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ABSTRACT. For parametefs [ andr, we consider the problem of maximizing the
determinant of ari x [ Vandermonde matrix V, with nodes selected from th€gedf
nth roots of unity, but avoiding a forbidden subgebf sizer. An asymptotically tight
lower bound is given for the expected valuérofdet V| in case the nodes are selected
uniformly at random fronf2,,/R. We apply our result to give a discrete uncertainty
relation for so-called, i-index-limited vectors.

1. Introduction

The minors of then x n discrete Fourier matriDFT,, = (e275/™)oc 1cp 1
have been studied more traditionally in the literature uedestentialanduniversal
modes of quantification. To give an example of the latterel®the classic result
that for primep, any minor ofDFT, is non-singular. The first proof of this fact
is attributed to Chebotarév, who proved it in 1926 (seed8f also see [9] for an
elementary proof). Recently added to this, Candés, Rayrdoaat Tao [1] engaged
in a study ofrandomly quantified Fourier minors. They prove that for any set
of rows R of size O(@), if one selects a sef of columns by independently
choosing for each column to be fwith some fixed probability-, then with high
probability for the minorM of DFT,, with rows R and columnsS , denoted by
M = DFT} g, the determinanfiet (A M™) is “not too small.”

We are interested ivi3-quantified Fourier minors of the following kind. Sup-
pose an adversary specifiecows R andr columnsC' of the DFT,, matrix. Does
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there exist a minor oDFT,,, that has exactly as its rows the getand has all its
columnsdisjoint from C, with determinant of magnitude larger than some given
value B? That is, for given parametetsr,n, B, when does it hold thabr all
sets ofl many required rows? andr many excluded columng’, there existsaa
set ofl many columnsD disjoint from C, such that the minod/ = DFTY, f, has
|det(M)| > B ? Second, what can be said abpdtt(DFTY, )| if D is selected
uniformly at random among all such allowed sets ? Let us rkrtfeat the the
requirement to avoid’ seems to upset attempts to extend the main proof idea in
[1], which relies on thecancellation propertyof the roots of unity. We are espe-
cially interested in the case where the set of rd¥vselected by the adversary is
contiguous.

Toward these ends, we give some motivating open problemsa EetS of
complex numbergS| = I < oo, define itschordal productCP(S) by

cPS) = [ Ip—al"* =Idet(Vs)|,
DPFGES

whereVs is anl x [ Vandermonde matrix whose second row compriSesiWe
considerS on the unit circle, and further restristto be a subset a2, = {27/ .

0 < k < n—1}. LetT stand for subsets of on the unit circt, respectively
subsets of2,,, that are “off-limits”, in the sense that we requifen 7' = (). Given
[ > 1 andT, define

f(T,1) =sup{CP(S) : |S| =1, SNT = 0}.
Alternately given integerg n > 1 andT' C (2,,, define
f(T,n,l) =max{CP(S): S CQ,, |S|=1,SNT =0}.
Finally givena > 0 and an integer, define

g(a,l) = f{f(T,1): p(T) = o},
g(r,n,l) = min{f(T,n,l): T CQ,, |T|=r}.

Herep is Lebesgue measure ¢ except that we takg(S!) = 1 instead of2r.
Proposition 1.

(@) IfTis closed, then for any lim,, ., f(7,n,!) is well-defined and equals
F(T0).
(b) For every fixed, the functiong(a, 1) is continuous inx.
() Foranya > 0 and/, takingr = |nal, lim, . g(r,n,l) exists and
equalsg(a, ).
The proof, given in Appendix A, exploits the uniform contityuof CP(S) over
the compact sef’.
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Problem 1. Givenl,n,r andT C €, of sizer, is there an easily described
strategy to comput# of sizel achieving the maximum if(7’, n, [)? Same question
for f(7',1) whenT is open.

Related to this question, what sé&tsn the above provide the worst-case scenario?
That is:

Problem 2. Givenl,n,r, which subset§’ of Q0,,, |T'| = r, minimizef (T, n,1),
and what is the minimax value? Same question for (closed)Isef measurex
achieving or approaching the infimum that defig¢s, 1), and what is its value?

We believe that in both cases a minimizifigis an interval of size: in §2,,,
respectively of measurein S*. Intuitively, an adversary makirifj one contiguous
block bunches the allowable domain ®fmost closely together around the circle,
preventing one from profiting by choosing points “insideyeen” T' that make
long chords to other regions. There are two caveats in péati@gainst believing
this is obvious, however.

First, Donoho and Stark [2] considered the related questiamhich setsRk
andC maximize||DFTY, ||z, and stated:

Conjecture 1 [2]. Forinterval R and setC' with [C| - [R[ = n, [|[DFT} o2 is
maximized when’ is also an interval.

This conjecture is still open, indicating that strateglest similarly appeal strongly
to intuition can be surprisingly hard to verify.

Second, Vandermonde matrices can be numerically vol&iMandermonde
matrix with nodes selected to be real numbers can be hightpilditioned [4].
For Vandermonde matrices with nodes on the unit circle thueBon can be nicer,
provided the nodes are spread out relatively evenly [3]. &l in our situation
the setl” can prevent this—intuitively most strongly whé&his an interval.

The relationship between the continuous and discrete chg®# in Propo-
sition 1 further motivates our attention to these problemshis paper, we evaluate
the efficacy of approaching Problem 1 with a randomizedeggatOur main result
is to give an explicit lower bound for the expected valu€®f(.S), if we selectS
uniformly at random. Consideringandr to be functions of, this result is shown
to be asymptotically tight for a wide range of parameterirsgst From this we
conclude that essentially the worst the adversary can dostréte the uniform
random selection strategy, is to pi€kto be an interval irf2,,.

The effects we observe are drastic. We haveg(0,1!) = In|det(DFT;)| =
%lnl, as witnessed by = thel-th roots of unity. For a randomly selected subset
S of sizel when no points are disallowed, we will observe ti#din CP(S)] =
Q(1? /n). However, for a player selecting randomly from among alidwth-roots,
we observe expected valigln CP(S)] = —O(I?), in case the adversary disallows
an interval of constant measurgfor any smalle > 0.

The rest of this paper is organized as follows. Section 2aipsisome mathe-
matical prerequisites. In Section 3, we take a preliminaoklat thev3-quantified
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optimization problem about minors of th&FT,, matrix we mentioned above. In
Section 4, we present and evaluate our main result aboubmanégndermonde
matrices. Finally in Section 5, we give an application of thain theorem. We
introduce so-called, I-index-limited vectorswhich combines Donoho and Stark’s
[2] notion of e-concentration of a vector with some measure of a vectorgdem
ited to an interval or band. For our notion we give an uncetyaielation that is
applicable in cases where the Donoho-Stark discrete wesrtprinciple trivial-
izes.

2. Prerequisites

Theorem 1 (Weyl Perturbation). LetA and E be Hermitian matrices.
Then
max |\ (4) = Aj(A+ B)| < ||l

Theorem 2 (Courant-Fisher). LetA be anm x nwithm > n, matrix then

foranyi = 1,2, ..., n, theith singular values; of A is given by
oi(A) = max s HfT‘HQ,
scen g 0 xr
dim(S)=i &5/10} 2

whereS ranges over all linear subspaces of dimension

Theorem 3 (Binet-Cauchy). Let A be anm x n matrix and letB be an
n x m matrix withn > m. Then

det(AB) = Y det(A”)det(By),

I1C{1,2,...,n}
[]=m

where A! is them x m minor of A consisting of all columns i, and By is the
m x m minor of B consisting of all rows in/.

3. Fourier Matrix Games

Definition 1. We define the Fourier matrix gani¥=T-Gamén, [, k, B) to be
the following single-round game against an adversary agent

Adversary: selectd distinct rowsry, 7o, ..., r; andk distinct columng
c1,C2,...,¢,In{0,1,... (n—1)}.

Player: selects ari x [ minor M of then x n Fourier matrixDFT,, with
rowsry, ra, ..., r; and columns disjoint fromy, co, . .. , cg.

Result: The player wins if and only ifdet(M)| > B.
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We defineDFT-Gamé(n, [, k, B) the same game as above, but with the mod-
ification that the adversary can only choose sets of rBwhkat are contiguous in
the cyclic senseR = {b+imodn : 0 < i <[ — 1} for somebase point.. For
this game, it is not hard to see, we can assume without loseradrglity that the
adversary's set of rows is fixed to be the firsbws of theD F'T,, matrix.

Proposition 2. If n = [ -k, then the adversary has a winning strategy for
DFT-Gamén, [, k,0).

Proof. A winning strategy for the adversary is to take rows= ki, for i =
0,1,...,(l — 1), and columns; = li, fori = 0,1,...,(k — 1). Let A be the
I x n minor of DFT,, with rows g, rq,...r;—1. Therth column A, of A equals
(La", a2, ..., a=DU")T wherea = en* = ¢**. Hence for anyr, A, =
A, i modn- With columns0,7,2i, ..., (k — 1) disallowed, there are therefore
only [ — 1 distinct columns in the remaining set, so dmyl minor of A that avoids
the disallowed columns will be singular. [

Soifn = [ - k, there is not much honor to achieve for the player. kot
belown, Theorem 1 and 3 guarantee the existence of a minor with aasitffairly
reasonable” lower bound on the magnitude of its determinant

Proposition 3. The player has a winning strategy for DFT-Gameg, k, B),
providedk - | < nandB < (n — kl)!/? (”;k)fm.

Proof. Suppose the adversary choogsesws R andk columnsC. Let N =
{0,1,...,n—1}. LetA = DFTg n/c andB = DFTg ¢. ThenAA* = nl—BB*.
Both AA* and BB* are Hermitian, so by Theorem 1, providd@B*|2 < n,
for eachi, theith eigenvalue\;(AA*) > n — || BB*||2. We can writeBB* =
Y icc Gic;» Whereg; is the ith column oDFTg . Since||cic]|]2 = lles| 13 = 1,
then by subadditivity of thés-norm, ||BB*||2 < kl. Hencedet(AA*) > (n —
kl)!. By Theorem 3det(AA*) = >15)=t | det(Ag s)?. Hence we conclude there

existsS of sizel such that det DFTg 5| > (n — kI)/? (”]k)fm. O

Our main interest in this paper however, will be the contiggigariant of the
Fourier matrix game, in particular for cases whérel > n. In the following
section we evaluate a randomized player strategy for thmgega

4. Random Vandermonde Matrices

For complex numbersy, z1, ..., z_1, denote byV = V(z, z1,...,2-1) the
! x I Vandermonde matrix defined By; = 2/ for 0 < ,j <1 — 1. We have the
following theorem:
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Theorem 4 (Main Result). Foranyn > 7andl,r with0 < r < -
and! + r < n, Let R be a subset of2,, of sizer. Consider the process of pick-
ing {zo,...,21-1} C Q,\R uniformly at random among all subsets@f,\ R of
sizel. Then for the Vandermonde matfix = V' (2, z1, ..., 2-1) we have that
E[ln|det V] is at least

(o)

(n—r)n—r—-1

4,2
] ((n— 2r)(27nsin% —1n2) —TQIH% o %) .

Let us stress that in the above random selection of a subset\dR we do
not assume any particular order amongz1, ...,z _1. In other words, a subset
is selected uniformly at random, and uniformly at random w&oaiate variable
names, z1, . . . , z;_1 to its elements. This allows us to treat thevariables sym-
metrically in the proof. For the proof of Theorem 4 we need stimeate involving
the “In-of-chord-length” functionf (t) = In|1 — €|, fort € R\ {k27 : k € Z}.
Straightforward geometry gives us:

£(t) = %111(2 ~9cost),

which can be rewritten using the relatisin® ¢ = =52 as

t
f(t) =In2+ In|sin §|

We will also consider a discretized version of this functiarhich per abuse of
notation will also be denoted by, which version *f” refers to will be clear from
the context.

Lemma 1. Letn > 7, and letw = €2™/". Define the discrete functiof(d) =
In|l —wi, ford=1,2,...,n—1. Then

@ Yi7) f(d)>2sin? —1In2,and
(b) AT f(d) <2 +2+In2+ 20,
A proof of the above lemma can be found in Appendix B. To a subse
N ={0,1,...,n — 1} we associate its characteristic functign N — {0,1},

which is defined byy (i) = 1iff i € R. Given a characteristic functiog, we
define the functior, : N — N by

n—1

cy(d) = Z x(2)x(i + d mod n).
i=0

We identify subsets of2, = {*™/" : 0 < k < n — 1} and N in the obvious
manner.
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Lemma 2. For anyn, [, andr with[ + r < n, Let R be an arbitrary subset of
2, of sizer. Consider the process of pickigo, ..., z-1} C Q,\R uniformly
at random among all subsets @f,\ R of sizel. Then for the Vandermonde matrix
V= V(ZQ, 21y ,Zl_l) we have
(l) n—1 n—1
_ 2 _

d=1 d=1

wherey is the characteristic function aR.

Proof.
Elln|detV[]] = En]]lz - 2l
1<j
= B[ In|z — 2]
1<j
= Y E[nlz — z]] (by linearity of B)
1<j

= <é) Elln|zp — z1]]- (by symmetry

Letn = E|ln |zp — z1|]. We can write the following expression fgr
n= Y > Prlzp=pandz =q]ln|p—ql,

PEQR\R q€Qn\R,q#p

wherePr[(zp = pandz; = ¢] = m Let correspond to the character-

istic function ofQ2,,\ R. We have that

(n—r)n—r—1)-n = > > Inlp—q
PEQH\R qEQn\R,qip

n—1 n-—1

S IDIRONOLIREr

= 3 X+ dmod n)(d)

n—1

= f(a) i X(@)x (i + d mod n).
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The lemma now follows by rewriting (i) = 1 — x(¢), wherey is the char-
acteristic function of, and observing that

n—1 n—1
X(i)X(i +dmodn) = Y (1—x(i))(1 - x(i + d mod n))
=0 1=0
n—1
= (n—2r)+ > x(i)x)(i + d mod n).
=0

We now prove Theorem 4.

Proof. From Lemma 2 we have that

l n—1 n—1
Elln]det V] = 7 T)((;)_ — ((n o) @)+ f(d)cx(d)> ,
d=1

d=1

wherey is the characteristic function d?. We have that

n—1 n—1n—1
Zcx(d) = ZZX(Z)X(Z + d mod n)
d=1 d=1 i=0
n—1 n—1
= Z x(7) Z x(i + d mod n)
1=0 d=1
= r2—r

We know thafy i~} f(d)c, (d) is smallest if the total mass —r is placed at much
as possible at places whef&l) is the smallest. Note that for ady0 < ¢, (d) < r.
Definee(t) = In |[t| — f(¢). By the concavity off, in caser is odd,

-1 (r-1)/2

n—1
Y f@ded) = > fdr+ D fd)r
d=1 1

T
d=n 3

(r-1)/2
= 2r Y f(d)
d=1

r—12m
2 n

F(t)dt

n

2r—
2T 0
(r—1)7

v

- @/ " Int—e(t)dt
T Jo
t?) (r—=1)m
> E[tlmt—t——]o " {by Lemma B.%}
s

oy L =1
n 36 n?
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In caser is even, the same lower bound can be obtain similarly. Tegeth
with Lemma 1 this yields the theorem. [

Corollary 1. Foranyn > 7 and anyl,r with0 < r» < > andl +r < n, the
player has a winning strategy for DFT-Gatte, I, r, ¢©), providedC is less than

(2)

(n—r)n—r—-1

4,2

] ((n—2r)(27nsin% —1n2) —7’2111% o ;6:;2> .
Proof. Recalling our remark after Definition 1, we can assume wiss lof
generality that the adversary chooses rdws {0,1,...,l —1}. Any ! x [ minor
of DFT,, with rows R is a Vandermonde matrix. L&t be the set of columns
the adversary chooses. Theorem 4 gives a lower bounf[an| det(M)|] for
randomly selected x [ minor M of DFT,, with rows R avoiding columnsC'.
There must exist at least one minbf that hadn |det(M’)| > E[ln|det(M)]].
So the player chooses such a minor, for which we then haveotter Ilbound on
the absolute value of its determinant as stated in the eoyoll [

4.1 Sharpness of the Result

We are interested in the asymptotic growth as a function of the lower bound
given in Theorem 4, where we consider the variablesd! to be certain func-
tions of n, which if we want to be explicit about this will be denoted &y) and
r(n). For certain growth rates éfn) andr(n), Problem 1 is trivial. For example,
assuming(n) dividesn for simplicity, for r(n) < ﬁ there always exist some
equally spaced selection &fn) points that is not blocked. This then yields an
optimal magnitude for the determinant if2. At the end of this section we will
give an example that compares our random strategy with gtimal value. First
however, we study the optimality of our analysis for casegnatihis triviality is
avoided. For this, it is good to keep in mind that we typicalfg interested in both
I(n) andr(n) growing much faster thag/n. In that case, straightforward pertur-
bation techniques to yield strategies for the Fourier mafaime like Proposition 3
appear to stop working.

4.1.1 Small Value Example
Note that forr(n) = Q(y/n) andr = o(n), the growth of the expression for the (In

l
of thg) detgrmlnant in Theqrem 4 is dominated by the te'rm%r? l'n .
To give an idea how bad things can get, #on) > —~— this starts comparing un-

Vi)
favorably even to the natural log of theciprocal of the optimal value of!/2 for [
equally spaced points. This may raise doubts about thenegktof Theorem 4, but
we will show that the adversary can indeed frustrate theaamplayer strategy to
such extents. We will prove our result to be asymptoticadjiitt at least for a wide

range of functions-. We will show that essentially the worst-case scenaricearis
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when the adversary chooses the set of disallowed roots tf asia contiguous
block, and that in this case we get an upper bound matchintpter bound of
Theorem 4. This sheds some light on Open Problem 2 mentiongxe iintroduc-
tion. We believe that picking contiguous blocks is optimal the adversary, not
only against the “uniform random player”, but agaiast player.

For fixedl, » andn, minimization of the expression given in Lemma 2 is done
by minimizing the>""'" f(d)c, (d) term. Definep,,, = S1~1 f(d)c,(d), where
x is the characteristic function of an arbitrary contiguoulset ofV (in the cyclic
sense) of size. Note thatp, , is well-defined. One easily observes that for any
0<7r<n,pp= 222;}(7” — d)f(d). Note this does not differ by too much
from our conservative estimale"_} f(d)c, (d) > 2r /% f(d), we used to
prove Theorem 4. We have the following upper and Iower boBee Appendix
C for a proof):

Proposition 4. For2 <r < 27”
@ pnr<-—r ln——‘% (1 —27“)1n2£+2r—%
n 7,47.(.2
(b) pn,ri_(TQ— )hlm _|_r_|_§_29n2 .

Applying Lemma’s 1 and 2 and Proposmon 4, the followingadtem follows
straightforwardly:

Theorem 5. For some large enough constants > 0 and small enough
constante; > 0, for all large enoughn, providedcyvnlnn < r < ¢in and
[+ r < n, then the following holds: Consider the process of pickidgstinct roots
20,21, - - - , 211 Uniformly at random from theth roots of unity, where a contigu-
ous block of- many roots is disallowed. Then we have for the Vandermondéxma
V= V(Zo, 21y ,Zl_l) that

1?r? n

r

To give a striking example, say(n) = [an], for some small enough con-
stantsa. ThenE[ln|det V|] = —©(I?). Optimally for [ points,In|det V| =
%lnl. In other words, cut out any small constant size sector ofittiecircle, and
randomly selecting a Vandermonde supported on the remaafidee circle, is ex-
pected to do even worse than reciprocal of the optimum v&oge also Lemma’s
1 and 2 imply that if no points are disallowed, for a randon#jested Vander-
mondeV, we haveE[In | det V|] = Q(I?/n). Forr as considered in Theorem 5,
the lower bound given in Theorem 4 is

12p2 n
EllnldetV] = -0 —" _1m™).
In | det V1] ((n_r)gnr)

We conclude that picking a contiguous block of disalloweth{® is the worst the
adversary can do to the player that selects uniformly atoemdat least for as
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considered in Theorem 5. We leave it as an open problem te@mogisprove that
this is true against any optimal player strategy.

4.1.2 Large Value Example

Assume botH andr divide n, and let us consider the scenario where the forbid-
den setR consists ofr equally spaced points, and that it is possible to sdlect
equally spaced points disjoint froR. For the resulting Vandermonde matiix
we then havén |det V| = %lnl. Quantitatively, how does randomly selecting the
Vandermonde compare to this ?

Letting x denote the characteristic function &f one can verify that the
function c, (d) mentioned in Lemma 2 equaisfor d being multiples of2 and
is zero otherwise. Hence we can use Lemma 1 to bound theﬁﬁjﬁ f(d)ey(d)
of Lemma 2, with the only difference being that we are now sumgnover rth
roots instead ohth roots of unity. We hence conclude that pickihgoints at
random in the current scenario givE§in | det V|| to be at least

(é) n —2r 2—nsinﬁ—n —ﬁ
(n—r)(n—r—1) <( 2 +1)(7T n In2) 3T2>'

Forr < an, for some small enough constant> 0, we thus have

l2

Elln|det V]| = 2(=).

We conclude in this case, that the random strategy featwsiive growth for

[ = w(Vn).

5. Application

For ann-vector f, define thesupport off to be the set sugy) = {i : f; # 0}.
Following Donoho and Stark [2], we say anvector f is e-concentratedbn a set

T of indices if
Yol <e
i¢T

Theorem 6 [2]. Foranyn-vector f with || f|[2 = 1 that iser-concentrated on
asetT and f = F,, f beingeg-concentrated on a sé€?!, we have that

IT|- 19| > n(1 — (e7 + €q))>. (5.1)

As a side note, Theorem 6 yields a “fairly” good strategy ftaypg the
Fourier matrix game, comparable in strength to Proposi@pwhich is slightly
stronger. See Appendix D for a proof.
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Proposition 5. For anyl,r withir < n andl + r < n, the player has a
winning strategy for DFT-Gante, [, 7, B). for any B < (\/n — \/ﬁ)l("lf’")flm.

Definition 2. An n-vector f is called(-index-limitedif supp(f) C {b +
imodn: 0 < i < [ — 1}, for some numbeb. An n-vector f is callede, -
index-limitedif there existsy with ||g||2 < e such thatf — g is I-index-limited.

Theorem 6 is trivialized in casé’| - |2| > n. We use Corollary 1, to give an
uncertainty type relation that does manage to expressmaai-tower-bounds on
concentration in cas’| - |2| > n, when dealing witl, I-index-limited vectors.

Lemma 3. Suppose the player has a winning strategy for DFT-Gamgé, k, B).
Then for anyn-vector f with || f||» = 1 that ise, I-index-limited, and any sé? of
sizer withr < k, f = F,, f is eg-concentrated o2 with

o> (1—¢) €.

T
Proof. Consider an arbitrary Fourier transform péjf, f) and letT = {b +
imodn: 0 < ¢ <[—1} be acontiguous set of indices containing sypp g)
with ¢ some vector with|g||o < ¢, and||f||o = 1. Consider an arbitrary set of
indices(? of sizer with r < k. By definition of the relaxed Fourier game and the
fact that the Fourier matrix is symmetric, there exists! minor V. of DFT,, with
columnsT’ and rows avoiding? such that

|det(V)|* > B2

We get for the smallest singular valagof LnV

=
1 B
01(%‘/) > W
Let Q) be the rows of/. Write

1
NG

By the max-min characterization of singular values giverThgorem 2, we have
that

(Fuf)or = (Fu(f — 9) + Frg)or = —=V(f — 9)1 + (Fag)ar.

==V =9l 2 o =VIF gl > (=)

Since||(F,g9)o|| < €, we get by the triangle inequality that

el > (1 — 09—

—5 — €.
/2

Since (Y is disjoint from we concludef is en concentrated o2 with e >
(1-— 6)% — €. U
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Theorem 7. Letn > 7. Supposef is ann-vector with|[f||; = 1 that ise, I-
index-limited with Fourier transfornf = F,, . Then for any sef of sizer with
0 <r < Zandl+r <n, fiseg-concentrated o2 with

B

EQZ(I_G)W_

6?
whereB is given by

(o)

n —2r 2—nsinﬁ—n —r2n£—r2—r4W2
e (2 ] )

T n rT 36n2

Proof. This follows immediately from the player strategy shown ssein
Corollary 1 and applying Lemma 3. [

The lower-bound on concentration éhis fairly weak, but we should stress
this bound is given for any conceivable $&tnot just contiguous ones. The most
notable fact is that our theorem still yields non-trivialvier bounds on concentra-
tion in case both, » > /n, which is a breaking point for typical straightforward
calculations. For example, Theorem 6 yields a trivial Iolweund ofe > 0 in
case|T| - |©2] > n. To give an extreme example, for= |an|, for some small
enough absolute constamt> 0, we get concentration, > (1 — 6)6_6(12) — €,
for any sef() of sizer.

6. Future Directions

Remaining are the Open Problems 1 and 2 mentioned in thedindtion. Will
one be able to observe the extreme squashing of the detetmiakie as seen
in Section 4.1, when the player’s strategy is optimal irdtefjust random ? We
believe this will occur, because of eigenvalue clusterimgmomena similar to those
studied in the landmark work of Slepian [7]. We ask whethersardte analogue
of the results by Slepian can be be developed to properly $hisl A first step in
this direction has been taken by Grinbaum [5].
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A. Proof of Proposition 1

Let u stand for Lebesgue measure on the unit ciiglewith 1(S1) = 1 (not 27).
Letd; stand for circular distance, so fory € S, |[z—y| < di(z,y) < |[z—y|7/2.
We extend the definition of chordal product to be a symmetnicfion onS!, and
given anl-vectorS € S, let S denote the multi-set of its components. Note that if
S has a duplicate entry theéiP(S) = 0. By continuity ofdet, and hence uniform
continuity of CP on the compact sed!, for all ¢ > 0 there exist$ > 0 such that
whenever|S — 5'||o < 6, [CP(S) — CP(S")| < e. When||S — 5’||s is much
less than the minimum distance between distinct points of of S, then it does
no harm to ignore the distinction betwesrandS. ForT c Sy, let ~T stand for

S1 \ T, and note that the definitions gfandg also extend naturally:

F(T,)) = sup{CP(S):SeS!, SnT =0}
f(T,n,1) = max{CP(S):SeQ, SNT=0}.
9(a,l) = mf{ f(T,1): p(T) = a },

g(ryn,l) = min{ f(T,n,0): T C Qu,|T|=1}.
Lemma A.1. Leté > 0, let T be a proper subset ! with u(T) > 24, and

letU ={ueT: (3ye~T)di(u,y) <d}. Thenu(U) > 24, with equality iff
T equals the union of an interval and a set of measure zero.
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Proof. Letpy = go = some pointinr~T'. Letn > 0,n < 6. At any stage > 0
we will have a poinp; clockwise (“negative”) fronpy and a poiny; counterclock-
wise (“positive”) fromqyg, with d; (p;, ¢;) > in, and the invariant that every point in
T from p; up tog; belongs tdJ. If [p; —d,p; —n]U ¢ +n, ¢ + 6] C T, then these
intervals are irl/, and sou(U) > 2§ — 27. Else, it is possible to pick; 1 ¢ T'in
the former interval, and/af; 1 ¢ T in the latter interval (if only one is possible,
the other stays unchanged), thus meeting the conditionthéonext stage. Since
the minimum “step™ is constant, after finitely many stages eitpgand¢; meet
at the other end of the circle, when€e= U, or we've provedu(U) > 26 — 2.
Sincen is arbitrary and.(7") > 24, either way gives.(U) > 24.

Clearly equality holds wheff" is an interval plus a nullset. For inequality
otherwise, let’ C T be a maximum interval that is closedTh If u(V) < 20
thenU = T and sou(U) > 2. Wlog. assumd™ \ V is not a nullset. Hence it is
possible to find pointgg, ¢o ¢ T such that the interval from, up to ¢y contains
V', and the interval fronpy down toq, the other way contains a positive-measure
subsefl” of T. ThenV contribute26 to U, while on repeating the argument of the
first part of the proofI” contributes nonzero measurelto Hence we conclude
thatu(U) > 20. |

To re-state Proposition 1, we need to prove that

@ f(1,0)=lim, o f(T,n,l),
(b) g¢(-,1) is continuous, and
©) g(a,l) =lim,o0 g(lan],n,1).

Proof. (of Proposition 1): (a) For all’ andn, clearly f(T,n,l) < f(T,1).
Givene > 0, find Sy giving f(T',1)—CP(Sp) < €/2. SinceSyNT = 0, Sy is finite,
andT is closed, the minimum distanég = min{ d;(z,y) : © € Sp,y € T}
from Sy to T is well-defined and positive. By uniform continuity we maydin
d > 0, with alsod < dy, such that wheneves’| = [ and||Sy — 5'||c < 9,
ICP(S") — CP(So)| < €¢/2. Thus wheneven > 1/6, there isS’ € QL with
S'NT = such that| Sy — 5'||oc < 8, and so

f(T,n, 1) >CP(S") > CP(So) —€¢/2 > f(T,1) —e.

Hence for all sufficiently large, | f(T,n,1) — f(T,1)] < e.

(b) Lete > 0. Similarly to (a) we can choos& > 0 such that for all
S, 8" € S such that|S — S'||ec < do, [CP(S) — CP(S")| < ¢/3. Sinceg(-,1)
is nonincreasing, it suffices to show that for ahy< §y, and alla > 4, g(a —
0,1) < g(a,l) + e. We can choose a closed sEtwith ;(T)) = « such that
f(T,1) < g(a,l) + €/3, sinceg(a, 1) is an infimum.

By Lemma A.1 (for '6/2”) we can findU C T such thatu(U) = § and
every point inU is within §/2 of the boundary ofl’. DefineT” = T \ U, so that
w(T") = o — 6. Then sincef (1", 1) is a supremum, we can talé € S¢ such that
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ST =0 and f(7",1) < CP(S') + ¢/3. Finally, by construction ot/ there
existsS € St such thats N T = 0 and||S — S'|| < §. This yields

gla—6,1) (T (sinceg(- - - ) is an infimum)
CP(S") +¢/3
CP(S) + 2¢/3
F(T,1) +2¢/3
gla,l) ¢

(c) Lete > 0, and choosé > 0 such that for alls, S” € St, [|S — S'||ec < 0
implies|CP(S)—CP(S")| < /2. First, we show that for. > 1/, g(|an|,n,l) >
g(a, 1) —¢/2. Settingr = |an|, takeT;, C Q,, with |T,,| = r andS,, € 2, giving
g(r,n,1) = f(Tn,n,1) = CP(S,) andS, N T, = (. DefineT c S; of measure
r/n by unioning closed intervals of widttyn of the circle centered on the points
of T;,. ThenS, NT = 0, soCP(S,) < f(T,l). Moreover, for everyS € S!
such thats N T = (), there existsS’ € Q, such thatS’ N 7T = $'N T, = (Z)and
[|S — 5] < 6§ (actually, < §/2). Hencef(T 1) < f(Tn,n,l) + €/2. Since
r/n < a, this gives

VAN VAN VARSI VAN VAN

g(Oé,l) < g(r/n,l) < f(T>l) < f(Tnvn>l) +6/2 = g(r,n,l) +6/2

as needed. It remains to rule out the possibility g(@tn, ) > g(«,l) + e.

Now sincef(T,1) < f(T,1), we may take a closefly of measurex giving
f(To,1)—g(a, 1) < €/2. Take a covering’ of T by open intervals of total measure
(at most)a + d. By compactness;' has a finite sub-covering’, and definel’; to
be the closure of’. ThenT} consists of a finite number of closed intervals, which
can be further regarded as a (possibly smaller) finite numbef disjoint closed
intervals. Take: > 1/§ and setl,, = T1 N €2,,. (It is not necessary to arrange also
that every pair of consecutive intervals’fh going around the circle is separated
by a point in2,,.) ThenT,, consists of (at mosty.-many disjoint intervals irf2,,,
and|T,,| < r+dn.

In case|T,| < r, we definel” by addingr — |T,,| arbitrary points tdl;,.

f(Th,n,l)
f(Ty,n,l)
(T1,1)
f(To, 1) (sinceTy C T1)
gla,l) +¢/2.

IN

g(lr7 n7 l) S f(T/7 n7 l)

~

IAN A IA

In case|T,,| > r, defineT” by removingg = |T,,| — r < dn points from the
end of one of the intervals that comprigg, so that|T"| = r exactly. Then for
everyS’ € Q! such thatS’ N T" = () there existsS,, € Q! such thatS,, N T;, = ()
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and||S" — Sulleo < q/n < 6. Thusf(T',n,l) < f(Ty,n,l) + €/2. In full this
gives:

glr,n, ) < f(T',n,1) < f(Tn,m, 1) +€/2
< f(T0) +¢/2
< f(To,l) +e€/2  (sinceTy C T1)
< glal) +e
This gives that for alk > 1/6, |g(|an],n,l) — g(a,l)| <e. 0

Lemma A.1 and its use in the proof of Proposition 1.1 suggeattack on the
open problems in our Introduction. Notice that the proofdugely the conclusion
w(U) > 26, not the strict inequality wheff” is not an interval (plus a nullset).
The strict inequality suggests “slack” that might be usedddve a contradiction
from the infimum of{ f(7,l) : w(T) = «} being achieved by som€ that is
not an interval (plus a nullset), or not being approachapledtsT, that converge
pointwise to an interval (give or take a nullset).

Given anyd > 0, say that a seT” §-guardsT if for every I-setS’ disjoint
from 7", there is ari-setS disjoint from7T" that is pointwise withiry of S’. Then
Lemma A.1 can be read as saying that intervals maximize firaum of o/ =
w(T") such thafl” is a subset of" thaté-guardsT’, namely at measure — 26 with
T' =T\ U. Thus ifT is not an interval (plus a nullset), then for some- 0, 7’
0-guardsT but 7’ has measure’ smaller tharnx — 26.

The objective then becomes to argue, using particulardafethe chordal-
product function, that all sets” of measuren’ must allow anS’ whose chordal
product is greater thafi(T', 1)+ the bound folCP(S) — CP(S’)| whenS and S’
pointwise differ by at mosb. Thus we need to examine further the gradient of
g(a, 1) with o, compared to the continuity bound 6#®(S). The argument might
have the character of an induction anusing the basis that when = 1/, the
infimum is trivially achieved by an interval because $Etsf that measure have no
effect in keepingsup{ CP(S) : SNT = @} below its maximuni'/2. Steps that
may help further it are:

e Showing that the infimum is always achieved by somélsetnd limiting
the Borel complexity off".

e Showing that ifT" achieves the infimum for measusig¢ ando’ < «, then
the infimum for measure’ is achievable by a subset 6f

In any event, we suspect that progress would require a fimturpative analysis
of the chordal-product function than we have employed is gaiper.
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B. Proof of Lemma 1

Lemma B.1. Lete(t) = In|t|—f(t). Thenforany with [t| < 1,0 < () < 4.

Proof. Firstof all for anyt, f(t) = In|1 — €*| < In|t|. We thus see thai(t) is
non-negative. Far € (0, 27), we have for the error functiog(t) = In || — ( ) =
In—LLl- Fort > 0, sint > ¢ — % So on this intervalg(t) < lnt =

2sin =
2 24

ln(l—Q—Z) For5; < o < o, In(1 + 2) 2:1:—“’”2—2. Sofor0 <t <1,

0<elt)<i+ % < % The lemma follows by symmetry g¢f(¢) andln |¢|. [J

Proof. (of Lemma 1)Ne have

m\2 T
/ In(sinz)dr = ——1In2,
0 2

See e.g. [6], p. 182, equation 55. Hence

2 2 t
f)dt = 2rln2 —I—/ Insin —dt
0 0 2

i t
= 27r1n2—|—2/ Insin —dt
0 2

m\2
= 27Tln2—|—4/ Insinxzdx = 0
0

Forj =0,1,,...,n — 1, define intervall; = [ (7 + )7”] By the above,

o n—1
I
2
= Z f(d f(t)dt

or 27r/n (n=1)=%
_ _2/0 dt+—Zf /2 F(t)dt. (B.1)

w/n

We will now bound the last two terms in the above expressioa.adsume:
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is even. The case whenis odd follows similarly.

or 224 (n=1)3F
— d) — d
£(d) / f(tydt

"= w/n

n—1 n—2
= IS p@ =Y [ s
d=2 d=1"1a

n/2 71
= N+ fn+1— ) -2 / o
"= d=1 "1
27T n/2 iy
= 2 f(d)+ fld-1)] —22
d=2
o n/2—1 %—1
= D @)+ fd+1) —22
d=
n/2—1 1271'
= > (W[f(d)+f(d+ 1)] -2 i f(t)dt). (B.2)
d=1 d

We now give a lower bound to prove Item (a) of Lemma 1. Sincelfet d <
n/2 — 1, f(t) is strict monotone increasing, we know that

ZUs)+ S+ 0] =2 [ f@d = =+ 1) - (),

Hence (B.2) is at least

d=1

Hence (B.1) is at least

s 2m/n n
21 =2 [ pei =)

0 27 .n
> 2/ e Vdy — —f(5
/() n )

2
= 4$inz — —ﬂln2.
n n

!Note that applying the Trapezoidal Rule to (B.2) only woutthbd the magnitude of this
term by O(1) bound instead 0b(1), asf”(t) = —1/(2 — 2cost) equals approximately
—n?/4xn? for t = 27 /n.
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Hence we conclude that
T
Z fd > — sm — —In2.
n
We now prove Item (b) of Lemma 1. Similar to the reasoning twinded

(B.2) from below, we get that (B.2) is at most

Hence (B.1) is at most

27 /n o
—2/0 Ftyde+ 2T g2

|3

Providedn > 7, we have by Lemma B.1 that

2m/n 27 /n
/ )t > / Int — e(t)dt
0 0

27r/n [t3]27r/n

o0t . 2 27 2%
= —lh—-———.
n n n In

Hence (B.1) is at mosiT In 2 + 47 4 47 4 211, 9 Hence

2

n 2w
Zf(d)ngn%+2+ln2+W.

C. Proof of Proposition 4

We first prove Item (a). Define the functigrit) = (r — t5-) f(¢). Then

r—1 n r2n
Z(T—d)f(d) < o o g(t)dt
d=1 n
2n
< r—t20) Intdt
2 m
r 2 r2c
- In tdt — t1n tdt
27'(_ 27 7T2 2T
rn 2m n? 2lnt t2 ,2r
= —[tlnt— -
ottt =t — 5l 1)
r2 2mr 1 2 3r2 1
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We now prove Item (b). Let = (r — 1)2Z. Then

r—1
(r—d)f(d)
d=1
«
> o [ gty
27'(' 0
(o4 t2
> (r—tﬁ)(lnt— —)dt {ByLemmaB.1}
2 0 2m 12
rn [¢ n? n’ ¢
= — [ Intdt—— | tl tdt—— t2dt t3dt
o 0 n 47T2/0 n / 487T
rn (7‘—1)2—7r ?7,2 t21nt t2 r— 1) 4 2
> —[tlnt—t]y " ——[———— ~ oz
2 g-lthnt—tg 2l 4]0 9n2
- 7“2—11 n 37~2+7~+1 rin?
— n —_ = - .
= 2 2r(r—1) 4 24 op?

D. Proof of Proposition 5

Suppose the adversary chooses a set of tBws size! and set of column&’ of
sizer. Let M be the minor ofF,, with rows R and columnsl’. By Theorem 6,
for any unit vectorf that is0-concentrated off’, f = F, f is eg concentrated
on R, whereegp > 1 — \/% Hence || M||z = max||q,—; |[Mal[2 < \/% Let
N be thel x (n — r) minor of F,, corresponding to row$ and columns not in
T. SinceNN*+ MM* = I, \is an eigenvalue oM/ M * if-and-only if (1 — \)

is an eigenvalue ofV N*. The singular values ol/ are the square roots of the
eigenvalues of\/ M*. Hence we conclude the smallest singular valuévof at

leasto?(N) > 1 — \/%, and hence that?(y/nN) > \/n — Vlr. Therefore
det(%NN*) > (vn — Vir)2.
By Theorem 3,

1
det(=NN*)= > |det(DFTgg)|*.
" |S|=1,SNT=0

Hence we conclude there exists a middy with rows R and columns avoiding
that has determinant at least

|det(M;)| > (Vi — Vir)! (n—r> 1/2‘



