum and product rules for derivatives and the fact that a first order derivative
of an individual linear form /;; is a constant. Consider 1 <i < s and J C {1,2,...,d;} with |J| = d.

If item 1. holds for the multiplication gate M;, then

d;
114 (2)
j=1
2
vanishes on A, since there must be one [/;; that vanishes on A that was not selected, given that
|J| = d. If item 2 holds for M;, then (2) is constant on A.
Hence, we conclude that (1) is constant on A. Since f is (d,r, k)-resistant, we must have that
the co-dimension of A is at least k + 1. Hence (d+ 1)s > k + 1. Since each gate in F is of degree at
least r, we obtain

k+1

05(F)>r .

W 2
Since F was obtained by removing zero or more multiplication gates from a XIIY-formula computing
f, we have proven the statement of the theorem. O

To prove lower bounds on resistance, we supply the following lemma that uses the syntactic
notion of affine restriction. In certain cases this will be convenient.



Lemma 3.3 Over fields of characteristic zero, for any d < r, k > 0, and any polynomial
flx1, 29, ..., 2), if for every affine linear subspace A of co-dimension k, there exists some dth order
partial derivative of f such that

deg((a—)?) )>r—d+1
|4

then f is (d,r + 1, k)-resistant.

Proof. Assume for every affine linear subspace A of co-dimension k, there exists some dth order
partial derivative derivative of f such that

deg((?—)ﬁ) )>r—d+1.
|

Let g be an arbitrary polynomial of degree r. Then

o'f =g\ _ (0 99\ _ (o) _ (%
0X |A_ 0X 090X |A_ 0X " 0X |A'

ad
The term (‘g—)g)‘ has degree at least » — d 4 1, whereas the term (%)\ can have degree at most
A A

r —d. Hence deg((adf _g)l ) >r—d-+ 12> 1. Since over fields of characteristic zero, syntactically
A

o0X
different polynomials define different mappings, we conclude adaj; 9 must be non-constant on A. []

The main difference between Lemma 3.3 and the original Definition 3.1 appears to be the order of
quantifying the polynomial “g” of degree » — 1 out front in the former, whereas analogous consider-
ations in the lemma universally quantify it later (making a stronger condition). We have not found
a neat way to exploit this difference in any prominent application, however.

3.1 Applications

We will now prove lower bounds on the XIIX-formula size of several explicit polynomials.

3.1.1 Sum of Nth Powers Polynomial

Consider f = >, x?. For this polynomial we have XII-circuits of size O(nlogmn). This can be
shown to be optimal using Strassen’s degree method. By that method we know any circuit for f has
size Q(nlogn). The obvious LII¥X-formula has additive size n? wires in the top linear layer, and has
n multiplication gates of degree n. We prove that this is essentially optimal.

Theorem 3.4 Quer fields of characteristic zero, any XIIX-formula for f =371, x' has multiplica-
tive size at least n?/2.

Proof. We will show that f is (1,n — 1)-resistant. The result then follows from Theorem 3.1. Let
g be an arbitrary polynomial of degree deg(f) —1 =n — 1. Letting g1, ..., g, denote the first order
partial derivatives of g, we get that the i¢th partial derivative of f — g equals

naz?fl —gi(z1, ..., x).



Note that the g;’s are of total degree at most n — 2.
We claim there is no affine linear subspace of dimension greater than zero on which all 9f/dx;
are constant. Consider an arbitrary affine line, parameterized by a variable ¢:

xT; = ¢ + dit,

where ¢; and d; are constants for all ¢ € [n], and with at least one d; nonzero. Then 8(5;9) restricted

to the line is given by

n(ci + dit)nfl — hi(t),

for some univariate polynomials h;(t) of degree < n—2. Since there must exist some i such that d; is
nonzero, we know some partial derivative restricted to the affine line is parameterized by a univariate
polynomial of degree n — 1, and thus, given that the field is of characteristic zero, is not constant for
all ¢.

Ol

In case the underlying field is the real numbers R and n is even, we can improve the above result
to prove an absolutely tight n? lower bound. We start with the following lemma:

Lemma 3.5 Let f = "7 z'. Qwer the real numbers, if n is even, we have that for any affine
linear subspace A of dimension k > 1, deg(f),) = n.

Proof. Since f is symmetric we can assume without loss of generality that the following is a base
representation of A:

T = h(x,..., %)
Tt = la(21,...,28)
Tn = lp_p(x1,...,28).

Then
fla=al + g+ 0+ g

We conclude that f|, must include the term z7, since each {7 has a non-negative coefficient for the
term «7, since n is even. O

Theorem 3.6 QOuver the real numbers, for even n, any XIIX-formula for f = Y i 2} has multi-
plicative size at least n’.

Proof. Using Lemma’s 3.3 and 3.5 we conclude that over the real numbers f is (0,7 — 1)-resistant.
Hence, by Theorem 3.1 we get that ¢5(f) > deg(f)% = n®. O

Let us note that f = >_7"; z}" is an example of a polynomial that, even for large d, has relatively
few, namely only n, partial derivatives. This makes application of the partial derivatives technique
of [SW99], which we will describe and extend in the next section, problematic.



3.1.2 Blocks of Powers

Let the underlying field have characteristic zero, and suppose n = m? for some m. Consider the “m

blocks of m powers” polynomial
m m

— m
f= zi".
i=1 j=(i-1)m+1

The straightforward XII¥-formula for f, that computes each term/block using a multiplication gate
of degree n, is of multiplicative size n3/2. We will show this is tight.

Proposition 3.7 The blocks of powers polynomial f defined above is (0, m — 1)-resistant.

Proof. Consider an affine linear space of co-dimension m — 1. For any base B of A, restriction to A
consists of substitution of the m — 1 variables in B by linear forms in the remaining variables X/B.
This means there is at least one term/block B; := Hj@(i_l)m 41 27" of f whose variables are disjoint
from B. This block B; remains the same under restriction to A. Also, for every other term/block
there is at least one variable that is not assigned to. As a consequence, B; cannot be canceled against
terms resulting from restriction to A of other blocks. Hence deg(f},) = deg(f). Hence by Lemma
3.3 we have that f is (0,m — 1)-resistant. O

Corollary 3.8 For the blocks of powers polynomial f defined above, ¢5(f) > nm = n3/2.

Proof. Follows immediately from Theorem 3.1 and Proposition 3.7. O

Alternatively, one can observe that by substitution of a variable y; for each variable appearing
in the ith block one obtains from a XIIX-formula F for f a formula for f* = >, y" of the same
size as F. Theorem 3.4 generalizes to show that £5(f") > %n?’/ 2 which implies £5(f) > %n?’/ 2,

3.1.3 Polynomials depending on distance to the origin

Over the real numbers, da(7) = 27 + 23+ - - - + 22 is the square of the Euclidean distance of the point
x to the origin. Polynomials f of the form ¢(d2(x)) where g is a single-variable polynomial can be
readily seen to have high resistance. Only the leading term of ¢ matters.

For example, consider f = (27 + x5 4 --- + x2)™. On any affine line L in R", deg(f|,) = 2m.
Therefore, by Lemma 3.3, over the reals, f is (0,n — 1)-resistant. Hence by Theorem 3.1 we get that

Proposition 3.9 Over the real numbers, £3((x? + 23+ --- + 22)™) > 2mn.

Observe that by reduction this means that the “mth-power of an inner product polynomial”, defined
by g = (z1y1 + x2y2 + - - - + Tpyn)"™, must also have XII3-size at least 2mn over the reals numbers.
Results for [, norms, p # 2, are similar.

3.2 Symmetric Polynomials

The special case of (0, k)-resistance implicitly appears in [ShpO1], at least insofar as the sufficient
condition of Lemma 3.3 is used for the special case d = 0 in which no derivatives are taken. For the
elementary symmetric polynomial S) of degree r > 2 in n variables, Theorem 4.3 of [Shp01] implies
(via Lemma 3.3) that S}, is (0, — 24%)-resistant. Shpilka proves for r > 2, ¢5(S)) = Q(r(n — 7)),



which can be verified using Theorem 3.1: ¢3(S};) > (r + 1)(n — ) = Q(r(n — r)). For r = Q(n)
this yields a tight ©(n?) bound as observed in [Shp01].

The symmetric polynomials S collectively have the “telescoping” property that every dth-order
partial is (zero or) the symmetric polynomial 5’ d on an (n — d)-subset of the variables. Shpilka
[ShpO01] devolves the analysis into the question, “What is the maximum dimension of a linear subspace
of C" on which S; vanishes?” In Shpilka’s answer, divisibility properties of r come into play as is
witnessed by Theorem 5.9 of [Shp01]. To give an example case of this theorem, one can check that
S2 vanishes on the 3-dimensional linear space given by

{(z1, wz1,wn1, By, W, Wy, T3, W, W E3) : 1, 19,23 € C},
where w can be selected to be any primitive 3rd root of unity. Let
po(f) = max{k : for any linear space A of codimension k, f‘A # 0}

Shpilka proved for r > n/2, that po(S}],) = (S;) <n—r. For
S2 we see via divisibility properties of d that the Value for po can get less than the optimum value,
although the "5 lower bound suffices for obtaining the above mentioned £3(S;,) = Q(r(n —r)) lower
bound. We have some indication from computer runs using the polynomial algebra package Singular
[GPSO05] that the “unruly” behaviour seen for py because of divisibility properties for r < n/2 can
be made to go away by considering the following notion:

p1(f) = max{k : for any linear space A of codimension k, there exists i, (gf ) # 0}
Li/|a

One can still see from the fact that S], is homogeneous and using Lemma 3.3 and Theorem 3.1 that
05(S)) > %. Establishing the exact value of p;(S),), which we conjecture to be n+1 —r at
least over the rationals, seems at least to simplify obtaining the ¢3(S]) = Q(d(n — d)) lower bound.
In any case we can prove the following relation between the two notions:

Lemma 3.10 Forr > 2, pi(Sit]) > po(Sn71).

Proof. Suppose A is a linear space of codimension k = pl(S;i%) + 1 over {x1,29,...,Tn4+1} such
that all partials of S"*? nt1 vanish on 4, i.e. for every i,
Sp(@1, iy 1)), = 0. (3)

Here we denote z; to indicate that the variable z; is excluded. If k = n + 1, then p1(S/1]) = n, so
the statement of the lemma is trivial. Otherwise, some variable is not being substituted for by the
restriction “|4”. By symmetry we can assume wlog. that this is ,,+1. Hence we can write Equation
(3) as:

—1
Tnt15, 1 (1,0 Ty - ,a:n)|A +S) (T, Ty an)\A =0,
for all 4, and
Sg(l‘l,...,l‘n)‘A =0.

Adding the first n equations and subtracting the last n — r times one obtains

0 = $n+lz 1x17'--7ﬂ7"'7xn)|A

= (n—r)anSn (xla"'vl‘n)M



In other words S”~!(xq,... ;Zn)|, = 0. Simplify the substitution corresponding to A by taking

Tpy1 = 0 in the defining k£ equations. We obtain a set of k substitutions on k variables from
{x1,22,...,2,}. This defines a linear space of codimension k on which S7~! vanishes. So po(S5~1) <
k=p(S) +1. O

For another example, S§ is made to vanish at dimension 3 not by any subspace that zeroes out
3 co-ordinates but rather by A = { (u, —u,w, —w,y, —y) : u,w,y € C}. Now add a new variable ¢
in defining f = S2. The notable fact is that f I-resists the dimension-3 subspace A’ obtained by
adjoining ¢t = 0 to the equations for A, upon existentially choosing to derive by a variable other than
t, such as u. All terms of 9f/0u that include t vanish, leaving 10 terms in the variables v, w, x,y, z.
Of these, 4 pairs cancel under the equations z = —w, z = —y, but the leftover vwx + vyz part
equates to uw? + uy?, which not only doesn’t cancel but also dominates any contribution from the
lower-degree g. Grobner basis runs using Singular imply that S7 is (1,4)-resistant over C as well
as the rationals and reals, though we have not yet made this a consequence of a general resistance
theorem for all S7,.

Hence our (1, k)-resistance analysis for S is not impacted by the achieved upper bound of 3
represented by A. Admittedly the symmetric polynomials f have O(n?) upper bounds on ¢3(f), so
our distinction in this case does not directly help surmount the quadratic barrier. But it does show
promise of making progress in our algebraic understanding of polynomials in general.

4 Bounds for +,*-Complexity

The partial derivatives technique of [SW99] ignores the wires of the formula present in the first layer.
In the following we show how to account for them. As a result we get a sharpening of several lower
bounds, though not on £ but on total formula size. We refine the [SW99] result for *-complexity:

Theorem 4.1 ([SW99]) Let f € Flx1,...,xy,]. Suppose for integers d, D, k it holds that for every
affine subspace A of co-dimension , dim(94(f)|,) > D. Then

Ii2
() 2 min’ iz )
d

—to our result for +,*-complexity:

Theorem 4.2 (new) Let f € F[x1,...,x,]. Suppose for integers d, D,k it holds that for every

affine subspace A of co-dimension K, Y i~y dim[@d(g—i)u] > D. Then
K2 D
14 > mi
1) 2 min( )

Comparing the two theorems, we see that the result by Shpilka and Wigderson provides a lower
bound on multiplicative complexity, while our result gives a lower bound on the total number of
wires. We do get an extra “factor n” of additions with the > 7 ; dim[@d(g—ih .} > D condition
compared to just dim(9y(f),) > D. Potentially this can lead to improved lower bounds on the total
size of the formula, better than one would be able to infer from the lower bound on multiplicative
complexity of Theorem 4.1 alone. We shall see that we can indeed get such kinds of improvements
in the applications section below.



We employ the following suite of concepts and lemmas from [SW99] directly.

Definition 4.1 ([SW99]). For f € Flx1,...,zy], let 04(f) be the set of all dth order formal partial
derivatives of f w.r.t. variables from {x1,...,z,}.

For a set of polynomials A = {f1,..., fi}, let span(A) = {3t_, ¢;ifi | ¢; € F}, i.e., span(A) is the
linear span of A. We write dim[A] as shorthand for dim[span(A)]. We have the following elementary
sub-additivity property for the measure dim[dg(f)].

Proposition 4.3 ([SW99]) For fi, fa € Flz1,...,zy] and constants c¢1,co € F,

dim[0g(c1 f1 + caf2)] < dim[0y(f1)] + dim[Dy( f2)]-

One also needs to bound the growth of dim[Jy(f)] in case of multiplication. For multiplication
of affine linear forms, we have the following two bounds.

Proposition 4.4 ([SW99]) Let M =II",l;, where each l; is affine linear. Then
dim[9(M)] < (Z‘)

Proposition 4.5 ([SW99]) Let M be a product gate with dim[M"] = m, then for any d,

. m+d
d1m[8d(M)]§< d )

Note that for polynomials fi,...,fs, span(fi,...,fs), = span(fi,...,fs,), and that
dim[WW|,] < dim[W]. Now we modify Proposition 4.3 a little to get a result implicitly used by
Shpilka and Wigderson in their arguments.

Proposition 4.6 (cf. [SW99]) For f1,fo € Flxi,...,x,] and constants c1,co € F, and affine
linear subspace A, we have that dim[04(c1f1 + caf2)|,] < dim[04(f1)|,] + dim[0a(f2),]-

Finally, we require:

Lemma 4.7 ([SW99]) For every n,k,d, and every affine subspace A of co-dimension k, we have
that

dim{A4(52),] > ( - )

Now we can prove our sideways improvement of Shpilka and Wigderson’s main Theorem 3.1
[SW99].

Proof of Theorem 4.2. Consider a minimum-size 1I3-formula for f with multiplication gates
M, ..., Ms;. We have that

S
f = Z M;, where for 1 <1 <s, M; = H;'lizlli,j and
i=1

lij = cijim+cijara~+ ...+ CijnTn + Cijo,

10



for certain constants c; ;, € F. Computing the partial derivative of f w.r.t. variable z; we get

&vk Z Z Cij, k (4)

1=17=1
Let
S = {i : dim[M}"] > k}.

If [S| > F5, then (3(f) > #22. Suppose |S| < 5. If S = 0, then let A be an arbitrary affine

subspace of co-dimension . Otherwise, construct an affine space A as follows. Since |S|(d + 2) < &,
and since for each j € S, dim[M] "] > k, it is possible to pick d + 2 input linear forms Litsoo oy ljdee
of each multiplication gate M; with j € S, such that {lj Lrees l;{d+2|j € S}isaset of |S|(d+2) <k
independent homogeneous hnear forms. Define

A={x: l;j(x)=0, forany 1 € S, j € [d+ 2]}.

We have that the co-dimension of A is at most k. W.l.o.g. assume the co-dimension of A equals .
For each i € S, d+2 linear forms of M; vanish on A. This implies that

M;
dlm[ad(l )|A] = 0.
i\
for any ¢ € S. For any i ¢ S, by Proposition 4.5,

dlm[ad(éw )4l < </‘i ;— d).

7]
Let Dy, = dlm[(?d( —)|4]. By Proposition 4.6 and equation (4),

Dk<z Z dlmad |A]

¢S
Cq ],k#o

Hence there must be at least — +d) terms on the r.h.s., i.e. there are at least that many wires

from x; to gates in the first layer. Hence in total the number of wires to the first layer is at least
n Di

_D
i=1 {730y > [Rgay- H

We can apply a similar idea to adapt the other main theorem from [SW99]:

Theorem 4.8 ([SW99]) Let f € Flx1,...,xy,]. Suppose for integers d, D, k it holds that for every
affine subspace A of co-dimension r, dim(94(f|,)) > D. Then for every m > 2,

D
™

Theorem 4.9 (new) Let f € Flxy,...,xz,]. Suppose for integers d, D,k with d > 1, it holds that
for every affine subspace A of co-dimension k, > 1 4 dim[ﬁd(%l )] > D. Then for every m > 2,
1A

03(f) = min(rkm,

£aF) 2 min( g, s
d

).
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Proof. Consider a minimum size XII3-formula for f with multiplication gates M, ..., Ms. We have
that

S
f = ZM“ where for 1 <i <s, M; = s li with

7=1
lij = cijimi+¢ij2ze+ ...+ Cijn%n + Cijo-

K

If there are § multiplication gates M; of degree greater than m then already ¢3(f) > %nm. So
suppose the number ¢ of multiplication gates of degree greater than m is less than 5. Wlog. assume

these gates are given by

My, M, ..., M.
For ¢ = 1,2,...,t, pick two input linear forms l;1,l;2 of M;, such that for the total collection
lig,l2,..., 01,12 we have that the strictly linear parts l’il,li‘g, . ,li’fl,l?’2 are independent. It

might be that at some ¢ < ¢, we cannot find any [;; or /;2 with l;fl or 122 independent from the
previously collected linear forms. In this case, we just pick /; 1 if that one is still independent, and
skip to the next index ¢. If we can’t even find /;; for which /; 1 is independent, we pick no linear
form and proceed to the next 7.

Let A be the zero set of all the collected input linear forms. Then A has co-dimension at most
k. Wlog. we may assume that the co-dimension of A equals k. Observe that

ZZ Jk (5)

856]9‘14 i=17=1

Now for a multiplication gate M; of degree > m, there are three cases: either we picked two input
linear forms of M;, or we picked just one, or none at all. In the first case,

in the r.h.s. of (5), for all 4,j. In the second and third case, we know that for every input [ of M;

that was not picked, {” is a linear combination of l?’s for [;’s that were picked. Hence

T

l|hA = Zci(l?‘A) = constant.
i=1

As a consequence,
we obtain that 8d(

) = constant in the r.h.s. of (5), for all 4, j. Since d > 1, in either three cases,

) = 0. For multiplication gates M; of degree at most m, Proposition 4.4 gives

\A
us that dlm[ad(( )‘A)] <M ). Let Dy = dlm[ad(ax Tl )]. By Proposition 4.3, we see there are at

least Dy./(™; h terms in (5). This implies that there are at least that many wires fanning out of x.
Adding up for all variables, we conclude that ¢3(f) > D/ (mgl). O

4.1 Some Applications

2d
In [SW99] it was proved that for d < logn, £5(52?) = Q(”dTH). Note for d = 2, this lower bound
is only Q(n). We can apply Theorem 4.2 to prove the following stronger lower bound on the total

formula size of S’Zd. In particular for d = 2, we get an Q(n%) bound.

12



2d

Theorem 4.10 For 1 <d < logn, 53(57%‘1) = Q(ndf )-

Proof. For any affine subspace A of co-dimension k and d > 2 we have that

2d

}jmmailm;)A>dmm%wmez<”;”)

The latter inequality follows from Lemma 4.7. Applying Theorem 4.2 we get that

K2 (") 2 (") k+d
£5(S57) = min(—=—, 4 -) = min( )- (6)
d+1 (;‘_11) d+1’ (% ) d
Set k = % 47, Then we have that
n—eK d
(d)ﬁ+d>(n—l€dl€+d> 8/9nd dﬂ+d:4dnﬁﬁ+d>4_nd2—d1>nd2_dl
(sz) d T k+d d — 2/9n @+ d d — 9d B
ndr 20 Rt
Hence (2) is at least min(g7; TCESVE AT ) = Q). O

Corollary 4.11 /3(5%) = Q(n*/3).

Shpilka and Wigderson defined the “product-of-inner-products” polynomial over 2d variable sets
of size n (superscript indicate different variables, each variable has degree one) by

PIP} = H Z %y

i=175=1
Theorem 4.12 For any constant d > 0, {3(PIPY) = Q(n%)

Proof. Let f = PIPZ. Essentially we have that

of

i
8xj

=y PIP,

where the PI Pg_l must be chosen on the appropriate variable set. Let A be an arbitrary affine
linear subspace of co-dimension k. Then

=1

d n d n

S5 o (0] = 33 dmlos(45PIRE )
j=1 =17

> (dn — k) dim[04_ 1(PIPd an)

The last inequality follows because at least dn — k of the y-variables are not assigned to with the
restriction to A. From Lemma 4.9 in [SW99] one gets

dim[0y_1 (PIPZ 7Y 4) > n?~t — 224~ 15pd=2,

13



Using Theorem 4.9 we get

W2 (dn — k) (nd—1 — 92d—1,.,d—2
63(]0) > min(?? (d )( (5—1)2 )
d—1

).

d

Taking x = nd+1, one gets for constant d that

3(PIPY) = Q(niT),

For comparison, in [SW99] one gets ¢5(PIPY) = Q(nd%).

5 Conclusion—Possible Further Tools

We have taken some further steps after [SW99], obtaining absolutely tight (rather than asymp-
totically so) multiplicative size lower bounds for some natural functions, and obtaining somewhat
improved bounds on +, *-size for low-degree symmetric and product-of-inner-product polynomials.
However, these may if anything enhance the feeling from [SW99, Shp01] that the concepts being
employed may go no further than quadratic for lower bounds. One cannot after all say that a func-
tion f(x1,...,x,) is non-vanishing on an affine-linear space of co-dimension more than n. The quest
then is for a mathematical invariant that scales beyond linear with the number of degree-d-or-higher
multiplication gates in the formula.

Notably absent in current lower bound techniques for XII3-formulas are random restriction
type arguments, whereas many of the results for Boolean constant depth circuits of [Ajt83, FSS81,
Yao85, Has89] proceed using random restrictions. Note that Raz managed to use random restrictions
in conjunction with a partial derivatives based technique in his work on multilinear arithmetical
formulas [Raz04a, Raz04b]. We speculate that the weaker existential requirement in our resistance
notion may help it adapt to random-restriction scenarios, although plenitude of kth-partials may
still be needed to ensure the function does not collapse too far. In any event, the search for stronger
mathematical techniques to prove exponential lower bounds, even in the self-contained X1IY formula
case, continues.

Acknowledgments We thank Avi Wigderson for comments on a very early version of this work,
and referees of a later version for very helpful criticism.

References

[Ajt83] M. Ajtai. X1 formulae on finite structures. Annals of Pure and Applied Logic, 24:1-48,
1983.

[BCS97] P. Biirgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory. Springer
Verlag, 1997.

[BS82] W. Baur and V. Strassen. The complexity of partial derivatives. Theor. Comp. Sci.,
92:317-330, 1982.

[FSS81] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. In
Proc. 22nd Annual IEEE Symposium on Foundations of Computer Science, pages 260-270,
1981.

14



[GPS05]

[HAs86]

[Has89)

[NWO6]

[Raz04a]

[Raz04b]

[ShpO1]

[Str73]
[SW99]

[Val79]

[Yao85]

G.-M. Greuel, G. Pfister, and H. Schonemann. SINGULAR 3.0. A Computer Algebra System
for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern,
2005. http://www.singular.uni-k1.de.

J. Hastad. Almost optimal lower bounds for small-depth circuits. In Proc. 18th Annual
ACM Symposium on the Theory of Computing, pages 6-20, 1986.

J. Hastad. Almost optimal lower bounds for small-depth circuits. In S. Micali, editor,
Randomness and Computation, volume 5 of Advances in Computing Research, pages 143—
170. JAI Press, Greenwich, CT, USA, 1989.

N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complezity, 6:217-234, 1996.

R. Raz. Multilinear formulas for permanent and determinant are of super-polynomial size.
In Proc. 86th Annual ACM Symposium on the Theory of Computing, 2004. to appear; also
ECCC TR03-067.

R. Raz. Multilinear NC!' # multilinear NC?. In Proc. 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 344-351, 2004.

A. Shpilka. Affine projections of symmetric polynomials. In Proc. 16th Annual IEEE
Conference on Computational Complezity, pages 160-171, 2001.

V. Strassen. Berechnung und Programm II. Acta Informatica, 2:64-79, 1973.

A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of characteristic
zero. Technical Report 23, ECCC, 1999.

L. Valiant. The complexity of computing the permanent. Theor. Comp. Sci., 8:189-201,
1979.

A. Yao. Separating the polynomial-time hierarchy by oracles. In Proc. 26th Annual IEEE
Symposium on Foundations of Computer Science, pages 1-10, 1985.

15



