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ABSTRACT. For parametersn, l andr, we consider the problem of maximizing the
determinant of anl × l Vandermonde matrix V, with nodes selected from the setΩn of
nth roots of unity, but avoiding a forbidden subsetR of sizer. An asymptotically tight
lower bound is given for the expected value ofln |detV | in case the nodes are selected
uniformly at random fromΩn/R. We apply our result to give a discrete uncertainty
relation for so-calledǫ, l-index-limited vectors.

1. Introduction

The minors of then × n discrete Fourier matrixDFTn = (e2πist/n)0≤s,t≤n−1

have been studied more traditionally in the literature under existentialanduniversal
modes of quantification. To give an example of the latter, there is the classic result
that for primep, any minor ofDFTp is non-singular. The first proof of this fact
is attributed to Chebotarëv, who proved it in 1926 (see [8],and also see [9] for an
elementary proof). Recently added to this, Candès, Romberg and Tao [1] engaged
in a study ofrandomlyquantified Fourier minors. They prove that for any set
of rows R of size O( n

log n), if one selects a setS of columns by independently
choosing for each column to be inS with some fixed probabilityτ , then with high
probability for the minorM of DFTn with rows R and columnsS , denoted by
M = DFTn

R,S , the determinantdet(MM∗) is “not too small.”
We are interested in∀∃-quantified Fourier minors of the following kind. Sup-

pose an adversary specifiedl rowsR andr columnsC of theDFTn matrix. Does

Math Subject Classifications.4202, 15A15, 15A52.
Keywords and Phrases.Discrete Fourier Transform, Random Vandermonde Matrix, Determi-
nant, Uncertainty Principle.
Note.Part of this work by both authors was supported by NSF Grant CCR-9821040.
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there exist a minor ofDFTn, that has exactly as its rows the setR and has all its
columnsdisjoint from C, with determinant of magnitude larger than some given
valueB? That is, for given parametersl, r, n,B, when does it hold thatfor all
sets ofl many required rowsR andr many excluded columnsC, there existsa
set ofl many columnsD disjoint fromC, such that the minorM = DFTn

R,D has
|det(M)| > B ? Second, what can be said about|det(DFTn

R,D)| if D is selected
uniformly at random among all such allowed sets ? Let us remark that the the
requirement to avoidC seems to upset attempts to extend the main proof idea in
[1], which relies on thecancellation propertyof the roots of unity. We are espe-
cially interested in the case where the set of rowsR selected by the adversary is
contiguous.

Toward these ends, we give some motivating open problems. For a setS of
complex numbers,|S| = l < ∞, define itschordal productCP(S) by

CP(S) =
∏

p 6=q∈S

|p − q|1/2 = |det(VS)|,

whereVS is an l × l Vandermonde matrix whose second row comprisesS. We
considerS on the unit circle, and further restrictS to be a subset ofΩn = {e2πik/n :
0 ≤ k ≤ n − 1}. Let T stand for subsets of on the unit circleS1, respectively
subsets ofΩn, that are “off-limits”, in the sense that we requireS ∩ T = ∅. Given
l ≥ 1 andT , define

f(T, l) = sup{CP(S) : |S| = l, S ∩ T = ∅}.

Alternately given integersl, n ≥ 1 andT ⊆ Ωn, define

f(T, n, l) = max{CP(S) : S ⊆ Ωn, |S| = l, S ∩ T = ∅}.

Finally givenα > 0 and an integerr, define

g(α, l) = inf{f(T, l) : µ(T ) = α},
g(r, n, l) = min{f(T, n, l) : T ⊆ Ωn, |T | = r}.

Hereµ is Lebesgue measure onS1 except that we takeµ(S1) = 1 instead of2π.

Proposition 1.

(a) If T is closed, then for anyl, limn→∞ f(T, n, l) is well-defined and equals
f(T, l).

(b) For every fixedl, the functiong(α, l) is continuous inα.

(c) For any α > 0 and ℓ, taking r = ⌊nα⌋, limn→∞ g(r, n, l) exists and
equalsg(α, l).

The proof, given in Appendix A, exploits the uniform continuity of CP(S) over
the compact setS1.
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Problem 1. Given l, n, r and T ⊆ Ωn of sizer, is there an easily described
strategy to computeS of sizel achieving the maximum inf(T, n, l)? Same question
for f(T, l) whenT is open.

Related to this question, what setsT in the above provide the worst-case scenario?
That is:

Problem 2. Givenl, n, r, which subsetsT of Ωn, |T | = r, minimizef(T, n, l),
and what is the minimax value? Same question for (closed) sets T of measureα
achieving or approaching the infimum that definesg(α, l), and what is its value?

We believe that in both cases a minimizingT is an interval of sizer in Ωn,
respectively of measureα in S1. Intuitively, an adversary makingT one contiguous
block bunches the allowable domain ofS most closely together around the circle,
preventing one from profiting by choosing points “inside/between” T that make
long chords to other regions. There are two caveats in particular against believing
this is obvious, however.

First, Donoho and Stark [2] considered the related questionof which setsR
andC maximize||DFTn

R,C ||2, and stated:

Conjecture 1 [2]. For interval R and setC with |C| · |R| = n, ||DFTn
R,C ||2 is

maximized whenC is also an interval.

This conjecture is still open, indicating that strategies that similarly appeal strongly
to intuition can be surprisingly hard to verify.

Second, Vandermonde matrices can be numerically volatile.A Vandermonde
matrix with nodes selected to be real numbers can be highly ill-conditioned [4].
For Vandermonde matrices with nodes on the unit circle the situation can be nicer,
provided the nodes are spread out relatively evenly [3]. However, in our situation
the setT can prevent this—intuitively most strongly whenT is an interval.

The relationship between the continuous and discrete casesshown in Propo-
sition 1 further motivates our attention to these problems.In this paper, we evaluate
the efficacy of approaching Problem 1 with a randomized strategy. Our main result
is to give an explicit lower bound for the expected value ofCP(S), if we selectS
uniformly at random. Consideringl andr to be functions ofn, this result is shown
to be asymptotically tight for a wide range of parameter settings. From this we
conclude that essentially the worst the adversary can do to frustrate the uniform
random selection strategy, is to pickT to be an interval inΩn.

The effects we observe are drastic. We haveln g(0, l) = ln |det(DFTl)| =
l
2 ln l, as witnessed byS = the l-th roots of unity. For a randomly selected subset
S of size l when no points are disallowed, we will observe thatE[ln CP(S)] =
Ω(l2/n). However, for a player selecting randomly from among allowed nth-roots,
we observe expected valueE[ln CP(S)] = −Θ(l2), in case the adversary disallows
an interval of constant measureǫ, for any smallǫ > 0.

The rest of this paper is organized as follows. Section 2 contains some mathe-
matical prerequisites. In Section 3, we take a preliminary look at the∀∃-quantified



4 Maurice J. Jansen and Kenneth W. Regan

optimization problem about minors of theDFTn matrix we mentioned above. In
Section 4, we present and evaluate our main result about random Vandermonde
matrices. Finally in Section 5, we give an application of themain theorem. We
introduce so-calledǫ, l-index-limited vectors, which combines Donoho and Stark’s
[2] notion of ǫ-concentration of a vector with some measure of a vector being lim-
ited to an interval or band. For our notion we give an uncertainty relation that is
applicable in cases where the Donoho-Stark discrete uncertainty principle trivial-
izes.

2. Prerequisites

Theorem 1 (Weyl Perturbation). Let A and E be Hermitian matrices.
Then

max
j

|λj(A) − λj(A + E)| ≤ ||E||2.

Theorem 2 (Courant-Fisher). LetA be anm×n with m ≥ n, matrix then
for anyi = 1, 2, . . . , n, theith singular valueσi of A is given by

σi(A) = max
S⊆Cn

dim(S)=i

min
x∈S/{0}

||Ax||2
||x||2

,

whereS ranges over all linear subspaces of dimensioni.

Theorem 3 (Binet-Cauchy). Let A be anm × n matrix and letB be an
n × m matrix withn ≥ m. Then

det(AB) =
∑

I⊆{1,2,...,n}

|I|=m

det(AI) det(BI),

whereAI is them × m minor ofA consisting of all columns inI, andBI is the
m × m minor ofB consisting of all rows inI.

3. Fourier Matrix Games

Definition 1. We define the Fourier matrix gameDFT-Game(n, l, k,B) to be
the following single-round game against an adversary agent:

Adversary: selectsl distinct rowsr1, r2, . . . , rl andk distinct columns
c1, c2, . . . , ck in {0, 1, . . . , (n − 1)}.

Player: selects anl× l minorM of then×n Fourier matrixDFTn with
rowsr1, r2, . . . , rl and columns disjoint fromc1, c2, . . . , ck.

Result: The player wins if and only if|det(M)| > B.
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We defineDFT-Game∗(n, l, k,B) the same game as above, but with the mod-
ification that the adversary can only choose sets of rowsR that are contiguous in
the cyclic sense:R = {b + i modn : 0 ≤ i ≤ l − 1} for somebase pointb. For
this game, it is not hard to see, we can assume without loss of generality that the
adversary’s set of rows is fixed to be the firstl rows of theDFTn matrix.

Proposition 2. If n = l · k, then the adversary has a winning strategy for
DFT-Game(n, l, k, 0).

Proof. A winning strategy for the adversary is to take rowsri = ki, for i =
0, 1, . . . , (l − 1), and columnsci = li, for i = 0, 1, . . . , (k − 1). Let A be the
l × n minor of DFTn with rows r0, r1, . . . rl−1. Therth columnAr of A equals
(1, αr , α2r, . . . , α(l−1)r)T , whereα = e

2πi
n

k = e
2πi

l . Hence for anyr, Ar =
Ar+l modn. With columns0, l, 2l, . . . , (k − 1)l disallowed, there are therefore
only l−1 distinct columns in the remaining set, so anyl× l minor ofA that avoids
the disallowed columns will be singular.

So if n = l · k, there is not much honor to achieve for the player. Fork · l
belown, Theorem 1 and 3 guarantee the existence of a minor with an at least “fairly
reasonable” lower bound on the magnitude of its determinant.

Proposition 3. The player has a winning strategy for DFT-Game(n, l, k,B),

providedk · l < n andB < (n − kl)l/2
(n−k

l

)−1/2
.

Proof. Suppose the adversary choosesl rows R andk columnsC. Let N =
{0, 1, . . . , n−1}. LetA = DFTR,N/C andB = DFTR,C . ThenAA∗ = nI−BB∗.
Both AA∗ andBB∗ are Hermitian, so by Theorem 1, provided||BB∗||2 ≤ n,
for eachi, the ith eigenvalueλi(AA∗) ≥ n − ||BB∗||2. We can writeBB∗ =
∑

i∈C cic
∗
i , whereci is the ith column ofDFTR,N . Since||cic

∗
i ||2 = ||ci||22 = l,

then by subadditivity of theℓ2-norm, ||BB∗||2 ≤ kl. Hencedet(AA∗) ≥ (n −
kl)l. By Theorem 3,det(AA∗) =

∑

|S|=l |det(AR,S)|2. Hence we conclude there

existsS of sizel such that|det DFTR,S| ≥ (n − kl)l/2
(n−k

l

)−1/2
.

Our main interest in this paper however, will be the contiguous variant of the
Fourier matrix game, in particular for cases wherek · l ≥ n. In the following
section we evaluate a randomized player strategy for this game.

4. Random Vandermonde Matrices

For complex numbersz0, z1, . . . , zl−1, denote byV = V (z0, z1, . . . , zl−1) the
l × l Vandermonde matrix defined byVij = zj

i for 0 ≤ i, j ≤ l − 1. We have the
following theorem:
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Theorem 4 (Main Result). For any n ≥ 7 and l, r with 0 < r < n
π

and l + r ≤ n, Let R be a subset ofΩn of sizer. Consider the process of pick-
ing {z0, . . . , zl−1} ⊂ Ωn\R uniformly at random among all subsets ofΩn\R of
sizel. Then for the Vandermonde matrixV = V (z0, z1, . . . , zl−1) we have that
E[ln |det V |] is at least

( l
2

)

(n − r)(n − r − 1)

(

(n − 2r)(
2n

π
sin

π

n
− ln 2) − r2 ln

n

rπ
− r2 − r4π2

36n2

)

.

Let us stress that in the above random selection of a subset ofΩn\R we do
not assume any particular order amongz0, z1, . . . , zl−1. In other words, a subset
is selected uniformly at random, and uniformly at random we associate variable
namesz0, z1, . . . , zl−1 to its elements. This allows us to treat thezi variables sym-
metrically in the proof. For the proof of Theorem 4 we need an estimate involving
the “ln-of-chord-length” functionf(t) = ln |1 − eit|, for t ∈ R \ {k2π : k ∈ Z}.
Straightforward geometry gives us:

f(t) =
1

2
ln(2 − 2 cos t),

which can be rewritten using the relationsin2 α
2 = 1−cos α

2 as

f(t) = ln 2 + ln | sin t

2
|.

We will also consider a discretized version of this function, which per abuse of
notation will also be denoted byf ; which version “f ” refers to will be clear from
the context.

Lemma 1. Letn ≥ 7, and letω = e2πi/n. Define the discrete functionf(d) =
ln |1 − ωd|, for d = 1, 2, . . . , n − 1. Then

(a)
∑n−1

d=1 f(d) ≥ 2n
π sin π

n − ln 2, and

(b)
∑n−1

d=1 f(d) ≤ 2 ln n
2π + 2 + ln 2 + 2π2

9n2 .

A proof of the above lemma can be found in Appendix B. To a subset R ⊂
N = {0, 1, . . . , n − 1} we associate its characteristic functionχ : N → {0, 1},
which is defined byχ(i) = 1 iff i ∈ R. Given a characteristic functionχ, we
define the functioncχ : N → N by

cχ(d) =

n−1
∑

i=0

χ(i)χ(i + d mod n).

We identify subsets ofΩn = {e2πik/n : 0 ≤ k ≤ n − 1} andN in the obvious
manner.
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Lemma 2. For anyn, l, andr with l + r ≤ n, LetR be an arbitrary subset of
Ωn of sizer. Consider the process of picking{z0, . . . , zl−1} ⊂ Ωn\R uniformly
at random among all subsets ofΩn\R of sizel. Then for the Vandermonde matrix
V = V (z0, z1, . . . , zl−1) we have

E[ln |det V |] =

( l
2

)

(n − r)(n − r − 1)

(

(n − 2r)

n−1
∑

d=1

f(d) +

n−1
∑

d=1

f(d)cχ(d)

)

,

whereχ is the characteristic function ofR.

Proof.

E[ln |det V |] = E[ln
∏

i<j

|zi − zj |]

= E[
∑

i<j

ln |zi − zj |]

=
∑

i<j

E[ln |zi − zj |] (by linearity of E)

=

(

l

2

)

E[ln |z0 − z1|]. (by symmetry)

Let η = E[ln |z0 − z1|]. We can write the following expression forη:

η =
∑

p∈Ωn\R

∑

q∈Ωn\R,q 6=p

Pr[z0 = p andz1 = q] ln |p − q|,

wherePr[(z0 = p andz1 = q] = 1
(n−r)(n−r−1) . Let χ correspond to the character-

istic function ofΩn\R. We have that

(n − r)(n − r − 1) · η =
∑

p∈Ωn\R

∑

q∈Ωn\R,q 6=p

ln |p − q|

=

n−1
∑

i=0

n−1
∑

j=0,j 6=i

χ(i)χ(j) ln |ωi − ωj|

=

n−1
∑

i=0

n−1
∑

d=1

χ(i)χ(i + d mod n) ln |ωi − ωi+d|

=

n−1
∑

i=0

n−1
∑

d=1

χ(i)χ(i + d mod n) ln |1 − ωd|

=

n−1
∑

i=0

n−1
∑

d=1

χ(i)χ(i + d mod n)f(d)

=

n−1
∑

d=1

f(d)

n−1
∑

i=0

χ(i)χ(i + d mod n).
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The lemma now follows by rewritingχ(i) = 1 − χ(i), whereχ is the char-
acteristic function ofR, and observing that

n−1
∑

i=0

χ(i)χ(i + d mod n) =
n−1
∑

i=0

(1 − χ(i))(1 − χ(i + d mod n))

= (n − 2r) +
n−1
∑

i=0

χ(i)χ)(i + d mod n).

We now prove Theorem 4.

Proof. From Lemma 2 we have that

E[ln |det V |] =

(

l
2

)

(n − r)(n − r − 1)

(

(n − 2r)
n−1
∑

d=1

f(d) +
n−1
∑

d=1

f(d)cχ(d)

)

,

whereχ is the characteristic function ofR. We have that
n−1
∑

d=1

cχ(d) =

n−1
∑

d=1

n−1
∑

i=0

χ(i)χ(i + d mod n)

=
n−1
∑

i=0

χ(i)
n−1
∑

d=1

χ(i + d mod n)

= r2 − r.

We know that
∑n−1

d=1 f(d)cχ(d) is smallest if the total massr2−r is placed at much
as possible at places wheref(d) is the smallest. Note that for anyd, 0 ≤ cχ(d) ≤ r.
Defineǫ(t) = ln |t| − f(t). By the concavity off , in caser is odd,

n−1
∑

d=1

f(d)cχ(d) ≥
(r−1)/2
∑

d=1

f(d)r +
n−1
∑

d=n− r−1
2

f(d)r

= 2r

(r−1)/2
∑

d=1

f(d)

≥ 2r
n

2π

∫ r−1
2

2π
n

0
f(t)dt

=
rn

π

∫
(r−1)π

n

0
ln t − ǫ(t)dt

≥ rn

π
[t ln t − t − t3

36
]
(r−1)π

n
0 {by Lemma B.1}

= r(r − 1) ln
(r − 1)π

n
− (r − 1)r − 1

36

r(r − 1)3π2

n2

≥ r2 ln
rπ

n
− r2 − r4π2

36n2
,
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In caser is even, the same lower bound can be obtain similarly. Together
with Lemma 1 this yields the theorem.

Corollary 1. For anyn ≥ 7 and anyl, r with 0 < r < n
π and l + r ≤ n, the

player has a winning strategy for DFT-Game∗(n, l, r, eC ), providedC is less than

( l
2

)

(n − r)(n − r − 1)

(

(n − 2r)(
2n

π
sin

π

n
− ln 2) − r2 ln

n

rπ
− r2 − r4π2

36n2

)

.

Proof. Recalling our remark after Definition 1, we can assume with loss of
generality that the adversary chooses rowsR = {0, 1, . . . , l − 1}. Any l × l minor
of DFTn with rows R is a Vandermonde matrix. LetC be the set of columns
the adversary chooses. Theorem 4 gives a lower bound onE[ln |det(M)|] for
randomly selectedl × l minor M of DFTn with rows R avoiding columnsC.
There must exist at least one minorM ′ that hasln |det(M ′)| ≥ E[ln |det(M)|].
So the player chooses such a minor, for which we then have the lower bound on
the absolute value of its determinant as stated in the corollary.

4.1 Sharpness of the Result

We are interested in the asymptotic growth as a function ofn of the lower bound
given in Theorem 4, where we consider the variablesr and l to be certain func-
tions ofn, which if we want to be explicit about this will be denoted byl(n) and
r(n). For certain growth rates ofl(n) andr(n), Problem 1 is trivial. For example,
assumingl(n) dividesn for simplicity, for r(n) < n

l(n) , there always exist some
equally spaced selection ofl(n) points that is not blocked. This then yields an
optimal magnitude for the determinant ofll/2. At the end of this section we will
give an example that compares our random strategy with this optimal value. First
however, we study the optimality of our analysis for cases where this triviality is
avoided. For this, it is good to keep in mind that we typicallyare interested in both
l(n) andr(n) growing much faster than

√
n. In that case, straightforward pertur-

bation techniques to yield strategies for the Fourier matrix game like Proposition 3
appear to stop working.

4.1.1 Small Value Example

Note that forr(n) = Ω(
√

n) andr = o(n), the growth of the expression for the (ln

of the) determinant in Theorem 4 is dominated by the term− (l
2)

(n−r)(n−r−1)r
2 ln n

rπ .
To give an idea how bad things can get, forr(n) > n√

l(n)
this starts comparing un-

favorably even to the natural log of thereciprocalof the optimal value ofll/2 for l
equally spaced points. This may raise doubts about the tightness of Theorem 4, but
we will show that the adversary can indeed frustrate the random player strategy to
such extents. We will prove our result to be asymptotically tight, at least for a wide
range of functionsr. We will show that essentially the worst-case scenario arises
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when the adversary chooses the set of disallowed roots of unity as a contiguous
block, and that in this case we get an upper bound matching thelower bound of
Theorem 4. This sheds some light on Open Problem 2 mentioned in the introduc-
tion. We believe that picking contiguous blocks is optimal for the adversary, not
only against the “uniform random player”, but againstanyplayer.

For fixedl, r andn, minimization of the expression given in Lemma 2 is done
by minimizing the

∑n−1
d=1 f(d)cχ(d) term. Defineρn,r =

∑n−1
d=1 f(d)cχ(d), where

χ is the characteristic function of an arbitrary contiguous subset ofN (in the cyclic
sense) of sizer. Note thatρn,r is well-defined. One easily observes that for any
0 ≤ r < n, ρn,r = 2

∑r−1
d=1(r − d)f(d). Note this does not differ by too much

from our conservative estimate
∑n−1

d=1 f(d)cχ(d) ≥ 2r
∑(r−1)/2

d=1 f(d), we used to
prove Theorem 4. We have the following upper and lower bounds(See Appendix
C for a proof):

Proposition 4. For 2 ≤ r ≤ n
2π ,

(a) ρn,r ≤ −r2 ln n
2πr − 3r2

2 + (1 − 2r) ln n
2π + 2r − 1

2 .

(b) ρn,r ≥ −(r2 − 1) ln n
2π(r−1) − 3r2

2 + r + 1
2 − 2r4π2

9n2 .

Applying Lemma’s 1 and 2 and Proposition 4, the following theorem follows
straightforwardly:

Theorem 5. For some large enough constantsc0 > 0 and small enough
constantc1 > 0, for all large enoughn, providedc0

√
n lnn < r < c1n and

l+r ≤ n, then the following holds: Consider the process of pickingl distinct roots
z0, z1, . . . , zl−1 uniformly at random from thenth roots of unity, where a contigu-
ous block ofr many roots is disallowed. Then we have for the Vandermonde matrix
V = V (z0, z1, . . . , zl−1) that

E[ln |det V |] = −Θ

(

l2r2

(n − r)2
ln

n

r

)

.

To give a striking example, sayr(n) = ⌊αn⌋, for some small enough con-
stantsα. ThenE[ln |det V |] = −Θ(l2). Optimally for l points, ln |det V | =
l
2 ln l. In other words, cut out any small constant size sector of theunit circle, and
randomly selecting a Vandermonde supported on the remainder of the circle, is ex-
pected to do even worse than reciprocal of the optimum value.Note also Lemma’s
1 and 2 imply that if no points are disallowed, for a randomly selected Vander-
mondeV , we haveE[ln |det V |] = Ω(l2/n). For r as considered in Theorem 5,
the lower bound given in Theorem 4 is

E[ln |detV |] = −Ω

(

l2r2

(n − r)2
ln

n

r

)

.

We conclude that picking a contiguous block of disallowed points, is the worst the
adversary can do to the player that selects uniformly at random, at least forr as
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considered in Theorem 5. We leave it as an open problem to prove or disprove that
this is true against any optimal player strategy.

4.1.2 Large Value Example

Assume bothl andr divide n, and let us consider the scenario where the forbid-
den setR consists ofr equally spaced points, and that it is possible to selectl
equally spaced points disjoint fromR. For the resulting Vandermonde matrixV
we then haveln |det V | = l

2 ln l. Quantitatively, how does randomly selecting the
Vandermonde compare to this ?

Letting χ denote the characteristic function ofR, one can verify that the
function cχ(d) mentioned in Lemma 2 equalsr for d being multiples ofnr and
is zero otherwise. Hence we can use Lemma 1 to bound the term

∑n−1
d=1 f(d)cχ(d)

of Lemma 2, with the only difference being that we are now summing overrth
roots instead ofnth roots of unity. We hence conclude that pickingl points at
random in the current scenario givesE[ln |det V |] to be at least

( l
2

)

(n − r)(n − r − 1)

(

(n − 2r + 1)(
2n

π
sin

π

n
− ln 2) − 2π2

3r2

)

.

For r ≤ αn, for some small enough constantα > 0, we thus have

E[ln |detV |] = Ω(
l2

n
).

We conclude in this case, that the random strategy features positive growth for
l = ω(

√
n).

5. Application

For ann-vectorf , define thesupport off to be the set supp(f) = {i : fi 6= 0}.
Following Donoho and Stark [2], we say ann-vectorf is ǫ-concentratedon a set
T of indices if

√

∑

i/∈T

|fi|2 ≤ ǫ.

Theorem 6 [2]. For anyn-vectorf with ||f ||2 = 1 that is ǫT -concentrated on
a setT and f̂ = Fnf beingǫΩ-concentrated on a setΩ, we have that

|T | · |Ω| ≥ n(1 − (ǫT + ǫΩ))2. (5.1)

As a side note, Theorem 6 yields a “fairly” good strategy for playing the
Fourier matrix game, comparable in strength to Proposition3, which is slightly
stronger. See Appendix D for a proof.
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Proposition 5. For any l, r with lr ≤ n and l + r ≤ n, the player has a

winning strategy for DFT-Game(n, l, r,B). for anyB < (
√

n −
√

lr)l
(n−r

l

)−1/2
.

Definition 2. An n-vector f is called l-index-limited if supp(f) ⊆ {b +
i mod n : 0 ≤ i ≤ l − 1}, for some numberb. An n-vector f is calledǫ, l-
index-limitedif there existsg with ||g||2 ≤ ǫ such thatf − g is l-index-limited.

Theorem 6 is trivialized in case|T | · |Ω| > n. We use Corollary 1, to give an
uncertainty type relation that does manage to express non-trivial lower-bounds on
concentration in case|T | · |Ω| > n, when dealing withǫ, l-index-limited vectors.

Lemma 3. Suppose the player has a winning strategy for DFT-Game∗(n, l, k,B).
Then for anyn-vectorf with ||f ||2 = 1 that isǫ, l-index-limited, and any setΩ of
sizer with r ≤ k, f̂ = Fnf is ǫΩ-concentrated onΩ with

ǫΩ > (1 − ǫ)
B

nl/2
− ǫ.

Proof. Consider an arbitrary Fourier transform pair(f, f̂) and letT = {b +
i mod n : 0 ≤ i ≤ l − 1} be a contiguous set of indices containing supp(f − g)
with g some vector with||g||2 ≤ ǫ, and||f ||2 = 1. Consider an arbitrary set of
indicesΩ of sizer with r ≤ k. By definition of the relaxed Fourier game and the
fact that the Fourier matrix is symmetric, there existsl × l minorV of DFTn with
columnsT and rows avoidingΩ such that

|det(V )|2 ≥ B2.

We get for the smallest singular valueσl of 1√
n
V

σl(
1√
n

V ) >
B

nl/2
.

Let Ω′ be the rows ofV . Write

(Fnf)Ω′ = (Fn(f − g) + Fng)Ω′ =
1√
n

V (f − g)T + (Fng)Ω′ .

By the max-min characterization of singular values given byTheorem 2, we have
that

|| 1√
n

V (f − g)T )||2 ≥ σl(
1√
n

V )||f − g||2 > (1 − ǫ)
B

nl/2
.

Since||(Fng)Ω′ || ≤ ǫ, we get by the triangle inequality that

||f̂Ω′ ||2 > (1 − ǫ)
B

nl/2
− ǫ.

SinceΩ′ is disjoint fromΩ we concludef̂ is ǫΩ concentrated onΩ with ǫΩ >
(1 − ǫ) B

nl/2 − ǫ.
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Theorem 7. Let n ≥ 7. Supposef is ann-vector with||f ||2 = 1 that is ǫ, l-
index-limited with Fourier transform̂f = Fnf . Then for any setΩ of sizer with
0 < r < n

π and l + r ≤ n, f̂ is ǫΩ-concentrated onΩ with

ǫΩ ≥ (1 − ǫ)
eB

nl/2
− ǫ,

whereB is given by

(

l
2

)

(n − r)(n − r − 1)

(

(n − 2r)(
2n

π
sin

π

n
− ln 2) − r2 ln

n

rπ
− r2 − r4π2

36n2

)

.

Proof. This follows immediately from the player strategy shown to exist in
Corollary 1 and applying Lemma 3.

The lower-bound on concentration onΩ is fairly weak, but we should stress
this bound is given for any conceivable setΩ, not just contiguous ones. The most
notable fact is that our theorem still yields non-trivial lower bounds on concentra-
tion in case bothl, r ≫ √

n, which is a breaking point for typical straightforward
calculations. For example, Theorem 6 yields a trivial lower-bound ofǫΩ ≥ 0 in
case|T | · |Ω| ≥ n. To give an extreme example, forr = ⌊αn⌋, for some small
enough absolute constantα > 0, we get concentrationǫΩ ≥ (1 − ǫ)e−Θ(l2) − ǫ,
for any setΩ of sizer.

6. Future Directions

Remaining are the Open Problems 1 and 2 mentioned in the introduction. Will
one be able to observe the extreme squashing of the determinant value as seen
in Section 4.1, when the player’s strategy is optimal instead of just random ? We
believe this will occur, because of eigenvalue clustering phenomena similar to those
studied in the landmark work of Slepian [7]. We ask whether a discrete analogue
of the results by Slepian can be be developed to properly study this. A first step in
this direction has been taken by Grünbaum [5].
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A. Proof of Proposition 1

Let µ stand for Lebesgue measure on the unit circleS1, with µ(S1) = 1 (not 2π).
Letd1 stand for circular distance, so forx, y ∈ S1, |x−y| ≤ d1(x, y) ≤ |x−y|π/2.
We extend the definition of chordal product to be a symmetric function onSl

1, and
given anl-vectorS ∈ Sl

1, let Ŝ denote the multi-set of its components. Note that if
S has a duplicate entry thenCP(S) = 0. By continuity ofdet, and hence uniform
continuity ofCP on the compact setSl

1, for all ǫ > 0 there existsδ > 0 such that
whenever||S − S′||∞ ≤ δ, |CP(S) − CP(S′)| ≤ ǫ. When||S − S′||∞ is much
less than the minimum distance between distinct points ofŜ or of Ŝ′, then it does
no harm to ignore the distinction betweenS andŜ. ForT ⊂ S1, let∼T stand for
S1 \ T , and note that the definitions off andg also extend naturally:

f(T, l) = sup{ CP(S) : S ∈ Sl
1, Ŝ ∩ T = ∅ }

f(T, n, l) = max{ CP(S) : S ∈ Ωl
n, Ŝ ∩ T = ∅ }.

g(α, l) = inf{ f(T, l) : µ(T ) = α },
g(r, n, l) = min{ f(T, n, l) : T ⊂ Ωn, |T | = r }.

Lemma A.1. Let δ > 0, let T be a proper subset ofS1 with µ(T ) > 2δ, and
let U = {u ∈ T : (∃y ∈ ∼T ) d1(u, y) ≤ δ }. Thenµ(U) ≥ 2δ, with equality iff
T equals the union of an interval and a set of measure zero.



On Determinants of Constrained Random Fourier Minors 15

Proof. Let p0 = q0 = some point in∼T . Let η > 0, η < δ. At any stagei ≥ 0
we will have a pointpi clockwise (“negative”) fromp0 and a pointqi counterclock-
wise (“positive”) fromq0, with d1(pi, qi) ≥ iη, and the invariant that every point in
T from pi up toqi belongs toU . If [pi − δ, pi −η]∪ [qi +η, qi + δ] ⊆ T , then these
intervals are inU , and soµ(U) ≥ 2δ − 2η. Else, it is possible to pickpi+1 /∈ T in
the former interval, and/orqi+1 /∈ T in the latter interval (if only one is possible,
the other stays unchanged), thus meeting the conditions forthe next stage. Since
the minimum “step”η is constant, after finitely many stages eitherpi andqi meet
at the other end of the circle, whenceT = U , or we’ve provedµ(U) ≥ 2δ − 2η.
Sinceη is arbitrary andµ(T ) > 2δ, either way givesµ(U) ≥ 2δ.

Clearly equality holds whenT is an interval plus a nullset. For inequality
otherwise, letV ⊆ T be a maximum interval that is closed inT . If µ(V ) ≤ 2δ
thenU = T and soµ(U) > 2δ. Wlog. assumeT \ V is not a nullset. Hence it is
possible to find pointsp0, q0 /∈ T such that the interval fromp0 up toq0 contains
V , and the interval fromp0 down toq0 the other way contains a positive-measure
subsetT ′ of T . ThenV contributes2δ to U , while on repeating the argument of the
first part of the proof,T ′ contributes nonzero measure toU . Hence we conclude
thatµ(U) > 2δ.

To re-state Proposition 1, we need to prove that

(a) f(T, l) = limn→∞ f(T, n, l),

(b) g(·, l) is continuous, and

(c) g(α, l) = limn→∞ g(⌊αn⌋, n, l).

Proof. (of Proposition 1): (a) For allT andn, clearly f(T, n, l) ≤ f(T, l).
Givenǫ > 0, findS0 giving f(T, l)−CP(S0) ≤ ǫ/2. SinceS0∩T = ∅, S0 is finite,
andT is closed, the minimum distanceδ0 = min{ d1(x, y) : x ∈ S0, y ∈ T }
from S0 to T is well-defined and positive. By uniform continuity we may find
δ > 0, with alsoδ < δ0, such that whenever|S′| = l and ||S0 − S′||∞ ≤ δ,
|CP(S′) − CP(S0)| ≤ ǫ/2. Thus whenevern > 1/δ, there isS′ ∈ Ωl

n with
Ŝ′ ∩ T = ∅ such that||S0 − S′||∞ ≤ δ, and so

f(T, n, l) ≥ CP(S′) ≥ CP(S0) − ǫ/2 ≥ f(T, l) − ǫ.

Hence for all sufficiently largen, |f(T, n, l) − f(T, l)| ≤ ǫ.
(b) Let ǫ > 0. Similarly to (a) we can chooseδ0 > 0 such that for all

S, S′ ∈ Sl
1 such that||S − S′||∞ ≤ δ0, |CP(S) − CP(S′)| ≤ ǫ/3. Sinceg(·, l)

is nonincreasing, it suffices to show that for anyδ ≤ δ0, and allα > δ, g(α −
δ, l) ≤ g(α, l) + ǫ. We can choose a closed setT with µ(T ) = α such that
f(T, l) ≤ g(α, l) + ǫ/3, sinceg(α, l) is an infimum.

By Lemma A.1 (for “δ/2”) we can findU ⊆ T such thatµ(U) = δ and
every point inU is within δ/2 of the boundary ofT . DefineT ′ = T \ U , so that
µ(T ′) = α − δ. Then sincef(T ′, l) is a supremum, we can takeS′ ∈ Sl

1 such that
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Ŝ′ ∩ T ′ = ∅ andf(T ′, l) ≤ CP(S′) + ǫ/3. Finally, by construction ofU there
existsS ∈ Sl

1 such thatŜ ∩ T = ∅ and||S − S′||∞ ≤ δ. This yields

g(α − δ, l) ≤ f(T ′, l) (sinceg(· · · ) is an infimum)

≤ CP(S′) + ǫ/3

≤ CP(S) + 2ǫ/3

≤ f(T, l) + 2ǫ/3

≤ g(α, l) + ǫ.

(c) Let ǫ > 0, and chooseδ > 0 such that for allS, S′ ∈ Sl
1, ||S − S′||∞ ≤ δ

implies|CP(S)−CP(S′)| ≤ ǫ/2. First, we show that forn > 1/δ, g(⌊αn⌋, n, l) ≥
g(α, l)− ǫ/2. Settingr = ⌊αn⌋, takeTn ⊂ Ωn with |Tn| = r andSn ∈ Ωl

n giving
g(r, n, l) = f(Tn, n, l) = CP(Sn) andŜn ∩ Tn = ∅. DefineT ⊂ S1 of measure
r/n by unioning closed intervals of width1/n of the circle centered on the points
of Tn. Then Ŝn ∩ T = ∅, soCP(Sn) ≤ f(T, l). Moreover, for everyS ∈ Sl

1

such thatS ∩ T = ∅, there existsS′ ∈ Ωl
n such thatŜ′ ∩ T = Ŝ′ ∩ Tn = ∅ and

||S − S′||∞ ≤ δ (actually,≤ δ/2). Hencef(T, l) ≤ f(Tn, n, l) + ǫ/2. Since
r/n ≤ α, this gives

g(α, l) ≤ g(r/n, l) ≤ f(T, l) ≤ f(Tn, n, l) + ǫ/2 = g(r, n, l) + ǫ/2

as needed. It remains to rule out the possibility thatg(r, n, l) > g(α, l) + ǫ.
Now sincef(T̄ , l) ≤ f(T, l), we may take a closedT0 of measureα giving

f(T0, l)−g(α, l) ≤ ǫ/2. Take a coveringC of T0 by open intervals of total measure
(at most)α + δ. By compactness,C has a finite sub-coveringC ′, and defineT1 to
be the closure ofC ′. ThenT1 consists of a finite number of closed intervals, which
can be further regarded as a (possibly smaller) finite numberm of disjoint closed
intervals. Taken > 1/δ and setTn = T1 ∩ Ωn. (It is not necessary to arrange also
that every pair of consecutive intervals inT1 going around the circle is separated
by a point inΩn.) ThenTn consists of (at most)m-many disjoint intervals inΩn,
and|Tn| ≤ r + δn.

In case|Tn| < r, we defineT ′ by addingr − |Tn| arbitrary points toTn.

g(r, n, l) ≤ f(T ′, n, l) ≤ f(Tn, n, l)

= f(T1, n, l)

≤ f(T1, l)

≤ f(T0, l) (sinceT0 ⊆ T1)

≤ g(α, l) + ǫ/2.

In case|Tn| ≥ r, defineT ′ by removingq = |Tn| − r ≤ δn points from the
end of one of the intervals that compriseTn, so that|T ′| = r exactly. Then for
everyS′ ∈ Ωl

n such thatŜ′ ∩ T ′ = ∅ there existsSn ∈ Ωl
n such thatŜn ∩ Tn = ∅
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and ||S′ − Sn||∞ ≤ q/n ≤ δ. Thusf(T ′, n, l) ≤ f(Tn, n, l) + ǫ/2. In full this
gives:

g(r, n, l) ≤ f(T ′, n, l) ≤ f(Tn, n, l) + ǫ/2

≤ f(T1, l) + ǫ/2

≤ f(T0, l) + ǫ/2 (sinceT0 ⊆ T1)

≤ g(α, l) + ǫ.

This gives that for alln > 1/δ, |g(⌊αn⌋, n, l) − g(α, l)| ≤ ǫ.

Lemma A.1 and its use in the proof of Proposition 1.1 suggest an attack on the
open problems in our Introduction. Notice that the proof used only the conclusion
µ(U) ≥ 2δ, not the strict inequality whenT is not an interval (plus a nullset).
The strict inequality suggests “slack” that might be used toderive a contradiction
from the infimum of{ f(T, l) : µ(T ) = α } being achieved by someT that is
not an interval (plus a nullset), or not being approachable by setsTǫ that converge
pointwise to an interval (give or take a nullset).

Given anyδ > 0, say that a setT ′ δ-guardsT if for every l-setS′ disjoint
from T ′, there is anl-setS disjoint fromT that is pointwise withinδ of S′. Then
Lemma A.1 can be read as saying that intervals maximize the infimum of α′ =
µ(T ′) such thatT ′ is a subset ofT thatδ-guardsT , namely at measureα−2δ with
T ′ = T \ U . Thus ifT is not an interval (plus a nullset), then for someδ > 0, T ′

δ-guardsT butT ′ has measureα′ smaller thanα − 2δ.
The objective then becomes to argue, using particularitiesof the chordal-

product function, that all setsT ′ of measureα′ must allow anS′ whose chordal
product is greater thanf(T, l)+ the bound for|CP(S) − CP(S′)| whenS andS′

pointwise differ by at mostδ. Thus we need to examine further the gradient of
g(α, l) with α, compared to the continuity bound onCP(S). The argument might
have the character of an induction onα, using the basis that whenα = 1/l, the
infimum is trivially achieved by an interval because setsT of that measure have no
effect in keepingsup{ CP(S) : S ∩ T = ∅ } below its maximumll/2. Steps that
may help further it are:

• Showing that the infimum is always achieved by some setT , and limiting
the Borel complexity ofT .

• Showing that ifT achieves the infimum for measureα, andα′ < α, then
the infimum for measureα′ is achievable by a subset ofT .

In any event, we suspect that progress would require a finer perturbative analysis
of the chordal-product function than we have employed in this paper.
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B. Proof of Lemma 1

Lemma B.1. Letǫ(t) = ln |t|−f(t). Then for anyt with |t| < 1, 0 < ǫ(t) < t2

12 .

Proof. First of all for anyt, f(t) = ln |1 − eit| < ln |t|. We thus see thatǫ(t) is
non-negative. Fort ∈ (0, 2π), we have for the error functionǫ(t) = ln |t|−f(t) =

ln |t|
2 sin t

2

. For t > 0, sin t ≥ t − t3

6 . So on this interval,ǫ(t) ≤ ln t

t− t3

24

=

− ln(1 − t2

24 ). For −1
24 < x < 1

24 , ln(1 + x) ≥ x − x2

2 . So for 0 < t < 1,

0 < ǫ(t) < t2

24 + t4

1152 < t2

12 . The lemma follows by symmetry off(t) andln |t|.

Proof. (of Lemma 1)We have

∫ π\2

0
ln(sin x)dx = −π

2
ln 2,

See e.g. [6], p. 182, equation 55. Hence

∫ 2π

0
f(t)dt = 2π ln 2 +

∫ 2π

0
ln sin

t

2
dt

= 2π ln 2 + 2

∫ π

0
ln sin

t

2
dt

= 2π ln 2 + 4

∫ π\2

0
ln sin xdx = 0

For j = 0, 1, , . . . , n − 1, define intervalIj = [j 2π
n , (j + 1)2π

n ]. By the above,

2π

n

n−1
∑

d=1

f(d)

=
2π

n

n−1
∑

d=1

f(d) −
∫ 2π

0
f(t)dt

=
2π

n
f(1) − 2

∫ 2π/n

0
f(t)dt +

2π

n

n−1
∑

d=2

f(d) −
∫ (n−1) 2π

n

2π/n
f(t)dt. (B.1)

We will now bound the last two terms in the above expression. We assumen
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is even. The case whenn is odd follows similarly.

2π

n

n−1
∑

d=2

f(d) −
∫ (n−1) 2π

n

2π/n
f(t)dt

=
2π

n

n−1
∑

d=2

f(d) −
n−2
∑

d=1

∫

Id

f(t)dt

=
2π

n

n/2
∑

d=2

[f(d) + f(n + 1 − d)] − 2

n
2
−1
∑

d=1

∫

Id

f(t)dt

=
2π

n

n/2
∑

d=2

[f(d) + f(d − 1)] − 2

n
2
−1
∑

d=1

∫

Id

f(t)dt

=
2π

n

n/2−1
∑

d=1

[f(d) + f(d + 1)] − 2

n
2
−1
∑

d=1

∫

Id

f(t)dt

=

n/2−1
∑

d=1

(

2π

n
[f(d) + f(d + 1)] − 2

∫

Id

f(t)dt

)

. (B.2)

We now give a lower bound to prove Item (a) of Lemma 1. Since for1 ≤ d ≤
n/2 − 1, f(t) is strict monotone increasing, we know that

2π

n
[f(d) + f(d + 1)] − 2

∫

Id

f(t)dt ≥ −2π

n
[f(d + 1) − f(d)].

Hence (B.2) is at least1

2π

n

n/2−1
∑

d=1

[f(d) − f(d + 1)] =
2π

n
[f(1) − f(

n

2
)]

Hence (B.1) is at least

2
2π

n
f(1) − 2

∫ 2π/n

0
f(t)dt − 2π

n
f(

n

2
)

≥ 2

∫ ∞

−f(1)
e−ydy − 2π

n
f(

n

2
)

= 4 sin
π

n
− 2π

n
ln 2.

1Note that applying the Trapezoidal Rule to (B.2) only would bound the magnitude of this
term byO(1) bound instead ofo(1), asf ′′(t) = −1/(2 − 2 cos t) equals approximately
−n2/4π2 for t = 2π/n.
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Hence we conclude that
n−1
∑

d=1

f(d) ≥ 2n

π
sin

π

n
− ln 2.

We now prove Item (b) of Lemma 1. Similar to the reasoning thatbounded
(B.2) from below, we get that (B.2) is at most

2π

n
[f(

n

2
) − f(1)].

Hence (B.1) is at most

−2

∫ 2π/n

0
f(t)dt +

2π

n
f(

n

2
)

Providedn ≥ 7, we have by Lemma B.1 that
∫ 2π/n

0
f(t)dt ≥

∫ 2π/n

0
ln t − ǫ(t)dt

≥ [t ln t − t]
2π/n
0 − [

t3

36
]
2π/n
0

=
2π

n
ln

2π

n
− 2π

n
− 2π3

9n3
.

Hence (B.1) is at most4π
n ln n

2π + 4π
n + 4π3

9n3 + 2π
n ln 2. Hence

n−1
∑

d=1

f(d) ≤ 2 ln
n

2π
+ 2 + ln 2 +

2π2

9n2
.

C. Proof of Proposition 4

We first prove Item (a). Define the functiong(t) = (r − t n
2π )f(t). Then

r−1
∑

d=1

(r − d)f(d) ≤ n

2π

∫ r 2π
n

2π
n

g(t)dt

≤ n

2π

∫ r 2π
n

2π
n

(r − t
n

2π
) ln tdt

=
rn

2π

∫ r 2π
n

2π
n

ln tdt − n2

4π2

∫ r 2π
n

2π
n

t ln tdt

=
rn

2π
[t ln t − t]

r 2π
n

2π
n

− n2

4π2
[
t2 ln t

2
− t2

4
]
r 2π

n
2π
n

=
r2

2
ln

2πr

n
+ (

1

2
− r) ln

2π

n
− 3r2

4
+ r − 1

4
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We now prove Item (b). Letα = (r − 1)2π
n . Then

r−1
∑

d=1

(r − d)f(d)

≥ n

2π

∫ α

0
g(t)dt

≥ n

2π

∫ α

0
(r − t

n

2π
)(ln t − t2

12
)dt {By Lemma B.1}

=
rn

2π

∫ α

0
ln tdt − n2

4π2

∫ α

0
t ln tdt − rn

24π

∫ α

0
t2dt +

n2

48π2

∫ α

0
t3dt

≥ rn

2π
[t ln t − t]

(r−1) 2π
n

0 − n2

4π2
[
t2 ln t

2
− t2

4
]
(r−1) 2π

n
0 − r4π2

9n2

≥ −r2 − 1

2
ln

n

2π(r − 1)
− 3r2

4
+

r

2
+

1

4
− r4π2

9n2
.

D. Proof of Proposition 5

Suppose the adversary chooses a set of rowsR of sizel and set of columnsT of
sizer. Let M be the minor ofFn with rowsR and columnsT . By Theorem 6,
for any unit vectorf that is0-concentrated onT , f̂ = Fnf is ǫR concentrated

on R, whereǫR ≥ 1 −
√

lr
n . Hence ||M ||2 = max||a||2=1 ||Ma||2 ≤

√

lr
n . Let

N be thel × (n − r) minor of Fn corresponding to rowsR and columns not in
T . SinceNN∗ + MM∗ = I, λ is an eigenvalue ofMM∗ if-and-only if (1 − λ)
is an eigenvalue ofNN∗. The singular values ofM are the square roots of the
eigenvalues ofMM∗. Hence we conclude the smallest singular value ofN is at

leastσ2
l (N) ≥ 1 −

√

lr
n , and hence thatσ2

l (
√

nN) ≥ √
n −

√
lr. Therefore

det(
1

n
NN∗) ≥ (

√
n −

√
lr)2l.

By Theorem 3,

det(
1

n
NN∗) =

∑

|S|=l,S∩T=∅
|det(DFTR,S)|2.

Hence we conclude there exists a minorM1 with rowsR and columns avoidingT
that has determinant at least

|det(M1)| ≥ (
√

n −
√

lr)l
(

n − r

l

)−1/2

.


