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Chapter 1

Introduction

The P vs. NP conundrum, and similar questions posed by theoretical computer science, con-
tain profound mathematical content and carry immediate practical importance. Even without
resolution of the main problems, the theory of NP-completeness and more recent extensions
regarding hardness of approximation and pseudo-randomness, have been useful companions
for practitioners in the field indicating when problems may be too hard to solve. Furthermore,
hardness results do not solely have negative implications. For example, the security of most
cryptographic systems used in practice is based on unproven hardness assumptions. Also,
through the hardness vs. randomness paradigm, hardness of functions has applications in the
derandomization of algorithms.

However, proving hardness, i.e., proving lower bounds on the complexity of explicit func-
tions, has turned out to be extremely difficult. For example, currently we still cannot exclude
the possibility of solving SAT in linear time on a Turing machine. Traditional techniques
for reasoning about complexity—such as simulation and diagonalization—do not seem to be
adequate because of the so called relativization phenomena [BGS75]. Recently, researchers
have taken a new approach by studying Boolean circuit complexity. Circuits promise to lend
themselves better to mathematical analysis than Turing machines because they are static finite
objects, and their analysis is not subject to diagonalization. Instead of proving P 6= NP directly,
the focus in this approach is to prove the stronger result that SAT does not have polynomial-size
Boolean circuits.

Unfortunately, proving lower bounds on general Boolean circuits has turned out to be
even more difficult. Currently, there is no explicit Boolean function in NP∪E known to have
super-linear circuit size. The current best-known lower bound on the size of an { ∧ , ∨ ,¬}-
circuit of an explicit function is 5n− o(n) [IM02]. Most progress with circuit complexity has
been made by restricting the model. For example, exponential lower bounds are known for
constant-depth circuits computing the parity function [FSS81, Hås86, Yao85, Ajt83]. Progress
has not been made much beyond this low level, e.g., for all we know non-uniform TC0 might
still contains all of nondeterministic exponential time! We have a good indication of where
current techniques are lacking, namely, all circuit lower bounds to this date have been obtained
by so-called natural proofs [RR97]. In the presence of pseudo-random generators (PRGs) of
certain hardness, for example in TC0, this type of argument is provably self-defeating. Namely,
proving circuit lower bounds for a given class would yield a statistical test for breaking PRGs

1



2 CHAPTER 1. INTRODUCTION

contained in that class.
Arguably, the most promising approach for obtaining “non-natural” proofs is by the in-

volvement of sophisticated concepts from mathematics that are hard in a certain respect. A
promising area for such concepts is algebraic geometry. Algebraic geometry has a long history
of development and has many beautiful techniques and deep results. It already has a track
record of providing lower bounds, in work by Strassen et al. [BS82][Str73b], Björner, Lovász
and Yao [BLY92], and Ben-Or [Ben83].

In order to increase the likelihood of being able to apply algebraic techniques, researchers
have considered arithmetical circuits instead of Boolean circuitry. Arithmetical circuits are
circuits built from addition and multiplication gates computing a polynomial in the input vari-
ables. An analog to the NP-theory exists in this model in the form of Valiant’s classes VP
and VNP [Val79a, Bür98]. Separation of these classes provides the same intellectual chal-
lenge as the P vs. NP question. Over fields of characteristic zero, under assumption of
the generalized Riemann hypothesis (GRH), it can be shown that VP = VNP implies that
NC3/poly = PH/poly, and #P/poly = FP/poly [Bür00].

However, in this model the best-known lower bounds for explicit functions are obtained by
Strassen’s degree method [BCS97]. This method relates the size of the arithmetical circuit to
a well-studied algebraic invariant, namely the geometric degree, of a certain geometric object
obtained from the circuit. Unfortunately, the best possible lower bound we can prove with
this technique for an n-variate polynomial of degree d is Ω(n logd), i.e., barely non-linear for
d = nO(1).

In order to make further progress, researchers have considered more restricted arithmetical
circuits [SW99, Shp01]. A natural one is the restriction to constant depth. Contrary to the
Boolean case, for fields of characteristic 0 (such as the complex numbers C, the real numbers
R, or the rational numbers Q) no super-polynomial lower bounds are known. For finite fields
the situation is similar to the Boolean case, and exponential lower bound are known [GR98].

1.1 ΣΠΣ-formulas
In characteristic zero, one of the first non-trivial constant-depth models is that of ΣΠΣ-
formulas, i.e., sums of products of sums of input variables. These networks turn out to be
surprisingly powerful. They capture a general form for computing polynomials via Lagrange
interpolation. For example, the elementary symmetric polynomial of degree d in n variables has
O(n2) ΣΠΣ-formula size, a result first noted by Ben-Or (See Chapter 2). In [SW99] quadratic
lower bounds are proved in this model, and optimal lower bounds are obtained for high-degree
elementary symmetric polynomials.

Their technique is based on considering the behaviour of the higher order partial deriva-
tives of a given polynomial f , under restriction to arbitrary affine linear subspaces. For a
polynomial f in variables x1,x2, . . . ,xn, one can define the dth-order partial derivative ∂d f

∂X with
respect to a multiset of variables X of size d syntactically, with no need for considering a
limiting process. Letting ∂d( f ) stand for the set of all such dth-order partial derivatives of f ,
the dimension of the linear span of the collection of polynomials in ∂d( f ) defines a measure
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of complexity of the polynomial f . One can generalize this to considering the dimension of
the set of dth-order partial derivatives after restriction to some affine linear space A, which is
denoted by dim[∂d( f )|A]. This defines a “progress measure” that is subadditive: for any f ,g
and A, dim[∂d( f + g)|A] ≤ dim[∂d( f )|A]+ dim[∂d(g)|A]. Let us sketch one of the lower bound
arguments of [SW99].

“Reasonable” estimates can be given that bound dim[∂d(∏r
i=1 Li)|A] for a product of linear

forms L1,L2, . . . ,Lr, provided the degree r is “low”. For high degree multiplications this cannot
be done. They are dealt with by cancelling them out by means of the restriction to an affine lin-
ear space. Polynomials f for which dim[∂d( f )|A] is “high” for any affine linear space A can be
seen to require large size ΣΠΣ-formulas by means of a trade-off argument. Namely, if there are
many high degree multiplication gates, the formula must be large to start with, but otherwise, it
becomes possible to define a restriction to an affine space A, which is designed to set to zero at
least one input of each high degree multiplication gate. Next using the subadditivity property
and the “reasonable” bound for low degree multiplication gates, and the fact that dim[∂d( f )|A]
is high, one obtains a lower bound on the multiplicative size of the formula for f .

In Chapter 3 we continue the study of ΣΠΣ-formula. We wil show a refinement of the
above described partial derivatives technique, which enables us to account for the number of
addition gates in the formula, rather than just multiplicative size. Taking circuit size to be
the total number of wires in the circuit, we obtain somewhat sharper lower bounds than the
Shpilka-Wigderson method would imply for a variety of polynomial families.

Also in Chapter 3, we introduce a companion technique for proving ΣΠΣ-formula size
lower bounds, which we’ll show to be useful in case the partial derivatives technique fails due
to an a priori low value of dim[∂d( f )]. Our technique exploits a certain cancellation avoidance
property of polynomials under restriction to affine linear spaces. The crucial notion is that of
resistance of a polynomial f . Resistance depends on whether f , or more generally whether
some higher order partial derivative of f , is non-constant on all affine linear spaces of a given
dimension k. The smaller this dimension k, the more resistant the polynomial f is, and the
larger the ΣΠΣ-formulas for computing f are required to be.

All techniques, those of [SW99] and ours, currently known for proving ΣΠΣ-formula, are
limited to proving at best quadratic lower bounds. A major open problem is to prove super-
polynomial lower bounds for explicit functions on ΣΠΣ-formula size. Likely candidates to
require exponential size in this model are the determinant and permanent polynomials. In light
of [Val79a], polynomial-size ΣΠΣ-formulas for either one of these implies that all polynomials
in VP have polynomial-size depth 3 formulae. Note that recently Mulmuley and Sohoni pro-
posed a representation theoretic approach to prove the permanent requires super-polynomial
arithmetical circuit size [MS01].

1.2 Restricting the Role of Constants
One of the central mysteries in arithmetic circuit complexity over infinite fields F is the com-
putational power conferred by the ability to use “for free” constants of arbitrary magnitude
and/or precision from F . These constants are a major technical obstacle in relating arithmetic
complexity to Boolean circuit complexity theory, and recent methods by translation to large
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finite fields (see [Bür00] after [Koi96]) seem to have limited domain of application. It is com-
monly observed (e.g. by [Mor73, Cha98, Mul99]) that classic important algorithms employ
only simple constants. A major exception is polynomial interpolation, but even here it seems
that over fields containing the rationals, small constants with enough bits of precision can be
employed equally as well as large ones.

To probe the significance of (the magnitude of) field constants, several researchers have
obtained (often asymptotically tight) size lower bounds on arithmetical circuits in which a
uniform bound is imposed on constants. Morgenstern [Mor73] proved that bounded-coefficient
circuits (henceforth, bc-circuits) need size Ω(n logn) to compute the linear transformation for
the Fast Fourier Transform. Chazelle [Cha98] obtained similar bounds for geometric range-
searching problems, while Lokam [Lok01] obtained related size-depth tradeoffs for bc-circuits
computing linear transformations with certain degrees of rigidity. More recently Raz [Raz02]
broke through by obtaining Ω(n logn) lower bounds for a natural bilinear function, namely
multiplication of two

√
n×√n matrices. Bürgisser and Lotz [BL03] extended Raz’s ideas to

obtain tight Ω(n logn) bounds on bc-circuits for cyclic convolution, and thence for polynomial
multiplication and related bilinear functions. These lower bounds hold even when the bc-
restriction is lifted for O(n1−ε)-many “help gates.” The natural question is, can one obtain
similar lower bounds without the bc-restriction at all?

We will continue the study of bilinear circuits with bounded coefficients. In particular
our focus will be on the cyclic convolution mapping. It can be computed using the discrete
Fourier transform and its inverse by a O(n logn) size bounded coefficient bilinear circuit, as is
a well-known folkore result. Our goal is to generalize the arguments of [Raz02, BL03] to more
general models of computation that allow for more unbounded coeffcients.

For this purpose we introduce in Chapter 4 our main bridging concept, resulting in a model
whose computational power lies somewhere in between the general unbounded coefficient and
bounded coefficient models. This is done by allowing certain linear transformations to be done
by the bilinear circuit at the input free of charge. For a bilinear function f (~x,~y), we consider the
orbit of f under the natural “double action” G f = {λx,y. f (Ex,Dy) : D,E ∈G} of some group
G of n× n matrices. Such actions on multilinear maps f , like the determinant and permanent
polynomials, form the basis of Mulmuley and Sohoni’s above mentioned proposal on super-
polynomial (arithmetical or Boolean) circuit lower bounds [MS02]. Note that this model not
only works past the above-mentioned O(n1−ε) limit on “help” gates with unbounded constants,
it also does not constrain the linear circuit complexity of D and E themselves, which may be
as high as quadratic.

We note first that taking G to be all of SLn(C), the group of complex matrices of deter-
minant 1, is close to the arbitrary-coefficients case from the standpoint of lower bounds. This
means, however, that partial progress should further restrict either the matrices D,E or some
other aspect of the circuits. We extend the lower bounds in [BL03] when D,E (also) have
bounded condition number.

In Chapters 5 and 6 we will invesigate the scenerio where the matrices D and E are re-
stricted to be diagonal, focusing on the circular convolution bilinear function. Here one is
naturally lead to questions about minors of the n× n Fourier matrix DFTn. Relations will be
established between our aims of proving lower bounds for the diagonal orbit model and discrete
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analogues of the Heisenberg uncertainty principle. Part of our lower bounds will be derived
from the Donoho-Stark discrete uncertainty principle [DS89], which gives bounds on the mea-
sure of simultaneous concentration of an n-vector x and its discrete Fourier transform DFTnx.
As a main result, which will be of independent interest, we will establish a quantative bound
on the expected value of the determinant of certain Random Vandermonde matrices with nodes
on the unit circle in the complex plane. This result is then used to prove circuit lower bounds.
As a by-product we will deduce also an uncertainty type relation for the discrete analog of
the band-limited functions. Certain limitations of this approach will be probed by considering
results known about the so-called prolate spheroidal wave functions studied in [Sle78].

1.3 Depth Restrictions
Finally in Chapter 7, we will consider arithmetical circuits of constant bounded depth (not just
depth 3 as was done with the ΣΠΣ-formulas). First we will establish several structural results
that focus on the relation that exists between arithmetical circuits computing a polynomial,
and circuits that compute all of it partial derivatives. An analogue will be proved of the Baur-
Strassen Derivative Lemma [BS82], in which a circuit for a polynomial p is transformed into a
circuit that compute a linear combination of all the partial derivatives of p with only constant
factor increase in size. This form of the Derivative Lemma has the additional advantage that it
truly does not introduce any new constants in the circuit. This is a property the Baur-Strassen
lemma notoriously is known not to satisfy. We will extend some of the results of [Lok01] to a
particular kind of bounded depth bounded constant ”linear combination” bilinear formula.

Next, we will consider bounded depth bilinear circuits without any kind of assumption
on the magnitude of constants. In [RR03] a weakly non-linear lower bound is proved for the
matrix multiplication bilinear map. The proof involves a “superconcentrator Lemma” to prove
the lower bound. We combine this lemma with the discrete uncertainty principle for cyclic
groups of prime order, as proved by Tao [Tao91], to obtain a non-linear lower bound for the
cyclic convolution bilinear map.
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Chapter 2

Preliminaries

2.1 Background Material
All rings are assumed to be commutative and have a multiplicative identity 1. We write [n] as
shorthand for {1, . . . ,n}. We assume familiarity with standard notation for complexity classes
such as P = ∪k≥0DTIME[nk], NP = ∪k≥0NTIME[nk], and so on.

2.1.1 Computational Models
Let R[x1, . . . ,xn] denote the polynomial ring in variables x1, . . . ,xn over a ring R.

Definition 2.1.1. Let R be a ring and x1,x2, . . . ,xn be a set of variables. An arithmetical circuit
over R is a 3-tuple (G,γ,κ), where G = (V,E) is a directed acyclic graph and γ : V → R∪
{x1,x2, . . . ,xn}∪{+,×} is the gate identification function and κ : E → R is the wire constants
function, satisfying:

1. if in-degree(v) = 0, then γ(v) ∈ R∪{x1,x2, . . . ,xn},

2. if in-degree(v) > 0, then γ(v) ∈ {+,×},

The vertices and edges in an arithmetical circuit are called gates and wires. Gates with
in-degree 0 are called input gates, or inputs for short. All other gates are called regular gates.
For a regular gate v, if γ(v) = +, then v is called an addition gate, and if γ(v) = ×, v is called
a multiplication gate. For a gate v, a wire of the form (u,v) is called an input wire to v, and a
wire of the form (v,u) is called an output wire from v. Note that constants can appear on wires
and as inputs.

Definition 2.1.2. Given an arithmetical circuit C = (G,γ,κ) we define the polynomials com-
puted by C to be the function φ : V [G]→ R[x1, . . . ,xn] inductively as follows:

1. φ(v) = γ(v), if v is an input gate,

7
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2. φ(v) = ∑r
i=1 κ(ei)φ(vi), if v is an addition gate with input wires e1 = (v1,v), e2 =

(v2,v), . . . ,er = (vr,v), and

3. φ(v) = ∏r
i=1 κ(ei)φ(vi), if v is a multiplication gate with input wires e1 = (v1,v), e2 =

(v2,v), . . . ,er = (vr,v).

In the above definition, φ(v) is called the polynomial computed by the gate v. If for a polyno-
mial p ∈ R[x1,x2, . . . ,xn] there exists a gate v ∈V [G] for which φ(v) = p, we say p is computed
by C .

The size of an arithmetical circuit C = (G,γ,κ), denoted by s(C ), is defined to be the total
number of wires in G. The multiplicative and additive size of C , denoted by s∗(C ) and s+(C ),
respectively are defined by

s∗(C) = |{(u,v) ∈ E[G] : γ(v) =×}|,

and

s+(C) = |{(u,v) ∈ E[G] : γ(v) = +}|.

Definition 2.1.3. An arithmetical formula is an arithmetical circuit F = (G,γ,κ) for which
all regular gates have out-degree at most one. For formulae, their size, multiplicative size and
additive size are denoted by `(F ), `∗(F ), and `+(F ), respectively.

Note that in the above definition we did not provide subtraction and division gates. The
former can be handled in our model using addition gates with−1 on the second input wire. By
standard robustness results [BCS97], it is not necessary to include division gates for computing
polynomials.

Definition 2.1.4. Let p1, p2, . . . , pm be a collection of polynomials from R[x1, . . . ,xn]. The cir-
cuit/formula complexity of p over R, denoted by sR(p1, p2, . . . , pm) and `R(p1, p2, . . . , pm)
respectively, is the size of a smallest circuit/formula computing all of p1, p2, . . . , pm. For multi-
plicative and additive size, these are denoted by s2

R (p1, p2, . . . , pm) and l2R (p1, p2, . . . , pm), with
2 ∈ {∗,+}.

In case it is clear from the context which underlying ring R we are working over, we will
drop the subscript R in our notation. Sometimes the underlying field matters. For example,
over the complex numbers C, `∗C(x2

1 + x2
2) = 1 witnessed by the formula (x1 + ix2)(x1− ix2),

but over the real numbers R one has `∗ℜ(x2
1 + x2

2) = 2. Suprisingly however, many results and
properties are independent of R, or care only whether R is finite or infinite, and if so whether
its charateristic is 0, 2, or an odd prime.

We will now define several computational models of importance, that satisfy additional
restrictions.
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2.1.2 ΣΠΣ-formulae
As the main object of study in Chapter 3 we have the following model introduced by Shpilka
and Wigderson [SW99]:

Definition 2.1.5. A ΣΠΣ-formula is an arithmetical formula F = (G,γ,κ) such that on any
directed path (u1,u2),(u2,u3), . . . ,(um−1,um) in G there do not exists indices 1≤ i < j < k≤m
such that γ(ui) = γ(uk) =× and γ(u j) = +.

In other words, a ΣΠΣ-formula can be thought of as having the following structure. First
there is a group of addition gates computing linear forms of the input variables, then there is a
group of multiplication gates that multiply these linear forms. Finally there is a last group of
gates that compute linear combinations of these products.

For a collection of polynomials p1, p2, . . . , pm we will denote the size of a smallest ΣΠΣ-
formula computing p1, p2, . . . , pm by `3,R(p1, p2, . . . , pm). Similarly as before, we define `∗3,R
and `+

3,R for multiplicative and addive complexity. Note that in Chapter 3 the underlying ring is
assumed to be an arbitrary field of characteristic 0, e.g., the complex numbers C, and we will
drop the R subscript there.

Given a ΣΠΣ-formula computing a single polynomial p with s multiplication gates in some
fixed order, we can write

p =
s

∑
i=1

Mi,

where
Mi = Πdi

j=1li, j,

and
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0.

Here di is the in-degree of the ith multiplication gate, and ci, j,k is nonzero if and only if there
is a wire from xk to the addition gate computing li, j. Note that li, j is homogeneous of degree
1, i.e., strictly linear, if ci, j,0 = 0, and is affine linear otherwise. For an affine linear form l, we
will denote its strictly linear part by lh.

2.1.3 Linear and Bilinear Circuits
Definition 2.1.6. A circuit L = (G,γ,κ) is called a linear circuit if it has no multiplication
gates, i.e., for each gate v, γ(v) = +, γ(v) ∈ R, or γ(v) = xi for some variable xi. If for no gate
v, γ(v) ∈ R, the circuit is called homogeneous.

For linear circuits, R will be assumed to be a field. In a homogeneous linear circuit each
gate computes a homogeneous linear form: for each g ∈V [G], φ(g) = a1x1 +a2x2 + . . .+anxn
with ai ∈ R. An ordered list of k gates (g1,g2, . . . ,gk) thus define a linear transforma-
tion Rn → Rk given by mapping a = (a1,a2, . . . ,an) 7→ (φ(g1)(a),φ(g2)(a), . . .,φ(gk)(a)). A
k× n matrix A likewise determines a linear transformation Rn → Rk defined by mapping
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a = (a1,a2, . . . ,an)T 7→ Aa. We denote by slin(A) the minimum size of a linear circuit that
computes this linear transformation.

For bilinear circuits the set of variables is assumed to be partitioned into two sets
{x1,x2, . . . ,xn} ∪ {y1,y2, . . . ,ym}. We will study the following homogeneous bilinear circuit
model:

Definition 2.1.7. A homogeneous bilinear circuit is an arithmetic circuit B = (G,γ,κ) satis-
fying:

1. for each multiplication gate v, the polynomial φ(v) computed at v is a homogeneous
bilinear form in variables {x1,x2, . . . ,xn}∪{y1,y2, . . . ,ym}, and

2. no input gate v has γ(v) ∈ R.

For a set of bilinear polynomials p1, p2, . . . , pk ∈ R[x1,x2, . . . ,xn,y1,y2, . . . ,ym], we de-
note bilinear circuit complexity by sb,R(p1, p2, . . . , pk). Similarly as before we define notation
s∗b,s

+
b , lb, l∗b , and l+b for additive/multiplicative circuit/formula size.
Any homogeneous circuit computing a linear transformation wlog. can be assumed to

have no multiplication gates. Any homegeneous circuit computing a set of bilinear forms can
therefore wlog. be assumed to a homegeneous bilinear circuit of the structure defined above.

The above models will be considered under restriction of constants on the wires to bounded
coefficients. Generally, one could define (families of) bounded-coefficient circuits over C or R
by restricting constants on the wires to have norm O(1). We will adhere to a stricter definition,
with the knowledge that typical results easily generalize to O(1) size constants:

Definition 2.1.8. A circuit C = (G,γ,κ) over C or R is called a bounded-coefficient circuit if
for every e ∈ E[G], |κ(e)| ≤ 1.

We will use the sub/superscript “bc” to indicate bounded coefficient size of polynomials.
For bounded coefficient homogeneous linear circuits, lower bounds can be obtained through
the following result by Morgenstern:

Theorem 2.1.1 ([Mor73]) Let A be an n×n matrix, then sbc
lin(A)≥ log2 |det(A)|.

We define the discrete Fourier transform matrix DFTn by

(DFTn)i j = ωi j,

where ω = e2πi/n. Its unitary version we denote by Fn:

Fn =
DFTn√

n .

The conjugate transpose of a matrix A will be denoted by A∗. A matrix A is called Hermitian
or self-adjoint if A∗ = A. A matrix is called unitary if AA∗ = A∗A = I. As indicated above
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FnF∗n = F∗n Fn = I. A little elementary linear algebra shows:

|det(DFTn)|2 = det(DFTn)det(DFTn) = det(DFTn)det(DFT ∗n ) = nn.

So by Morgensterns result:
sbc

lin(DFTn)≥
n
2 log2 n,

which is asymptotically tight, given that the circuits for DFTn as given by Cooley and Tukey
[CT65] are of size O(n logn) and have bounded coefficients.

2.1.4 Perturbation Theory
We require the following basic results from perturbation theory, see e.g. [Bha97]. For vec-
tor x = (x1,x2, . . . ,xn) ∈ Cn, we define its `2-norm by ||x||2 =

√

∑n
i=1 |xi|2. The `2-norm (or

spectral norm) of an m×n matrix A is defined by

||A||2 = max
x6=0

||Ax||2
||x||2

,

and the Frobenius norm is defined by

||A||F =

√

m
∑
i=1

n
∑
j=1
|Ai j|2.

An eigenvalue of a complex square marix A is a complex number λ for which there exist
a vector x such that Ax = λx. For Hermitian matrices all eigenvalues are real numbers. We
denote the ith largest eigenvalue of an n× n Hermitian matrix A by λi(A), i.e. we have −∞ <
λn(A)≤ λn−1(a)≤ . . .≤ λ1(A) < ∞.

Theorem 2.1.2 (Weyl’s Perturbation Theorem) Let A and E be Hermitian matrices. Then

max
j
|λ j(A)−λ j(A+E)| ≤ ||E||2.

We also need the following theorem.
Theorem 2.1.3 (Hadamard Inequality) For an n × n complex matrix A with columns
a1,a2, . . . ,an,

|det(A)| ≤
n

∏
i=1
||ai||2.

Intuitively speaking, for an n× n matrix A, |det(A)| is the volume of the parallelipiped
spanned by its columns (or rows). This volume is maximized by making the columns orthog-
onal, and it can then be computed by just taking the n-product of the lengths of these vectors.
This is essentially the content of the above theorem.
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2.1.5 Cyclic Convolution
Definition 2.1.9. The cyclic convolution x◦y of two n-vectors x = (x0,x1, . . . ,xn−1)T and y =
(y0,y1, . . . ,yn−1)

T is the n-vector (z0, . . . ,zn−1)
T with components

zk = ∑
i+ j≡k mod n

xiy j

for 0≤ k < n.

For example, for n = 5, we get

x◦ y =













x0y0 + x4y1 + x3y2 + x2y3 + x1y4
x1y0 + x0y1 + x4y2 + x3y3 + x2y4
x2y0 + x1y1 + x0y2 + x4y3 + x3y4
x3y0 + x2y1 + x1y2 + x0y3 + x4y4
x4y0 + x3y1 + x2y2 + x1y3 + x0y4













.

When fixing x = a = (a0, . . . ,an−1)T , the induced map on y is computed by the circulant matrix
Circ(a), which we define by

Circ(a) =















a0 an−1 · · · a2 a1
a1 a0 · · · a3 a2
... ... ... ...

an−2 an−3 · · · a0 an−1
an−1 an−2 · · · a1 a0















.

That is, we have that
x◦ y = Circ(x)y = Circ(y)x.

Convolution can be computed using the Fourier transform, according to the following folklore
result:
Theorem 2.1.4 (The Convolution Theorem) For any a ∈ Cn,

Circ(a) = Fndiag(DFTna)F∗n .

In the above, for a vector x = (x1,x2, . . . ,xn)T ,

diag(x) =















x1 0 · · · 0 0
0 x2 · · · 0 0
... ... ...
0 0 · · · xn−1 0
0 0 · · · 0 xn















.

Through the convolution theorem and using the O(n logn) circuits for the Fourier trans-
form, we thus obtain

sbc(x◦ y) = O(n logn).
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We also find it convenient to consider the “half convolution” defined by HCirc(x)y, where
HCirc(a) is the lower-triangular matrix















a0 0 · · · 0 0
a1 a0 · · · 0 0
... ... ...

an−2 an−3 · · · a0 0
an−1 an−2 · · · a1 a0















.

Then x ◦ y can be obtained by adding HCirc(x)y to the inverted vector
HCirc(xn−1,xn−2, . . . ,x1)(y1,y2, . . . ,yn−1), which can be done by bilinear (bc) circuits with
linearly many extra + gates. Thus lower bounds on x◦y extend immediately to HCirc(x)y. The
convenience is that HCirc(x)y is definable by recursion from HCirc(x1, . . . ,xn−2)(y1, . . . ,yn−2),
needing only linearly-many extra binary ∗ gates applied to x0,y0 and elements of x0, . . . ,xn−1
and y0, . . . ,yn−1 and preserving the bilinear format. Namely, zero out the first column
and main diagonal of HCirc(a), observe that the piece in between is the lower triangle of
HCirc(a1, . . . ,an−2) multiplying the interior n− 2 elements of y, and restore the summands
in the first column and main diagonal involving x0 and y0. We use this fact in the proof of
Theorem 4.0.1.

2.1.6 Families of Polynomials
Let R be a ring. In general if l(n) is a strict monotone increasing function on natural numbers
and

P = {pn ∈ R[x1,x2, . . . ,xl(n)]}n>0

is a family of polynomials one can define the (non-uniform) complexity as the function defined
by s(n) = s(pl(n)). For uniform complexity one would requires in addition the existence of
some Turing machine that can output descriptions of minimum circuits for each n, but in this
document we will only consider non-uniform complexity.

Let Sn be the symmetric group. The determinant polynomial ∆n and permanent polynomial
Πn on n2 variables are defined by

∆n = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

xi,σ(i), Πn = ∑
σ∈Sn

n
∏
i=1

xi,σ(i),

where sgn(σ) is the sign of the permutation σ. Note that Πn is the same as ∆n except without
the sign alternations, and these are the same polynomial when the underlying field has char-
acteristic 2. Valiant [Val79a] proposed a theory analogous to the theory of NP-completeness
in which the determinant and permanent play the roles of feasible and infeasible complete
problem. The determinant has polynomial size arithmetical and Boolean circuits. The perma-
nent is strongly suspected not to have polynomial size circuits of either kind [Val79b, Bür98].
Raz [Raz04a] recently showed that any multilinear formula computing the permanent or de-
terminant must have size nΩ(logn). Both ∆n and Πn are expected to require exponential size
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in the ΣΠΣ-formula model. However, the best-known lower bound for both ∆n and Πn is
Ω(n4/ logn), i.e., Ω(N2/ logN) in the number N = n2 of variables [SW99].

Next we define the elementary symmetric polynomial of degree d:

Sd
n = ∑

T⊂[n]

|T |=d

∏
i∈T

xi.

Ben-Or observed the surprising fact that Sd
n has O(n2) size ΣΠΣ-formulas, where the constant

in the big-O does not depend on d. This is done as follows. Define the polynomial g(t) =
Πn

t=1(t + xi). Observe that g(t) = ∑n
d=0 Sd

n(X)tn−d. We can compute g(t0), . . . ,g(tn) for any
given constants t0 . . .tn in parallel with n + 1 multiplication gates of degree n. Now, from the
Lagrange interpolation formula, it follows that the coefficient of tn−d , which equals Sd

n , is a
linear combination of g(t0) . . .g(tn). Hence we obtain a ΣΠΣ-formula for Sd

n using a total of at
most 3n2 +4n+1 wires. In [SW99] the following lower bound was obtained for Sd

n :

`∗3(S2d
n )≥max

(

Ω(
n

2d
d+2

d ),Ω(nd)

)

,∀d ≤ 4n/9.

In light of the Ben-Or upper bound, we see that this is tight for d = Ω(n).

2.1.7 Algebraic Geometry
For results and definitions stated in this section see [CLO92, BCS97].
Definition 2.1.10. Let R be a ring. A subset I of R is an ideal if,

1. for any a ∈ I, for all r ∈ R, ra ∈ I, and

2. for all a,b ∈ I, a+b ∈ I.

For example, if a1, . . . ,as are elements of R, then the set of all elements of the form r1a1 +
. . .+rsas, with all ri ∈R, is an ideal. It is called the ideal generated by a1, . . . ,as, and denoted by
a1R+ . . .+asR or just (a1, . . . ,as). If for an ideal there exist finitely many elements a1, . . . ,as,
such that I = (a1, . . . ,as), then I is called finitely generated. It is a fact that the polynomial ring
F[x1, . . . ,xn] is Noetherian, implying that all its ideals are finitely generated.

Let I,J be ideals. Observe that I ∩ J is an ideal, and that the set of all elements a+b with
a ∈ I,b ∈ J, is an ideal. We denote it by I + J. More generally, for a family of ideals {Is}s∈S,
define ∑s∈S Is, to be the set of all sums ∑s∈S as, with as ∈ Is, as 6= 0, for only finitely many s.
Let I · J be the set of all finite sums ∑i aibi, with ai ∈ I,bi ∈ J; then I · J is an ideal.

Now let R = F [x1, . . . ,xn]. The set Fn, of all n-tuples (a1, . . . ,an) with ai ∈ F is called
n-dimensional affine space over F . The elements of Fn are called points.
Definition 2.1.11. Let I be an ideal in R. The affine variety defined by I, denoted by V (I), is
the subset of tuples (a1, . . . ,an) ∈ Fn, such that f (a1, . . . ,an) = 0, for every polynomial f ∈ I.
We have the following elementary proposition:
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Proposition 2.1.5 For ideals I,J,{Is}s∈S in R, polynomials f1, . . . , fs ∈ R,

1. V (∑s∈S Is) = ∩s∈SV (Is).

2. V (I · J) = V (I)∪V (J).

3. V (R = (1)) = /0.

4. V ((0)) = Fn.

The above Proposition shows that we can define a topology on n-dimensional affine space, by
taking as closed sets all varieties in Fn. This topology is called the Zariski topology.
Proposition 2.1.6 Let V be a subset of Fn. Then the set of all polynomials f ∈ F[x1, . . . ,xn]
such that f (a1, . . . ,an) = 0, for every point (a1, . . . ,an) ∈ V, is an ideal. This ideal is denoted
by I(V).

We would like to define the geometric degree of an affine variety. In order to do so we
must introduce the concept of projective space. In the following, let R = F[x0, . . . ,xn].
Definition 2.1.12. Let Pn be the set of all (n+1)-tuples (a0, . . . ,an) ∈ Fn+1/(0, . . .,0), where
we identify points (a0, . . . ,an) and (b0, . . . ,bn), if there exist a nonzero λ∈F , such that ai = λbi,
for all i ∈ {0, . . . ,n}. Pn is called n-dimensional projective space. The equivalence class of a
point (a0, . . . ,an) is denoted by [a0 : . . . : an].

A polynomial is called homogeneous, if all its monomials are of the same degree. An
ideal I ∈ R is called homogeneous if it can be generated by homogeneous polynomials. For a
polynomial f ∈ F[x1, . . . ,xn], it homogenization f h is defined by xdeg( f )

0 f ( x1
x0

, . . . , x1
x0

).

Definition 2.1.13. Let I be a homogeneous ideal in R. Let V (I) be the set of point (a0 : . . . :
an) ∈ Pn such that f (a0, . . . ,an) = 0, for all homogeneous f ∈ I. V (I) is called the projective
variety defined by I. Conversely, if V is a subset of Pn, then the ideal generated by all homoge-
neous polynomials f ∈ F[x0, . . . ,xn] that vanish on V , is called the ideal of the variety V , and
denoted by I(V).

As in affine space, the set of all varieties in Pn forms a topology. We can embed n-
dimensional affine space into Pn via the map φ : Fn→ Pn, defined by mapping (a1, . . . ,an) to
[1 : a1 : . . . : an].

For a homogeneous ideal I in R, let I(t) be the set of all homogeneous polynomials of I
of degree t, and let R(t) be the set of all homogeneous polynomials of degree t. I (t) is a vector
subspace of R(t). Define HI(t) = codimension of I(t) in R(t). The function HI(t) is called the
Hilbert function of the ideal I. We have the following classical result.

Theorem 2.1.7 (Hilbert-Serre, see [BCS97], p. 178) Let I be a homogeneous ideal of R =
F[x0, . . . ,xn], and assume that V (I) is nonempty and of dimension d. Then there exist unique
integers h0,h1, . . . ,hd , such that the polynomial

h(T ) =
d
∑
j=0

h j(
T
d− j )



16 CHAPTER 2. PRELIMINARIES

satisfies h(t) = HI(t), for all sufficiently large t ≥ 0. The uniquely determined polynomial h, is
called the Hilbert polynomial of the ideal I.

Definition 2.1.14. We define the geometric degree GDEG(I) of the homogeneous ideal I, to
be the uniquely determined integer h0 of Theorem 2.1.7. The geometric degree of a projective
variety V is defined as the geometric degree of I(V).

The above is the classical definition of geometric degree of a projective variety found in
algebraic geometry.

Definition 2.1.15. A subset V of a topological space X is irreducible, if it is nonempty, and
whenever we can write V = U ∪W , for sets U and W that are closed in V , then one of U and
W equals V .

Affine and projective n-space are Noetherian topological spaces, which implies that every
variety V has a unique decomposition V = V1 ∪ . . .∪Vs into irreducible varieties, up to order
of terms. The Vi’s are called the components of V . For an ideal I, define the radical of I to be
the ideal { f | ∃n > 0, f n ∈ I}. The radical of I is denoted by

√
I. A cornerstone of algebraic

geometry is the following theorem:

Theorem 2.1.8 (Hilberts’s (Strong) Nullstellensatz) Over algebraically closed fields, for
any ideal I, it holds that

I(V(I)) =
√

I.

This gives a 1-1 correspondence between radical ideals and varieties called the algebra-
geometry dictionary. An ideal I is called primary, if for every a /∈ I, for every b with ab ∈ I, it
holds that bn ∈ I, for some n > 0. An ideal I is called prime, if for every a,b∈ R, if ab∈ I, then
a or b is in I. In the algebra-geometry dictionary prime ideals correspond 1-1 with irreducible
varieties. Every ideal I can be written as an intersection I = I1∩ . . .∩ Is of primary ideals, called
the primary decomposition of I, such that V (I1)∪ . . .∪V (Is) is a decomposition of V (I) into
irreducible components, and with radicals

√
I j being unique prime ideals.

Definition 2.1.16. For a non-empty affine variety V , let V1, . . . ,Vs be the irreducible compo-
nents of the closure of φ(V ) in the Zariski topology. We define1 the affine geometric degree
gdeg(V ) of V by

s
∑
i=1

GDEG(Vi),

This can be computed from any ideal I such that V = V (I) by calculating a primary decompo-
sition of Ih as I1∩ . . .∩ Is and then summing GDEG(

√
I j) over the factors. By convention we

let gdeg( /0) =−1.

1Caution to the reader: this differs from [BCS97], def. 8.22., by decomposing φ(V ) rather than V . This makes
the affine case subordinate to the projective case, and Theorem 2.1.9 merely specializes the statement in [BCS97].
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Two facts about affine geometric degree:

1. gdeg(Fn) = 1.

2. If f is a polynomial of degree d ≥ 1, then gdeg(V ( f ))≤ deg( f ).

The main fact we will use about degree is the following from of Bézout’s Theorem stated as an
inequality:
Theorem 2.1.9 (cf. [BCS97], p. 181) For affine varieties X and Y , we have that

gdeg(X ∩Y )≤ gdeg(X) ·gdeg(Y ).
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Chapter 3

Lower Bounds on ΣΠΣ-formulae

In contrast to the case of Boolean circuit complexity, in arithmetical circuit complexity we
do not currently have exponential lower bounds (for “natural” mathematical functions) against
constant-depth circuits, or even constant-depth formulas, in case the underlying field has char-
acteristic zero. Shpilka and Wigderson [SW99] noted that such lower bounds are unknown
even for formulas that are sums-of-products-of-sums, the ΣΠΣ formulas defined in Chapter 2.

These formulas have notable upper-bound power because they can carry out forms of La-
grange interpolation, including that needed to compute the symmetric polynomials Sd

n (defined
to be the sum of all degree-d monomials in n variables) in quadratic size. This heightens the
contrast because the Boolean majority function, which is analogous to Sdn/2e

n , requires exponen-
tial size in constant-depth Boolean circuits [Hås88]. Thus ΣΠΣ formulas present a substantial
challenge for lower bounds, as well as being a nice small-scale model to study.

The multiplicative size `∗ of an arithmetical formula or circuit with gates of bounded
or unbounded fan-in can be taken as the total fan-in to multiplication gates. Lower bounds
on `∗ imply lower bounds on the total circuit/formula size `, taken as the number of wires
in the circuit/formula. The best known lower bound for general arithmetical circuits has re-
mained for thirty years the Ω(n logn) lower bound on `∗ by the “Degree Method” of Strassen
[Str73a] (see also [BS82, BCS97]), which however applies to some simple functions such as
f (x1, . . . ,xn) = xn

1 + . . .+ xn
n. Shpilka and Wigderson [SW99] proved lower bounds on `∗ of

Ω(n2) for Sd
n when d = Θ(n), n2−ε(d) for Sd

n with small values of d, and Ω(N2/polylog(N))
lower bounds for the determinant, with N = n2. Of course, many natural arithmetical func-
tions including the permanent [Val79b] are conjectured to require exponential size (for `∗) for
general circuits, let alone ΣΠΣ ones. Straight counting of equations for monomial coefficients
show that “generically” functions need exponential size. However, Strassen’s technique has
the limitation that Ω(n logn) is the best lower bound for a polynomial of total degree nO(1) in
n variables that it can prove, and the main methods of Shpilka and Wigderson [SW99] have
a similar limitation of Ω(n2) for ΣΠΣ formulas. Shpilka [Shp01] gets past this only in some
further-restricted cases, and also considers a depth-2 model consisting of an arbitrary symmet-
ric function of sums. This barrier provides another reason to study the ΣΠΣ model, in order to
understand the obstacles and what might be needed to surpass them.

In this chapter we prove a sharp n2 lower bound on `∗ for ΣΠΣ formulas for the function

19
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f (x1, . . . ,xn) = xn
1 + . . .+ xn

n computed over the real or rational numbers, and a lower bound of
n2/2 over any field of characteristic zero. Note the absence of “O,Ω” notation. These lower
bounds are obtained via a new notion we introduce, namely the resistance of a polynomial.
A technique is introduced for proving up to quadratic ΣΠΣ-formula size lower bounds for
polynomials with high resistance.

Next we prove lower bounds on the total complexity ` for some of Shpilka and Wigder-
son’s functions that are significantly higher (but still sub-quadratic) than their bounds on `∗

when the degree d of the function is small. This is done intuitively by exploiting a closed-form
application of the Baur-Strassen “Derivative Lemma” to ΣΠΣ formulas, showing that f and all
of its n first partial derivatives can be computed with only a constant-factor increase in ` and `∗

over ΣΠΣ formulas for f .

3.1 Preliminaries
Let us recall the computational model. A ΣΠΣ-formula is an arithmetic formula consisting of
four consecutive layers: a layer of input gates, followed by a layer of addition gates, followed
by a layer of multiplication gates, followed by the output. Wires can be assumed to be present
only between consecutive layers. For a polynomial p, `3(p) will denote the size of a smallest
ΣΠΣ-formula computing p. Given a ΣΠΣ-formula for a polynomial p, we can write

p =
s

∑
i=1

Mi,

where
Mi = Πdi

j=1li, j,

and
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0.

Here di is the in-degree of the ith multiplication gate (fix any order on the multipication gates),
and ci, j,k is nonzero iff there is a wire from xk to the addition gate computing li, j. Note that li, j
is homogeneous of degree 1, i.e. strictly linear, if ci, j,0 = 0, and is affine linear otherwise.

3.1.1 Affine Linear Subspaces and Derivatives
An affine linear subspace A of Fn is a set of the form A = V +w = {v+w : v ∈V }, where V is
a linear subspace of Fn, and w is a vector in Fn. The dimension of A is defined to be the vector
space dimension of V .

Let X = {x1, . . . ,xn} be a set of variables. For any affine subspace A, we can always find
a set of variables B⊂ X , and affine linear forms lx in the variables X \B, for each x ∈ B, such
that A is the set of solutions of {x = lx : x ∈ B}. This representation is not unique. The set B is
called a base of A. The size |B| always equals the co-dimension of A.

To indicate how one obtains a base, say dimV = r and let R be an n× r matrix whose
columns form a basis of V . Then

A = {Rβ+w : β ∈ Fr}.
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Since row-rank(R) = col-rank(R) = r, there must be r independent rows. Let S be any r× r
submatrix of R with independent rows. B is taken to be the set of variables corresponding to
rows not in S. Any specified vector of values a can be obtain for variables in X/B: set β =
S−1(a−wS), where wS is the r-vector obtain by limiting w to the rows of S. Then the variables
in B are determined. Thus the affine linear forms lb are given by RBβ = RBS−1(X/B−w),
where we denote by RB the rows of R that are in B, and X/B the r-vector of variables not in B.

In the following, whenever we consider an affine linear subspace A, we assume we have
fixed some base B of A. Any of our numerical “progress measures” used to prove lower bounds
will not depend on the choice of a base. The following notion does depend on the choice of a
base:

Definition 3.1.1 ([SW99]). Let A be an affine linear subspace of Fn, and let f ∈ F[x1, . . . ,xn].
Then the restriction of f to A is the polynomial obtained from f by substituting lb for the
variable xb for each b ∈ B, is denoted by f|A . If W is a set of polynomials, define W|A =
{ f|A | f ∈W}.

Then we define:
Definition 3.1.2. For polynomial f ∈ F[x1, . . . ,xn], define the first order gradient mapping ∇ f :
Fn→ Fn by

∇ f (a1, . . . ,an)k =
∂ f
∂xk

(a1, . . . ,an).

For linear polynomial l = c1x1 + . . .+ cnxn + c0, we denote lh = c1x1 + . . .+ cnxn. For a set S
of linear polynomials, Sh = {lh : h ∈ S}. We have the following proposition:
Proposition 3.1.1 Let S be a set of s polynomials of degree 1 from F[x1, . . . ,xn], such that Sh

is an independent set. Then the set of common zeroes of S is affine linear of dimension n− s.
Proof. Let V be the set of common zeroes of Sh. V is a linear space of dimension n− s. Since
Sh is an independent set, one can conclude there exists v, such that for all l ∈ S, l(v) = 0. All of
v+V vanishes on S: for v′ ∈V , l(v+v′) = lh(v+v′)+c = lh(v)+ lh(v′)+c = l(v)+ lh(v′) = 0.
Conversely, if for w, for all l ∈ S, l(w) = 0, then writing w = w′+ v. 0 = l(w) = l(w′+ v) =
lh(w′+ v)+ c = lh(w′)+ lh(v)+ c = lh(w′)+ l(v) = lh(w′), so w′ ∈V , so w ∈ v+V .

3.2 Resistance of polynomials
We introduce the following notion.

Definition 3.2.1. A polynomial f in variables x1,x2, . . . ,xn is (d,r,k)-resistant if for any poly-
nomial g(x1,x2, . . . ,xn) of degree at most r, for any affine linear subspace A of codimension k,
there exists a dth order partial derivative of f −g that is non-constant on A.
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For a multiset X of size d with elements taken from {x1,x2, . . . ,xn}, we will use the nota-
tion ∂d f

∂X to indicate the dth-order derivative with respect to the variables in X . An elementary
fact is that the order of taking derivatives does not matter.

For polynomials with terms of different degrees, the middle parameter r in the definition
might be useful. However, typically in the applications r is set to be deg( f )− 1. Convention
will be that when we say a polynomial f is (d,k)-resistant, we mean f is (d,deg( f )− 1,k)-
resistant.

Definition 3.2.2. For a polynomial f (x1,x2, . . . ,xn) we define its resistance factor µ( f ) by

µ( f ) = max{ k +1
d +1 : f is (d,k)-resistant},

and we take µ( f ) = 0 for constant f .

We have the following theorem:
Theorem 3.2.1 `∗3( f )≥ deg( f )µ( f ).

The above theorem will follow from the following general result:

Theorem 3.2.2 Suppose f (x1,x2, . . . ,xn) is (d,r,k)-resistant, then

`∗3( f )≥ (r +1)
k +1
d +1

.

Proof. Consider a ΣΠΣ-formula that computes f . Remove all multiplication gates that have
degree at most r. Doing so we obtain a ΣΠΣ formula F computing f − g, where g is some
polynomial of degree at most r. Say F has s multiplication gates. Write:

f −g =
s

∑
i=1

Mi,

where
Mi = Πdi

j=1li, j,

and
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0.

The degree of each multiplication gate in F is at least r +1, i.e. di ≥ r +1, for each 1≤ i≤ s.
Now select a set S of input linear forms using the following algorithm:

S = /0
for i = 1 to s do

repeat d +1 times:
if(∃ j ∈ {1,2, . . . ,di}) such that Sh∪{lh

i, j} is a set of independent vectors then
S = S∪{li, j}
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Let A be the set of common zeroes of the linear forms in S. Since Sh is an independent set, by
Lemma 3.1.1, A is affine linear of co-dimension |S| ≤ (d +1)s.

Claim 3.2.3 If at a multiplication gate Mi we picked strictly less than d +1 linear forms, then
any linear form that was not picked is constant on A.

Proof. Each linear form l that was not picked had lh already in the span of Sh, for the set S
built up so far. Hence we can write l = c+ lh = c+∑g∈S cggh, for certain scalars cg. Since each
gh is constant on A, we conclude l is constant on A.

We conclude that for each multiplication gate at least one of the following holds:

1. (d +1) input linear forms vanish on A, or

2. less than (d +1) linear form vanishes on A, and all others are constant on A.

For each multiset X of size d with elements from {x1,x2, . . . ,xn), the dth order partial derivative

∂d( f −g)

∂X (3.1)

is in the linear span of the set

{
di

∏
j=1
j/∈J

li j : 1≤ i≤ s, J ⊆ {1,2, . . .,di}, |J|= d }

Consider 1 ≤ i ≤ s and J ⊆ {1,2, . . . ,di} with |J| = d. If item 1 hold for multiplication
gate Mi, then

di

∏
j=1
j/∈J

li j (3.2)

vanishes on A, since there must be one li j that vanishes on A that was not selected, given that
|J|= d. If item 2 holds for Mi, then (3.2) is constant on A.

Hence, we conclude that (3.1) is constant on A. Since f is (d,r,k)-resistant, we must have
that the codimension of A is at least k +1. Hence (d +1)s≥ k +1. Since each gate in F is of
degree at least r +1, we get that

`∗3(F )≥ (r +1)
k +1
d +1 .

Since F was obtained by removing zero or more multiplication gates from a ΣΠΣ-formula
computing f , we have proven the statement of the theorem.

To prove lower bounds on resistance, we supply the following lemma that uses the syntac-
tic notion of affine restriction. In certain cases this will be convenient.
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Lemma 3.2.4 Over fields of characteristic zero, for any d ≤ r, k > 0, and any polynomial
f (x1,x2, . . . ,xn), if for every affine linear subspace A of codimension k, there exists some dth
order partial derivative of f such that

deg(

(

∂d f
∂X

)

|A
)≥ r−d +1

then f is (d,r,k)-resistant.

Proof. Assume for every affine linear subspace A of codimension k, there exists some dth
order partial derivative derivative of f such that

deg(

(

∂d f
∂X

)

|A
)≥ r−d +1.

Let g be an arbitrary polynomial of degree r. Then
(

∂d f −g
∂X

)

|A
=

(

∂d f
∂X −

∂dg
∂X

)

|A

=

(

∂d f
∂X

)

|A
−
(

∂dg
∂X

)

|A
.

The term
(

∂d f
∂X

)

|A
has degree at least r− d + 1, whereas the term

(

∂dg
∂X

)

|A
can have degree

at most r− d. Hence deg(
(

∂d f−g
∂X

)

|A
)≥ r− d + 1 ≥ 1. Since over fields of characterstic zero,

syntactically different polynomials define different mappings, we conclude ∂d f−g
∂X must be non-

constant on A.

Let us make the following important remark: taking partials does not commute with affine
restrictions. For example, it is possible for all ∂d f

∂X to vanish on A, but to have some ∂d+1 f
∂X to be

non-constant on A. This is slightly counter-intuitive.

3.2.1 Applications
We will now prove lower bounds on the ΣΠΣ-formula size of several explicit polynomials.

Sum of Nth Powers Polynomial

Consider f = ∑n
i=1 xn

i . For this polynomial we have ΣΠ-circuits of size O(n logn): for each
variable xi separately use≈ logn repeated multiplications to compute xn

i and add up the results.
This can be shown to be optimal using Strassen’s degree method. By that method we know
any circuit for f has size Ω(n logn). The following section investigates lower bounds on ΣΠΣ-
formula size for f . The obvious ΣΠΣ-formula has additive size n2 wires in the top linear layer,
and has n multiplication gates of degree n. We prove that this is essentially optimal.
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Lemma 3.2.5 Over fields of characteristic zero, the polynomial f = ∑n
i=1 xn

i has resistance
factor µ( f )≥ n/2.

Proof. We will show that f is (1,n− 1)-resistant. Let g be an arbitrary polynomial of degree
deg( f )−1 = n−1. Letting g1, . . . ,gn denote the first order partial derivatives of g, we get that
the ith partial derivative of f −g equal

nxn−1
i −gi(x1, . . . ,xn).

Note that the gi’s are of total degree at most n−2.
We claim there is no affine linear subspace of dimension greater than zero on which f̂

is constant. To show this, it suffices to show that f̂ is not constant on any affine line in Fn.
Consider an arbitrary affine line, parameterized by a variable t:

xi = ci +dit,

where ci and di are constants for all i ∈ [n], and with at least one di nonzero. Then ∂( f−g)
∂xi

restricted to the line is given by

n(ci +dit)n−1−hi(t),

for some univariate polynomials hi(t) of degree ≤ n− 2. Since there must exist some i such
that di is nonzero, we know some partial derivative restricted to the affine line is parameterized
by a univariate polynomial of degree n− 1, and thus, given that the field is of characteristic
zero, is not constant for all t.

Corollary 3.2.6 Over fields of characteristic zero, any ΣΠΣ-formula for f = ∑n
i=1 xn

i has mul-
tiplicative size at least n2/2.

Proof. By Theorem 3.2.1, `∗3( f )≥ deg( f )µ( f ). Applying Lemma 3.2.5, we get that `∗3( f ) ≥
n2/2.

In case the underlying field is the real numbers R and n is even, we can improve the above
result to prove an absolutely tight n2 lower bound. We start with the following lemma:

Lemma 3.2.7 Let f = ∑n
i=1 xn

i . Over the real numbers, if n is even, we have that for any affine
linear subspace A of dimension k ≥ 1, deg( f|A) = n.

Proof. Since f is symmetric we can assume without loss of generality that the following is a
base representation of A:

xk+1 = l1(x1, . . . ,xk)

xk+2 = l2(x1, . . . ,xk)

...

xn = ln−k(x1, . . . ,xk).
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Then
f|A = xn

1 + . . .xn
k + ln

1 + . . .+ ln
n−k.

We conclude that f|A must include the term xn
1, since each ln

j has a non-negative coefficient for
the term xn

1, since n is even.

Theorem 3.2.8 Over the real numbers, for even n, any ΣΠΣ-formula for f = ∑n
i=1 xn

i has mul-
tiplicative size at least n2.

Proof. Using Lemma’s 3.2.4 and 3.2.7 we conclude that over the real numbers f is (0,n−1)-
resistant. Hence, by Theorem 3.2.2 we get that `∗3( f )≥ deg( f )n

1 = n2.

Let us note that f = ∑n
i=1 xn

i is an example of a polynomial that, even for large d, has
relatively few, namely only n, partial derivatives. This makes application of the partial deriva-
tives technique of [SW99], which we will describe and extend in the next section, problematic.
Conversely, for polynomials that have many partial derivatives, in a sense to be made more
precise, the technique of [SW99] can be more straightforward in its application than the re-
sistance technique. The problem of analyzing precisely what is the minimal dimension of an
affine linear space on which f − g is non-constant can be quite hard for a given polynomial f
and arbitrary g with degree less than deg( f ).

Blocks of Powers

Suppose n = m2 for some m. Consider the “m blocks of m powers” polynomial

f =
m
∑
i=1

im
∏

j=(i−1)m+1
xm

j .

The straightforward ΣΠΣ-formula for f , that computes each term/block using a multiplication
gate of degree n, is of multiplicative size n3/2. We will show this is tight.

Proposition 3.2.9 The blocks of powers polynomial f defined above is (0,m−1)-resistant.

Proof. Consider an affine linear space of codimension m−1. For any base B of A, restriction to
A consists of substitution of the m−1 variables in B by linear forms in the remaining variables
X/B. This means there is at least one term/block Bi := ∏im

j=(i−1)m+1 xm
j of f whose variables

are disjoint from B. This block Bi remains the same under restriction to A. Also, for every other
term/block there is at least one variable that is not assigned to. As a consequence, Bi cannot
be cancelled against terms resulting from restriction to A of other blocks. Hence deg( f|A) =
deg( f ). Hence by Lemma 3.2.4 we have that f is (0,m−1)-resistant.

Corollary 3.2.10 For the blocks of powers polynomial f defined above, `∗3( f )≥ nm = n3/2.



3.3. BOUNDS FOR +,*-COMPLEXITY 27

Proof. Follows immediately from Theorem 3.2.2 and Proposition 3.2.9.

Alternatively, one can observe that by substitution of a variable yi for each variable ap-
pearing in the ith block one obtains from a ΣΠΣ-formula F for f a formula for f ′ = ∑m

i=1 yn
i

of the same size as F . Corollary 3.2.6 generalizes to show that `∗3( f ′)≥ 1
2 n3/2, which implies

`∗3( f )≥ 1
2n3/2.

Polynomials depending on distance to the origin

Over the real numbers, x2
1 + x2

2 + . . .+ x2
n is the Euclidean distance of the point (x1,x2, . . . ,xn)

to the origin. Polynomials defined in terms of this distance can easily be seen to be of high
resistance.

For example, consider f = (x2
1 +x2

2 + . . .+x2
n)

m. On any affine line L in Rn, deg( f|L) = 2m.
Therefore, by Lemma 3.2.4, over the reals, f is (0,n− 1)-resistant. Hence by Theorem 3.2.2
we get that

Proposition 3.2.11 Over the real numbers, `∗3((x2
1 + x2

2 + . . .+ x2
n)

m)≥ 2mn.

Observe that by reduction this means that the “mth-power of an inner product polynomial”,
defined by g = (x1y1 +x2y2 + . . .+xnyn)m, must also have ΣΠΣ-size at least 2mn over the reals
numbers.

Symmetric Polynomials

The special case of (0,k)-resistance implicitly appears in [Shp01], or at least in so far that the
sufficient condition of Lemma 3.2.4 is used for the special case d = 0 in which no derivatives
are taken. For the elementary symmetric polynomial Sr

n of degree r≥ 2 in n variables Theorem
4.3 of [Shp01] implies, using Lemma 3.2.4, that Sr

n is (0,n− n+r
2 )-resistant. Shpilka proves for

r ≥ 2, `3(Sr
n) = Ω(r(n− r)), which can be verified using Theorem 3.2.2: `3(Sr

n)≥ (r +1)(n−
n+r

2 ) = Ω(r(n− r)). For r = Ω(n) this yields a tight Ω(n2) bound as observed in [Shp01].

3.3 Bounds for +,*-Complexity
The partial derivatives technique of [SW99] ignores the wires of the formula present in the first
layer. In the following we show how to account for them. As a result we get a sharpening of
several lower bounds, though not on `∗3 but on total formula size. The main idea is to utilize
a closed form of the Baur-Strassen Derivative Lemma as one can derive it for ΣΠΣ-formulae.
Let us describe this closed form here.

Consider a ΣΠΣ-formula F computing a polynomial p. Then one can write

p =
s

∑
i=1

Mi,
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where
Mi = Πdi

j=1li, j,

and
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0.

Here di is the in-degree of the ith multiplication gate, and ci, j,k is nonzero if and only if there is
a wire from xk to the addition gate computing li, j. Hence, using the addition and product rule
for partial derivatives, we get for any k,

∂p
∂xk

=
s

∑
i=1

di

∑
p=1

∂li,p
∂xk

di

∏
j=1
j 6=p

li, j

=
s

∑
i=1

di

∑
p=1

ci,p,k
di

∏
j=1
j 6=p

li, j. (3.3)

We need a circuit-gadget G(z1,z2, . . . ,zd) that computes all d products of d− 1 distinct
input variables. Such a gadget can be constructed with size O(d) many wires:

Proposition 3.3.1 For each d > 1, there exists a circuit Gd(z1,z2, . . . ,zd) that consists of at
most 3d−6 multiplication gates and at most 6d−12 wires that computes all d−1 products of
d−1 distinct input variables.

Proof. Let us construct G inductively. G2(z1,z2) is taken to consist of just the input vari-
ables z1 and z2. Suppose we have constructed Gd . Let gi be the gate in Gd that computes
z1z2 . . .zi−1zi+1 . . .zd . Add a new input gate for variable zd+1. Add a g gate that multi-
plies zd and zd+1. Peform the substitution zd = zd · zd+1 by replacing each wire going from
zd to a gate by a wire that goes from g to that gate. For 1 ≤ j < d, gi now computes
z1z2 . . .zi−1zi+1 . . .zdzd+1. The gate gd computes z1z2 . . .zd−1. Hence add a multiplication gate
with input gd and zd and one with input gd and zd+1 to compute the products “excluding zd”
and “excluding zd+1”. We added three multiplication gates and 6 wires in the induction, which
proves the proposition.

From the expression given for ∂p
∂xk

in (3.3), one can thus obtain a circuit that computes
( ∂p

∂x1
, ∂p

∂x2
, . . . , ∂p

∂xn
) from F by first replacing each multiplication gate Mi, which has arity di, by

a gadget Gdi taking inputs li,1, li,2, . . . , li,di . Then add an addition gate for each k of arity

s
∑
i=1

di

∑
p=1

ci,p,k 6=0

1

that computes ∂p
∂xk

according to (3.3). This layer is the mirror image of the layer computing the
linear forms li, j: there is a wire going from variable xk with constant c if and only if there is
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a wire with constant c going from the output of the ith gadget that excludes li, j to the gate for
∂p
∂xk

. (Seen as linear transformations these layers are each others transpose). We can conclude
the resulting circuit for the partials has twice the number of wires fanning into addition gates,
and by Proposition 3.3.1 has at most 6 times the number of wires fanning into multiplication
gates.

When we utilize the above structural results, it turns out that the partial derivatives/affine
restrictions technique factors through, allowing us to refine the [SW99] result for *-complexity:

Theorem 3.3.2 ([SW99]) Let f ∈ F[x1, . . . ,xn]. Suppose for integers d,D,κ it holds that for
every affine subspace A of co-dimension κ, dim(∂d( f )|A) > D. Then

`∗3( f )≥min(
κ2

d ,
D

(κ+d
d )

);

—to our result for +,*-complexity:

Theorem 3.3.3 Let f ∈ F[x1, . . . ,xn]. Suppose for integers d,D,κ it holds that for every affine
subspace A of co-dimension κ, ∑n

i=1 dim[∂d(
∂ f
∂xi

)|A] > D. Then

`3( f )≥min(
κ2

d +2 ,
D

(κ+d
d )

).

Comparing the two theorems, we see that the result by Shpilka and Wigderson provides
a lower bound on multiplicative complexity, while our result gives a lower bound on the total
number of wires. We do get an extra “factor n” of additions with the ∑n

i=1 dim[∂d(
∂ f
∂xi

)|A] > D
condition compared to just dim(∂d( f )|A) > D. Potentially this can lead to improved lower
bounds on the total size of the formula, better than one would be able to infer from the lower
bound on multiplicative complexity of Theorem 3.3.2 alone. We shall see that we can indeed
get such kinds of improvements in the applications section below.

We employ the following suite of concepts and lemmas from [SW99] directly. We include
proofs for completeness in case they are fairly short.

Definition 3.3.1 ([SW99]). For f ∈ F[x1, . . . ,xn], let ∂d( f ) be the set of all dth order formal
partial derivatives of f w.r. to variables from {x1, . . . ,xn}.

For a multiset X of d variables, for any polynomial f, denote the d-th derivative of f by variables
X by ∂d f

∂X . Then

∂d( f ) = {∂d f
∂X : X is a multiset of d variables ∈ {x1,x2, . . . ,xn}}.

For a set of polynomials A = { f1, . . . , ft}, let span(A) = {∑t
i=1 ci fi | ci ∈ F}, i.e., span(A)

is the linear span of A. We write dim[A] as shorthand for dim[span(A)]. We have the following
elementary sub-additivity property for the measure dim[∂d( f )].
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Proposition 3.3.4 ([SW99]) For f1, f2 ∈ F [x1, . . . ,xn] and constants c1,c2 ∈ F,

dim[∂d(c1 f1 + c2 f2)]≤ dim[∂d( f1)]+dim[∂d( f2)].

Proof. By the addition rule for (formal) partial derivatives:

∂dc1 f1 + c2 f2
∂X = c1

∂d f1
∂X + c2

∂d f2
∂X

Hence each basis vector in ∂d(c1 f1 + c2 f2) is in the span of ∂d( f1)∪ ∂d( f2). Since for vector
spaces A and B, dim(span(A∪B))≤ dim(A)+dim(B), we get the statement.

One also needs to bound the growth of dim[∂d( f )] in case of multiplication. For multipli-
cation of affine linear forms, we have the following two bounds.

Proposition 3.3.5 ([SW99]) Let M = Πm
i=1li, where each li is affine linear. Then

dim[∂d(M)]≤ (m
d ).

Proof. span(∂d(M)) ⊂ span {Πi∈Sli | S⊂ [m], |S|= m−d}.

For a product M = Πt
i=1li of affine linear forms, we define Mh to be the set {lh

1 , . . . , lh
t } of

strictly linear parts of its input linear forms.

Proposition 3.3.6 ([SW99]) Let M be a product gate with dim[Mh] = m, then for any d,

dim[∂d(M)]≤ (m+d
d ).

Proof. Let l1, l2, . . . , lm be a set of input linear forms for which {lh
1 , . . . , lh

m} are independent.
Then any other input linear form r j of M is an affine linear combination r j = a0, j + a1, jl1 +
a2, jl2 + . . .+am, jlm. We have

M =
m
∏
i=1

li ·
k

∏
j=1

(a0, j +a1, jl1 +a2, jl2 + . . .+am, jlm) = p(l1, l2, . . . , lm)

for some polynomial p(y1,y2, . . . ,ym). Hence by the chain rule, and the fact that any ∂li
∂x j

is a
constant, we can see that the set of all dth-order derivatives of M is contained in the linear span
of

{
(

∂d p
∂d1y1∂d2y2 . . .∂dmym

)

|A
: for any di ≥ 0 with d1 +d2 + . . .dm = d},

where “|A” is the substitution y1 = l1,y2 = l2, . . . ,ym = lm. Since there are
(m+d

d
)

ways of
writing d as a sum of m non-negative integers, we get the result.

Note that for polynomials f1, . . . , fs, span( f1, . . . , fs)|A = span( f1|A, . . . , fs|A), and that
dim[W|A]≤ dim[W ]. Now we modify Proposition 3.3.4 a little to get a result implicitly used by
Shpilka and Wigderson in their arguments.
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Proposition 3.3.7 (cf. [SW99]) For f1, f2 ∈ F[x1, . . . ,xn] and constants c1,c2 ∈ F, and affine
linear subspace A, we have that dim[∂d(c1 f1 + c2 f2)|A]≤ dim[∂d( f1)|A]+dim[∂d( f2)|A].

Proof. By the addition rule for (formal) partial derivative and by the fact that substitution is a
homeomorphism one gets that

∂dc1 f1 + c2 f2
∂X |A

= c1
∂d f1
∂X |A

+ c2
∂d f2
∂X |A

.

Hence each basis vector in ∂d(c1 f1 + c2 f2)|A is in the span of ∂d( f1)|A ∪ ∂d( f2)|A. Since for
vector spaces A and B, dim(span(A∪B))≤ dim(A)+dim(B), we get the statement.

Finally, we require:
Lemma 3.3.8 ([SW99]) For every n,κ,d, and every affine subspace A of co-dimension κ, we
have that

dim[∂d(S2d
n )|A]≥ ( n−κ

d ).

Proof. The polynomial S2d
n is multilinear, so only dth-order derivatives with respect to d dis-

tinct variables D = {xi1,xi2, . . . ,xid} will be potentially non-zero. Let X be the set of all n
variables xi. Observe that

∂dS2d
n (X)

∂D = Sd
n−d(X/D).

From [Got66] as used by [SW99] one has that

span({Sd
n−d(X/D) : for all subsets D⊂ X of size d})

has as basis the set of all multilinear monomials in variables X of degree d. There are
(n−κ

d
)

such monomials that are unchanged under the restriction |A, which gives the result.

Now we can prove our sideways improvement of Shpilka and Wigderson’s main Theo-
rem 3.1 [SW99].

Proof of Theorem 3.3.3. Consider a minimum-size ΣΠΣ-formula for f with multiplication
gates M1, . . . ,Ms. We have that

f =
s

∑
i=1

Mi,

where for 1≤ i≤ s,
Mi = Πdi

j=1li, j

with
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0,

for certain constants ci, j,k ∈ F . Computing the partial derivative of f w.r. to variable xk we get

∂ f
∂xk

=
s

∑
i=1

di

∑
j=1

ci, j,k
Mi
li, j

. (3.4)
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Let
S = {i : dim[Mh

i ]≥ κ}.
If |S| ≥ κ

d+2 , then `3( f ) ≥ κ2

d+2 . Suppose |S| < κ
d+2 . If S = /0, then let A be an arbitrary

affine subspace of co-dimension κ. Otherwise, construct an affine space A as follows. Since
|S|(d + 2) < κ, and since for each j ∈ S, dim[Mh

i ]≥ κ, it is possible to pick d + 2 input linear
forms l j,1, . . . , l j,d+2 of each multiplication gate M j with j ∈ S, such that {lh

j,1, . . . , lh
j,d+2| j ∈ S}

is a set of |S|(d +2) < κ independent homogeneous linear forms. Define

A = {x : li, j(x) = 0, for any i ∈ S, j ∈ [d +2]}.
By Lemma 3.1.1, we have that the co-dimension of A is at most κ. W.l.o.g. assume the co-
dimension of A equals κ. For each i ∈ S, d+2 linear forms of Mi vanish on A. This implies
that

dim[∂d(
Mi
li, j

)|A] = 0.

for any i ∈ S. For any i /∈ S, by Proposition 3.3.6,

dim[∂d(
Mi
li, j

)|A] < (κ+d
d ).

Let Dk = dim[∂d(
∂ f
∂xk

)|A]. By Proposition 3.3.7 and equation (3.4),

Dk ≤∑
i/∈S

∑
j

ci, j,k 6=0

dim[∂d(
Mi
li, j

)|A].

Hence there must be at least Dk
(κ+d

d )
terms on the r.h.s., i.e. there are at least that many wires

from xk to gates in the first layer. Hence in total the number of wires to the first layer is at least
∑n

i=1
Di

(κ+d
d )

> D
(κ+d

d )
.

We can apply a similar idea to adapt the other main theorem from [SW99]:

Theorem 3.3.9 ([SW99]) Let f ∈ F[x1, . . . ,xn]. Suppose for integers d,D,κ it holds that for
every affine subspace A of co-dimension κ, dim(∂d( f|A)) > D. Then for every m≥ 2,

`∗3( f )≥min(κm,
D

(m
d )

).

We get:

Theorem 3.3.10 Let f ∈ F[x1, . . . ,xn]. Suppose for integers d,D,κ with d ≥ 1, it holds that for
every affine subspace A of co-dimension κ, ∑n

i=1 dim[∂d(
∂ f
∂xi |A

)] > D. Then for every m≥ 2,

`3( f )≥min(
1
2

κm,
D

(m−1
d )

).
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Proof. Consider a minimum size ΣΠΣ-formula for f with multiplication gates M1, . . . ,Ms. We
have that

f =
s

∑
i=1

Mi,

where for 1≤ i≤ s,
Mi = Πdi

j=1li, j,

with
li, j = ci, j,1x1 + ci, j,2x2 + . . .+ ci, j,nxn + ci, j,0.

If there are κ
2 multiplication gates Mi of degree greater than m then already `3( f ) > 1

2κm. So
suppose the number t of multiplication gates of degree greater than m is less than κ

2 . Wlog.
assume these gates are given by

M1,M2, . . . ,Mt .

For i = 1,2, . . . , t, pick two input linear forms li,1, li,2 of Mi, such that for the total collection
l1,1, l1,2, . . . , li,1, li,2 we have that the strictly linear parts lh

1,1, lh
1,2, . . . , lh

i,1, lh
i,2 are independent. It

might be that at some i≤ t, we cannot find any li,1 or li,2 with lh
i,1 or lh

i,2 independent from the
previously collected linear forms. In this case, we just pick li,1 if that one is still independent,
and skip to the next index i. If we can’t even find li,1 for which li,1 is independent, we pick no
linear form and proceed to the next i.

Let A be the zero set of all the collected input linear forms. Then A has co-dimension at
most κ, by Lemma 3.1.1. Wlog. we may assume that the co-dimension of A equals κ. Observe
that

∂ f
∂xk |A

=
s

∑
i=1

di

∑
j=1

ci, j,k(
Mi
li, j

)|A. (3.5)

Now for a multiplication gate Mi of degree ≥ m, there are three cases: either we picked two
input linear forms of Mi, or we picked just one, or none at all. In the first case,

(
Mi
li, j

)|A = 0

in the r.h.s. of (3.5), for all i, j. In the second and third case, we know that for every input l of
Mi that was not picked, lh is a linear combination of lh

i ’s for li’s that were picked. Hence

lh
|A =

r
∑
i=1

ci(lh
i |A) = constant.

As a consequence, (Mi
li, j

)|A = constant in the r.h.s. of (3.5), for all i, j. Since d ≥ 1, in either three
cases, we obtain that ∂d(

Mi
li, j |A

) = 0. For multiplication gates Mi of degree at most m, Proposition

3.3.5 gives us that dim[∂d((
Mi
li, j

)|A)] ≤ (m−1
d ). Let Dk = dim[∂d(

∂ f
∂xk |A

)]. By Proposition 3.3.4,

we see there are at least Dk/(m−1
d ) terms in (3.5). This implies that there are at least that many

wires fanning out of xk. Adding up for all variables, we conclude that `3( f )≥ D/(m−1
d ).
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3.3.1 Some Applications

In [SW99] it was proved that for d ≤ logn, `∗3(S2d
n ) = Ω(n

2d
d+2
d ). Note for d = 2, this lower

bound is only Ω(n). We can apply Theorem 3.3.3 to prove the following stronger lower bound
on the total formula size of S2d

n . In particular for d = 2, we get an Ω(n 4
3 ) bound.

Theorem 3.3.11 For 1≤ d ≤ logn, `3(S2d
n ) = Ω(n

2d
d+1
d ).

Proof. For any affine subspace A of co-dimension κ and d ≥ 2 we have that

n
∑
i=1

dim[∂d−1(
∂S2d

n
∂xi

)|A]≥ dim[∂d(S2d
n )|A]≥ ( n−κ

d ).

The latter inequality follows from Lemma 3.3.8. Applying Theorem 3.3.3 we get that

`3(S2d
n )≥min(

κ2

d +1
,

(n−κ
d )

(κ+d−1
d−1 )

) = min(
κ2

d +1
,
(n−κ

d )

(κ+d
d )

κ+d
d ). (3.6)

Set κ = 1
9n

d
d+1 . Then we have that

(n−κ
d )

(κ+d
d )

κ+d
d ≥ (

n−κ
κ+d )d κ+d

d

≥ (
8/9n

2/9n
d

d+1
)d κ+d

d

= 4dn
d

d+1
κ+d

d

≥ 4d

9d n
2d

d+1

≥ n
2d

d+1 .

Hence (2) is at least min( n
2d

d+1
81(d+1) ,n

2d
d+1 ) = Ω(n

2d
d+1
d ).

Corollary 3.3.12 `3(S4
n) = Ω(n4/3).

Another function considered in [SW99] is the product of inner-product function. For two
inner-products, i.e. 4n variables, it is defined by

PIP2
n = (

n
∑
j=1

a jb j)(
n
∑
i=1

cidi).
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Note the lower bound in [SW99] on PIPd
n for the special case d = 2 is Ω(n). We can prove a

non-linear lower bound for this function as follows.
Set d = 1,κ = n2/3. Observe that ∂2PIP2

n
∂aic j

= bid j. Let A be any affine subspace of co-
dimension κ with basis B. At least n−κ variables in {b1, . . . ,bn} are not in B. Symmetrically,
at least n− κ variables in {d1, . . . ,dn} are not in B. So for at least (n− κ)2 indices (i, j),
∂2PIP2

n
∂aic j |A

=
∂2PIP2

n
∂aic j

. These are independent terms, hence dim[∂2(PIP2
n )|A] ≥ (n−κ)2. Observe

the fact that for any f (x1, . . . ,xn) and any affine subspace A we have that
n
∑
i=1

dim[∂d(
∂ f
∂xi

)|A]≥ dim[∂d+1( f )|A].

Applying Theorem 3.3.3 we get that `3PIP2
n ≥min(n4/3

3 ,
(n−n2/3)2

n2/3+1 ) = Ω(n4/3). We have proved:

Theorem 3.3.13 `3(PIP2
n ) = Ω(n4/3).

More generally, we can apply Theorem 3.3.10 to obtain improved exponent for lower
bounds on PIPd

n . We define over 2d variable sets of size n (superscript indicate different vari-
ables, each variable has degree one):

PIPd
n =

d
∏
i=1

n
∑
j=1

xi
jyi

j.

Theorem 3.3.14 For any constant d > 0, `3(PIPd
n ) = Ω(n

2d
d+1 ).

Proof. Let f = PIPd
n . Essentially we have that

∂ f
∂xi

j
= yi

jPIPd−1
n ,

where the PIPd−1
n must be chosen on the appropriate variable set. Let A be an arbitrary affine

linear subspace of codimension κ. Then
d
∑
i=1

n
∑
j=1

dim[∂d−1(
∂ f
∂xi

j
|A)] =

d
∑
i=1

n
∑
j=1

dim[∂d−1(yi
jPIPd−1

n |A)]

≥ (dn−κ)dim[∂d−1(PIPd−1
n |A)]

The last inequality follows because at least dn−κ of the y-variables are not assigned to with
the restriction to A. From Lemma 4.9 in [SW99] one gets

dim[∂d−1(PIPd−1
n |A)≥ nd−1−22d−1κnd−2.

Using Theorem 3.3.10 we get

`3( f )≥min(
κ2

2 ,
(dn−κ)(nd−1−22d−1κnd−2)

(κ−1
d−1
) ).
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Taking κ = n
d

d+1 , one gets for constant d that

`3(PIPd
n ) = Ω(n

2d
d+1 ).

For comparison, in [SW99] one gets `∗3(PIPd
n ) = Ω(n

2d
d+2 ).

3.4 Conclusion—Possible Further Tools
We have taken some further steps after [SW99], obtaining an absolutely tight (rather than
asymptotically so) n2 multiplicative size bound for a natural function, and obtaining somewhat
higher bounds on +,∗-size for low-degree symmetric and product-of-inner-product polyno-
mials. However, these may if anything enhance the feeling from [SW99] that most of the
concepts being employed may go no further than quadratic for lower bounds. One cannot after
all say that a function f (x1, . . . ,xn) is nonvanishing on an affine-linear space of co-dimension
more than n. The quest then is for a mathematical invariant that scales beyond linear with the
number of degree-d-or-higher multiplication gates in the formula.

One tool that has so far disappointed comes from various forms of the degree notion used
by Strassen [Str73a]. The gradient of the sum-of-nth-powers function, namely the regular
mapping (xn−1

1 , . . . ,xn−1
n ), has algebraic degree da = (n−1)n at each of its points in the range,

and likewise the “mapping ideal” 〈y1−xn−1
1 , . . . ,yn−xn−1

n 〉 has geometric degree (n−1)n (see
ch. 8 of [BCS97]), which is the highest possible for a degree-(n− 1) regular mapping. The
attraction here is that the gradient of a multiplication gate, i.e. of a product z1, . . . ,zm, has
algebraic degree only m− 1, although its mapping ideal has exponential geometric degree
1 + (m− 2)2m−1. A ΣΠΣ formula with s multiplication gates of degrees di and total fan-in
N = ∑s

i=1 di can be decomposed as a composition of a linear map from Fn to FN , then a vector
of multiplications in variables z1, . . . ,zN , and then a singular linear transformation back to F n.
A similar decomposition holds for formulas computing the gradient (and higher derivatives) of
the function. If the two linear maps did not affect the algebraic degree of the composition, then
by the product rule for degree one would get the inequality

da ≤
s

∏
i=1

(di−1).

Upon finding a way to dispense with multiplication gates of degree less than n (or degree o(n)),
similar to what we did in the proof of Theorem 3.3.3, this inequality would yield quadratic
lower bounds on `∗3( f ) for a great variety of functions f . Unfortunately the linear maps do af-
fect the algebraic degree, and the inequality is false. In fact, our computer runs have found that
random ΣΠΣ formulas consisting of one *-gate of fan-in n and some small number of binary
multiplication gates already achieve the maximum possible algebraic degree. It is possible that
deeper uses of algebraic/geometric degree may yield invariants that scale to exponential size,
but the simple notion’s failure to pass even the quadratic threshold is not promising.
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Suspiciously absent in current lower bound techniques for ΣΠΣ-formulas are random
restriction type arguments, whereas all the results for Boolean constant depth circuits of
[Ajt83, FSS81, Yao85, Hås89] proceed using random restrictions. Note that Raz manages
to use random restritions in conjunction with a partial derivatives based technique in his work
on multilinear arithmetical formulas [Raz04a, Raz04b]. In any event, the search for stronger
mathematical techniques to prove exponential lower bounds in the self-contained ΣΠΣ formula
case continues.
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Chapter 4

Orbit of Bilinear Forms

The seminal motivation of this and the next two chapters is to remove a major restriction from
notable recent lower bounds by Raz [Raz02] and Bürgisser-Lotz [BL02]. The work will be
done exclusively over the field C of complex numbers. We are interested in borrowing the
following set of concepts from representation theory, see for example [NS82]. Note also the
work by Mulmuley and Sohoni [MS02], who have outlined an approach via geometric invariant
theory to showing P 6= NP and other questions, involving some of the same basic concepts.

Definition 4.0.1. Let G be a group and X be a complex linear space 6= {0} and denote by
LinC(X) the set of all linear operators X → X . A group representation is a mapping T : G→
LinC(X) such that

1. T (e) = idX , where idX is the identity operator on X , and e is the identity of the group G.

2. for all g1,g2 ∈G,T (g1g2) = T (g1)◦T (g2).

We are interested in the special case where X is taken to be the vector space
C[x0,x1, . . . ,xn−1]m of homogeneous polynomials of degree m in variables x0,x1, . . . ,xn−1
over C, and considering G to be a group of n× n invertible matrices under multiplication.
Then for invertible matrix E ∈ G, we can define linear transformation T (E) by mapping
f ∈ C[x0,x1, . . . ,xn−1]m according to:

T (E)( f ) = f (E−1x).

In other words, for vector of variables x = (x0,x1, . . . ,xn−1)T , mapping T (E) is defined by
performing the substitution

xi := (E−1x)i. for each i = 0,1, . . . ,n−1,

on the polynomial f . This defines a linear transformation on X :

(µ f +g)(E−1x) = µ f (E−1x)+g(E−1x),

for any constant µ, any homogeneous polynomials f and g of same degree and invertible matrix
E. It also is a representation, for the identity matrix I, T (I) is the identity map and for any two

39
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invertible matrices E and D,

T (DE)( f ) = f ((DE)−1x)

= f (E−1D−1x)

= T (D) f (E−1x)

= T (D)◦T (E) f .

For a homogeneous polynomial f and group representation of G as above the set

{ f (E−1x) : E ∈ G}

is called the G-orbit of f . More generally, for multi-output polynomial mappings given by a
tuple of polynomials F = ( f1, f2, . . . , fm), we define the G-orbit of F to be the set

{( f1(E−1x), f2(E−1x), . . . , fm(E−1x)) : E ∈ G}.

We are interested in proving sweeping lower bounds on the arithmetical complexity of all poly-
nomials f (E−1x) that appear in the G-orbit of some explicitly defined polynomial f (or more
generally for a multi-output polynomial mapping F ), for certain matrix groups G. In particular,
we will focus on bilinear multi-output mappings over disjoint variable sets {x0,x1, . . . ,xn−1}
and {y0,y1, . . . ,yn−1}. In that case it is more natural to let two matrices E and D act on the
variables separately. We define:

Definition 4.0.2. Let E and D be n × n non-singular complex matrices, and let x =
(x0,x1, . . . ,xn−1)

T and y = (y0,y1, . . . ,yn−1)
T be vectors of variables. An orbit circuit is the

composition Γ(Ex,Dy), where Γ is a bounded-constants bilinear circuit. The size of the circuit
is taken to be the size of Γ.

To emphasize, the entries of the matrices E and D above are not restricted to be of norm at most
one. An orbit circuit thus has the potential help of 2n2-many unbounded constants, although
flowing through only 2n-many input gates. In Section 4.3 we also consider having an n× n
matrix at the output gates.

If for a bilinear mapping b(x,y) one proves that any orbit circuit that computes it requires
size s, this means that for any invertible E and D, the polynomial b(E−1x,D−1y) must have
regular circuit size at least s. Namely, from the ordinary circuit:

Γ(x,y) = b(E−1x,D−1y)

we obtain an orbit circuit of size s by substitution:

Γ(Ex,Dy) = b(E−1Ex,D−1Dy) = b(x,y)

that computes b. In this sense, any of our results that follow prove generic lower bounds on
entire families of polynomials. Even when we are forced to make further restrictions on the
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groups E and D are taken from, or even drop the entire group concept, and just consider sets
of matrices, this should be kept in regard. The computational model may seem increasingly
exotic this way, but from the point of view of proving generic lower bounds no such objection
holds.

First, any bilinear circuit C can be converted to an orbit circuit Γ of the same size with
diagonal matrices E and D. If g is a + gate with m outgoing wires with constants c1, . . . ,cm and
constants d,e on its incoming wires, then we may take c to be the maximum of |c1|, . . . , |cm|,
replace each ci by ci/c (which has norm at most 1), and make cd,ce the new constants on the
incoming wires. If g is a ∗ gate, we need only propagate cd,e upward. Iterating this from the
outputs up pushes all unbounded constants up to the wires from the inputs. Repeating this one
more time pushes the unbounded constants onto the inputs themselves as nonnegative reals,
and they can be the entries of E and D. None of the final constants will be zero unless the
corresponding input was already zeroed out. Thus the orbit model with G = GLn(C), namely
the group of all invertible complex matrices, is no less general than the unbounded-coefficients
case (possibly more so, if D and E have high circuit complexity by themselves). Actually, the
above shows that taking G to be the group of all invertible diagonal matrices yields a model
equivalent in power as the unbounded-coefficients case. In fact, we could take the matrices at
the input to be constant multiples λI of the identity matrix, and multiply by the appropriate
constants less than one to correct for this at the cost of adding n unary addition gates.

Note that in Chapter 6 we will establish some orbits model lower bounds relative to diag-
onal matrices for circular convolution.

Things become more interesting with G = SLn(C). If (the function computed by) C ignores
inputs x0 and y0, then we can create diagonal matrices D,E of determinant 1 by taking the first
entry to be 1/Kn−1 and the remaining entries to be K, where K is the maximum real constant
obtained in the pushing-up process. The tiny entry in D and E gets thrown away while the
large ones feed the bc-circuit Γ left over from the process. If we insist on attention to functions
f that depend on all of their inputs, then lower bound techniques that tolerate two unbounded
“help gates” (not needing the n1−ε allowance in [BL02]) still imply lower bounds in the general
case, with x0 and y0 becoming the help gates. If we disallow this but “relax” orbit circuits Γ
by allowing access also to the un-transformed inputs x0 and y0, we can still prove rigorously
that SLn(C)-orbit bc-circuit lower bounds imply unbounded-coefficient lower bounds, for half-
convolution and functions with a similar recursion:

Theorem 4.0.1 Bilinear circuits C of size s computing HCirc(x)y can be converted into “re-
laxed” SLn-orbit circuits Γ of size s+O(n) computing HCirc(x)y.

Proof. Convert C to Γ0 by pushing up constants as before, along with the above diagonal
D,E ∈ SLn(R). Now reduce Γ0 by zeroing the constants out of x0 and y0, splicing out gates their
wires connect to. The resulting circuit computes HCirc(x1, . . . ,xn−2)(y1, . . . ,yn−2). Finally use
the free access to the untransformed inputs x0 and y0 to re-create HCirc(x)y as above, adding
2n-many ∗ gates and 2n−1 + gates at the outputs. On products x0yi with i > 0, the constant K
on yi from D is counter-acted by a constant 1/K on the wire from x0, and similarly for products
xiy0. This yields the desired “relaxed” orbit bc-circuit Γ.
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The significance of the orbit model is threefold. Firstly, it is natural and bridges between
the bounded coefficient and general cases. Secondly, it defeats the proof methods of Raz and
Bürgisser-Lotz. Thirdly, the orbit model leads to cutting edge problems in Fourier theory, as
we show.

The proofs in [Raz02, BL02] rely on bounding the volume-expansion factor on all r-
dimensional subspaces of Cn, for some value r = Θ(n). Matrices of this form can expand
volume in many of these subspaces by the unbounded factor K (or rather by K r), and it seems
not to matter that the first co-ordinate is crushed by 1/Kn−1. We adapt these methods for cases
where we can avoid or contain this problem.

The backbone of our lower bound technique will be the same as in [Raz02, BL02]: to
simplify the bilinear circuit into a linear circuit using the probabilistic method. The idea is to
fix scalar values a = (a0,a1, . . . ,an−1) for x = (x0,x1, . . . ,xn−1) such that the “x side” of the
bilinear bc-circuit Γ, which computes linear forms say `1(x), `2(x), . . . , `k(x), keeps the values
|`1(a)|, |`2(a)|, . . . , |`k(a)| “reasonably small” while leaving the complexity of the induced lin-
ear map A(y0, . . . ,yn−1) “high”. Substituting those values at the ∗-gates and building them up
additively from bounded constants leaves a bc-linear circuit C computing A of the same order
of size as Γ, hence Γ must obey the size lower bounds known for C.

Recall we defined the cyclic convolution x ◦ y of two n-vectors x,y as the n-vector
(z0, . . . ,zn−1) with components

zk = ∑
i+ j≡k mod n

xiy j,

for 0≤ k < n. In terms of circulant matrices:

x◦ y = Circ(x)y.

Our main focus in this and the next two chapters will be to establish orbit model lower
bounds for this bilinear form. We conjecture:
Conjecture 1. For any two n×n matrices E and D with determinant equal to one, any bounded
coefficient bilinear circuit Γ with Γ(Ex,Dy) = x◦ y requires Ω(n logn) gates.
We also believe that the statement of the conjecture holds for arbitrary matrices E and D,
but obtaining unbounded constant lower bounds seems hard with known techniques, whereas
the above conjecture seems to lie within our present reach. The conjecture is equivalent to
asserting that any bilinear map in the SLn(C) orbit of x◦ y requires bounded coefficient circuit
size Ω(n logn). One must be careful here, for example one cannot prove an SLn(C)-orbit lower
bound for the tri-linear form p(x,y,z) = zT Circ(x)y. Namely there exists a polynomial in the
SLn(C)-orbit of p that has linear size! By Theorem 2.1.4:

zT Circ(x)y = zT Fndiag(DFTnx)F∗n y

so if we substitute zT := zT F∗n , y := Fny, x := Fnx, we get the polynomial

√
nzT diag(x)y =

√
n

n−1
∑
i=0

zixiyi.
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This polynomial can be computed by a circuit of size 3n + O(log
√

n) = O(n), by com-
puting each of the n terms xiyizi and add these, and next using O(log

√
n) repeated additions

to multiply by
√

n. The key point in this example is that we are dealing with a single output
circuit. For example, using the repeated addition trick to multiply n outputs of a circuit by

√
n

would cost Θ(n logn) in size, since you have to repeat for each output individually.

4.1 Definitions and Background
We next introduce some of the required concepts. We will provide proofs for completeness in
case they are short.

4.1.1 Standard Gaussian vectors
A random vector x ∈ C is called standard Gaussian if the real and imaginary parts of all
components xi comprise 2n independent standard normally distributed random variables. An
important fact is that if F is any unitary transformation, then Fx is again standard Gaussian
distributed, see e.g. [BL02].

For an r-dimensional linear subspace U , we say that a random vector a is standard Gaussian
distributed in U if we can write a = β1v1 + . . . + βrvr, where β is standard Gaussian in Cr

and {vi}i is an orthonormal basis for U . This representation is independent of the choice of
orthonormal basis.

We will use the following two Lemmas from Bürgisser and Lotz [BL02]. A random vari-
able t is exponentially distributed with parameter 1 if it has density function p(t) = e−t for
t ≥ 0, and p(t) = 0 otherwise.

Lemma 4.1.1 ([BL02]) Let (x1, . . . ,xn)T be standard Gaussian in Cn. Let f = ( f1, . . . , fn)T ∈
Cn. Then S := f1x1 + . . .+ fnxn is normally distributed with mean 0 and variance ‖ f‖2. Fur-
thermore, T := |S|2

2‖ f‖2 is exponentially distributed with parameter 1. Hence T has mean and
variance both equal to 1.

As in [BL02], when we say a vector z ∈ Cr is normal distributed with mean 0, we mean
that the real and imaginary parts of each component zi are normal distributed random variables
with mean 0.

Lemma 4.1.2 ([BL02]) Let z = (z1, . . . ,zr)T be a normal distributed random vector in Cr with
mean 0. Define the complex covariance matrix Σ of z to be entry-wise expectation of the outer
product zz∗, i.e. Σ = E[zz∗]. Then we have

Pr[|z1|2 · · · |zr|2 ≥ δr det(Σ)] >
1
2 ,

for some absolute constant δ > 0. More precisely, δ = 2−(γ+
√

2φ) with γ = 1√
π

R ∞
0 t− 1

2 e−t logtdt,
and φ = 1

2
R ∞

0 e− t
2 log2 tdt. (Here δ is approximately 0.02.)
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4.1.2 Mean Square Volume & Matrix Rigidity
Given an m×n matrix A and sets I ⊆ {1, . . . ,m} of row indices and J ⊆ {1, . . . ,n} of column
indices, define AI,J to be the matrix of elements with row index in I and column index in J. We
let AI stand for AI,{1,...,n} and AI for A{1,...,m},I. Pervasive in this work will be applications of
the Binet-Cauchy Theorem, which states:

Theorem 4.1.3 (Binet-Cauchy Theorem) Let A be an m× n matrix and let B be an n×m
matrix with n≥ m. Then

det(AB) = ∑
I⊆{1,2,...,n}
|I|=m

det(AI)det(BI).

It is well known that the volume of the parallelepiped subtended by the rows of a matrix
A ∈ Cn×n is given by |det(A)|. Morgenstern [Mor73] proved that log |det(A)| is an asymptotic
lower bound on the size of a linear arithmetical circuit with bounded coefficients computing
the linear transformation given by A. For further lower bounds it is useful to define variations
of volume for r-subsets of the n coordinates. The two versions [BL02, BL03] of the work
by Bürgisser and Lotz refer to two different “r-volume” notions, and it suits our purposes to
include both, giving them different names.

Definition 4.1.1 ([Raz02, BL02]). Given A ∈ Cm×n, and r such that 1≤ r ≤minm,n, define

volr(A) = max
|I|=r

(det(AIA∗I ))1/2, (4.1)

vol′r(A) = max
|I|,|J|=r

(|det(AI,J)|). (4.2)

The centerpiece definition in [BL02, BL03], however, involves taking the Euclidean norm
rather than the max-norm.

Definition 4.1.2 ([BL02]). Given A ∈ Cm×n, and r such that 1 ≤ r ≤ minm,n, define the r-
mean square volume msvr(A) of A by

msvr(A) =

(

∑
I,J
|det(AI,J)|2

)1/2

,

where I and J range over all r-subsets of {1,2, . . .,n}.

These definitions are related by:

Lemma 4.1.4 ([BL02, BL03], respectively) For A and r as above,

vol′r(A) ≤ msvr(A)≤ (m
r )1/2(n

r )1/2vol′r(A), (4.3)

volr(A) ≤ msvr(A)≤ (m
r )1/2volr(A). (4.4)
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Proof. The inequalities given in (4.3) are immediate. For (4.4) use Theorem 4.1.3.

An important fact is that mean square r-volume is invariant under unitary transformations.
That is:

Proposition 4.1.5 For m×n matrix A and any unitary matrices U ∈ Cm×m and V ∈ Cn×n,

msvr(A) = msvr(UAV).

Proof. By the Theorem 4.1.3:

msv2
r (A) = ∑

|I|=r
det(MI,I),

where M = AA∗. Hence the right-side invariance msvr(AV ) = msvr(A), for any unitrary V is
clear: msv2

r (AV) = ∑|I|=r det(NI,I), for

N = (AV )(AV)∗ = AVV ∗A∗ = AA∗ = M.

For the left-side invariance, it is clear from the definition that for any matrix B,

msvr(B) = msvr(B∗).

Hence the left-side invariance follows from the right-side invariance by observing that

msvr(UA) = msvr((UA)∗) = msvr(A∗U∗) = msvr(A∗) = msvr(A).

So one can express msvr(A) in terms of the singular value decomposition of A as folows.
We first define:

Definition 4.1.3. The ith singular value σi(A) is defined to be

σi(A) = λi(AA∗)1/2,

where λi(AA∗) is the ith largest eigenvalue of AA∗.

The singular values of a matrix are non-negative real numbers. Recall the following theo-
rem (See e.g. [Bha97]):

Theorem 4.1.6 (Singular Value Decomposition) For any m× n matrix A with m ≥ n, there
exist unitary matrices U ∈ Cm×m and V ∈ Cn×n, such that

UAV = diag(σ1,σ2, . . . ,σn),

where σ1 ≥ σ2 ≥ . . .≥ σn ≥ 0 are the singular values of A.
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Hence by the unitrary invariance of mean-square-volume we have that

msv2
r (A) = msv2

r (UAV)

= msv2
r (diag(σ1,σ2, . . . ,σn)

= ∑
|I|=r

∏
i∈I

σ2
i

= Sr
n(σ

2
1,σ

2
2, . . . ,σ

2
n),

where Sr
n is the elementary symmetric polynomial of n variables of degree r.

There is also the following characterization of the singular values of a matrix (See
[Bha97]):
Theorem 4.1.7 (Courant-Fisher minmax Theorem) Let A be an m× n with m ≥ n, matrix
then for any i = 1,2, . . . ,n,

σi(A) = max
S⊆Cn

dim(S)=i

min
x∈S/{0}

||Ax||2
||x||2

,

where S ranges over all linear subspaces of dimension i.
From this it is immediately clear that for any matrix A, σ1(A) = ||A||2. Also one has that
||A||2F = σ2

1(A)+σ2
2(A)+ · · ·+σ2

n(A).
As we have remarked above, msvr is not preserved under transformations in SLn(C) (un-

less r = n). The following theorem states the use of the mean square volume measure for
proving lower bounds.
Theorem 4.1.8 ([BL02]) For A ∈ Cm×n, and 1 ≤ r ≤ min(m,n), we have that a linear
bounded-constant circuit computing A has size at least logmsvr(A)− 1

2 log(m
r )(n

r ).
Next we introduce Raz’s notion of geometric rigidity.

Definition 4.1.4 ([Raz02]). Let A ∈ Cm×n be a matrix with with row vectors ai, The r-rigidity
of A is defined to be

rigr(A) = min
dimV=r

max
1≤i≤n

dist(ai,V ),

where V ranges over all linear subspaces of Cn, and dist(a,V ) = minv∈V ‖a− v‖2.

This notion relates to the r-volume measures defined above in the following way:
Lemma 4.1.9 ([Raz02]) For any r, volr(A)≥ rigr(A)r.
If one considers an arbitrary topological sorting of the gates of a bounded coefficient linear
circuit f1, f2, . . . , fs, then we can think of the fi’s defining an s×n matrix A. One can argue that
each gate fi can at most double the r-volume:

volr( f1, f2, . . . , fi)≤ 2 ·volr( f1, f2, . . . , fi−1),

which implies volr(A)≤ 2s(Γ), for any bounded-coefficient linear circuit Γ computing A. Com-
bined with the above lemma this then yields the following theorem:
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Theorem 4.1.10 ([Raz02]) For A ∈ Cm×n, and 1≤ r ≤ m, every linear bounded-constant cir-
cuit computing A has size at least r logrigr(A).
We will use the following Lemma from [BL02]. Here for f ,a ∈ Cn, we think of f as a linear
form via f (a) = f ∗a.

Lemma 4.1.11 ([BL02]) Let f1, . . . , fk be linear forms and 1 ≤ r < n. Then there exists a
linear subspace U of Cn of dimension r such that for a ∈U standard Gaussian, we have that

Pr[max
i
| fi(a)| ≤ 2(

√
ln4k)rign−r( f T

1 , . . . , f T
k )]≥ 1

2 .

4.2 Well-Conditioned Orbit Circuits
In this section, we will consider orbit circuits Γ(Ex,Dy) for which matrices E and D are well-
conditioned in the following traditional sense.

Definition 4.2.1. The condition number κ(E) of a non-singular matrix E is defined to be
the ratio σ1(E)

σn(E) of its largest and smallest singular value. This is the same as the product
||E||2 · ||E−1||2 (see [GvL96]). We will fix some absolute constant κ1, and stipulate that a
well-conditioned matrix E has κ(E)≤ κ1.

Let us remark that well-conditioned matrices do not form a group. Unitary matrices have
condition number 1, and do form a group. That the results of [BL02, BL03] carry over to orbits
under unitary matrices follows immediately on the “x side” because the image of a standard-
Gaussian vector under unitary transformation is standard Gaussian, and on the “y side” because
unitary transformations preserve msvr. For bounded condition number, the “y side” needs only
the following easy proposition:

Proposition 4.2.1 For any two n× n matrices A and B where B has determinant equal 1, for
any 1≤ r ≤ n, msv2

r (AB)≥ κ(B)−2rmsv2
r (A).

Proof. Applying Theorem 4.1.6, let B = UDV be the singular value decomposition of B. Then
msv2

r (AB) = msv2
r (AUDV) = msv2

r (AUD). So the general case reduces to the case where B
is diagonal with real entries. So assume B = diag(b1, . . . ,bn). Observe that each bi ≥ κ(B)−1.
Hence

msv2
r (AB) = ΣI,J|det(AB)I,J|2

= ΣI,J ∏
j∈J
|b j|2|detAI,J|2

≥ κ(B)−2rΣI,J|detAI,J|2

= κ(B)−2rmsv2
r (A).
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However, the “x side” needs more care that the deviation from standard Gaussian distribu-
tion incurred in going from x to Ex does not disturb the statistical machinery by too much. The
crux of the matter lies in the following generalization of a lemma in [BL02].

Lemma 4.2.2 Let 1≤ r < n, and let E and D be an n×n complex matrices with determinant
1 that are well-conditioned. Let U be a linear subspace of dimension r, and let a be standard
Gaussian in U. Then

Pr[sbc
lin(Circ(Ea)D)≥ 1

2
r logn− cn] >

1
2
,

where c is some absolute constant.

Proof. By Theorem 2.1.4, we can write

Circ(Ea) = Fndiag(λ0, . . . ,λn−1)F−1
n ,

where
(λ0, . . . ,λn−1)

T = DFTnEa.

Let α = λ√
n . By invariance of mean-square-volume under unitary transformation, we get that

msv2
r (Circ(Ea)) = msv2

r (diag(λ0, . . . ,λn−1))

= ∑
J

∏
j∈J
|λ j|2

= nr ∑
J

∏
j∈J
|α j|2,

where J ranges over all subsets of {1, . . . ,n} of size r. By definition of standard Gaussian, we
can write a = Vβ, where V is an n× r matrix with orthonormal column vectors v1, . . . ,vr and β
standard Gaussian in Cr. Let W = FnEV . Then α = FnEa = FnEV β = Wβ.

For a subset J of {1, . . . ,n} of size r, let WJ be the sub-matrix of W consisting of rows
indexed by J, and let αJ = (α j)T

j∈J. Observe that αJ = WJβ. The covariance matrix of αJ is
given by

Σ = E[αJα∗J]

= E[WJββ∗W ∗J ]

= WJE[ββ∗]W ∗J
= WJW ∗J .

The last line follows because β is standard Gaussian distributed. We get that det(Σ) =
|det(WJ)|2. Applying Theorem 4.1.3 yields that

∑
J
|detWJ|2 = det(W ∗W ) = det(V ∗E∗EV ).
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We claim now that det(V ∗E∗EV )≥ κ−2r n−1
n

1 , where κ1 > 0 is a global constant. To prove
the claim, observe that in terms of singular values σi(EV ) we have

det(V ∗E∗EV ) =
r

∏
i=1

σi(EV )2.

By Theorem 4.1.7:
σr(EV ) = min

||x||2=1
||EVx||2.

Since V has orthonormal columns, for x with ||x||2 = 1, ||Vx||2 = 1. So for any x,

||EVx||2 ≥ min
||z||2=1

||Ez||2 = σn(E).

For the matrix E we have
1 = det(E∗E) =

n
∏
i=1

σi(E)2,

and by well-conditioning that σ1(E)
σn(E) ≤ κ1, where κ1 is an absolute constant. Hence we conclude

that
σr(EV )≥ σn(E)≥ κ−

n−1
n

1 ,

and hence that
det(V ∗E∗EV )≥ κ−2r n−1

n
1 ,

thus proving the claim.
Hence we conclude that there exists a set J such that

|det(WJ)|2 ≥ κ−2r n−1
n

1 (n
r )−1.

Applying Lemma 4.1.2 to the vector αJ , we get that with probability greater than 1
2 that

∏
i∈J
|αi|2 ≥ δr det(Σ)≥ δrκ−2r n−1

n
1 (n

r )−1,

where δ is an absolute constant. Hence

msv2
r (Circ(Ea))≥ nrδrκ−2r n−1

n
1 (n

r )−1 ≥ nrδrκ−2r
1 2−n.

Hence by Proposition 4.2.1,

msv2
r (Circ(Ea)D)≥ nrδrκ−4r

1 2−n.

Hence applying Theorem 4.1.8 we get:

sbc
lin(Circ(Ea)D) ≥ logmsvr(Circ(Ea)D)− log

(

n
r

)

≥ r
2

logn− cn,
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where c is an absolute constant.

Combining the above lemma with Lemma 4.1.11 in the same manner as in [BL02] yields
the main theorem of this section.

Theorem 4.2.3 Any orbit circuit Γ(Ex,Dy), where E and D have determinant equal to 1 and
are well-conditioned, computing cyclic convolution x◦ y must have Ω(n logn) gates.

Proof. Let Γ(Ex,Dy) be an orbit circuit computing x ◦ y. Fix r = 1
2n. Canceling the ma-

trices E and D, we get that Γ(x,y) computes Circ(E−1x)D−1y. Let f1, . . . , fk be the linear
forms computed by the circuit in Γ(x,y) in the variables x1, . . . ,xn. To be precise, if a gate
computes c1x1 + . . . + cnxn, then its corresponding linear form as a vector is (c1, . . . ,cn)T .
Let R = rign−r( f T

1 , . . . , f T
k ). Observe that E−1 and D−1 have determinant 1 and are well-

conditioned as well. By Lemmas 4.2.2 and 4.1.11, there exists an a ∈ Cn such that:

1. sbc
lin(Circ(E−1a)D−1)≥ 1

2 r logn− cn, for absolute constant c, and

2. maxi | fi(a)| ≤ 2
√

ln4kR.

Let α = maxi | fi(a)|. Then Γ(a,y) computes the linear mapping Circ(E−1a)D−1. As in [BL02],
we can make this circuit into a bounded-constant linear circuit by

1. replacing each multiplication with fi(a) with a multiplication by 2α−1 fi(a), and

2. multiplying each output with α
2 using at most log(α

2 ) additions and one scalar multipli-
cation of absolute value at most 2.

Letting S(Γ) denote the size of Γ, we thus obtain a bounded-constant linear circuit that has
at most S(Γ) + n logα ≤ S(Γ) + n log(2

√
ln4kR) gates computing Circ(E−1a)D−1. We can

assume k ≤ n2, and by the rigidity bound of Theorem 4.1.10:

S(Γ)≥ sbc
lin( f T

1 , . . . , f T
k )≥ (n− r) logR−n. (4.5)

So we obtain the inequality

S(Γ)+n log(2
√

4n2R)≥ n
4 logn− cn,

which together with (4.5) yields S(Γ) = Ω(n logn).

To summarize, the main idea in the above proof is that the two lemmas show the existence
of a value a to fix for x, so that simultaneously the values of the linear forms `1(a), . . ., `k(a) are
manageably small and the bc-complexity of the resulting linear map in y is high. The values
`1(a), . . . , `k(a) are small enough that the linear circuit obtained from the original bilinear bc-
circuit Γ by plugging them in and deleting the “x side” can be converted into a linear bc-circuit
adding not too many gates, leading to the conclusion that Γ itself must have been large.
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4.3 Orbit circuits with exactly n multiplication gates
In previous sections we indicated why it is still difficult to prove super-linear lower bounds on
SLn(C)-orbits of natural functions, but we obtained such lower bounds when the matrices have
bounded condition number. Now we show that if we restrict Γ to have only n multiplication
gates, then a tight Ω(n logn) lower-bound on the complexity of cyclic convolution applies, for
arbitrary matrices in SLn(C) acting not only at the inputs but also at the outputs. Let × denote
the entry-wise product of vectors, i.e. (a×b)i = aibi, for each i.

Theorem 4.3.1 For any 0 < ε < 1
2 , for all but finitely many n, for any n× n matrices C,D,E

such that
E(Cx×Dy) = Circ(x)y,

one of the following conditions must hold:

1. |det(C)| or |det(D)| is at least nn( 1−2ε
4 ), or

2. |det(E)| is at least nεn.

We note that such a circuit exists, via Theorem 2.1.4. The proof works by showing that up to
movable factors this representation is essentially unique.

Proof. Given that the range of Circ(x)y equals Cn, we note that the matrix E must be non-
singular. For 0≤ k ≤ n−1, define an n×n matrix V k by

(V k)i j = (CT
i Di)k j,

for 0≤ i, j≤ n−1, where Ci and Di denote the ith row of C and D, respectively. Now we note
some elementary lemmas:

Lemma 4.3.2 For 0 ≤ k, j ≤ n− 1, (EV k) j = ek+ j mod n, where ei denotes the ith standard
basis vector, and (EV k) j denotes the jth column of EV k.

Proof. (EV k) j = E(V k
j ), where

V k
j =

(

(CT
0 D0)k j, . . . ,(CT

n−1Dn−1)k j
)T

.

For each i, (CT
i Di)k j is the coefficient of the term xky j computed at multiplication gate i,

since there we compute polynomial (Cix)(Diy). Hence E(V k
j ) equals the n-vector of coeffi-

cients (r1, . . . ,rn), where ri equals the coefficient of xky j in (Circ(x)y)i, which in turn equals
ek+ j mod n.

Lemma 4.3.3 For 0≤ k ≤ n−1,

V k = E−1lshift(I,k mod n),
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where lshift(I, i) is the matrix obtained by wrap-around shifting the columns of I by i steps to
the left.

Proof. Using Lemma 4.3.2, we get that

EV k = ek mod n,ek+1 mod n, . . . ,ek+n−1 mod n = lshift(I,k mod n).

Since E must be invertible, we get the lemma.

Lemma 4.3.4 For 0≤ k ≤ n−1, V k = lshift(V k−1 mod n,1).

Proof. Using the fact that lshift(AB, i) = A · lshift(B, i) and Lemma 4.3.3, we get that

lshift(V k−1 mod n,1) = lshift(E−1lshift(I,k−1 mod n),1)

= E−1lshift(lshift(I,k−1 mod n),1)

= E−1lshift(I,k mod n)

= V k.

Lemma 4.3.5 For 0≤ i≤ n−1, the matrix CT
i Di is a circulant matrix with

(CT
i Di)st = (CT

i Di)s−1 mod n,t+1 mod n,

for all 0≤ s, t ≤ n−1.

Proof. Consider arbitrary 0≤ s, t ≤ n−1. Then using Lemma 4.3.4 we get:

(CT
i Di)st = V s

it

= V s−1 mod n
i,t+1 mod n

= (CT
i Di)s−1 mod n,t+1 mod n.

Proposition 4.3.6 All entries of C and D must be nonzero.

Proof. Suppose on row i of C there is a zero entry. Then CT
i Di has one of its rows all zero.

By Lemma 4.3.5 this implies that CT
i Di has all entries zero. This means the output of the ith

multiplication gate is always zero. Hence the output of the circuit is strictly contained in Cn,
which is a contradiction. For example, for x = e1, Circ(x)y = Iy. By symmetry, we conclude
that also D must have all entries nonzero.
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Lemma 4.3.7 For 0≤ i≤ n−1, there exists an nth root of unity f such that for 0≤ j≤ n−1,

Ci j = fCi, j+1 mod n, and

Di j = f Di, j+1 mod n.

Proof. Observe that if some f satisfies the above, then f n = 1. Fix 0≤ i≤ n− 1. Let us use
the short-hand c j and d j for the entries Ci j and Di j, respectively, and we drop the mod n in
the subscript, assuming all indexing is done mod n. By Lemma 4.3.5, for any s and t, and any
number l, csdt = cs−ldt+l . Fix t = 0 and l =−1. Since all entries of C and D are non-zero, we
get for any s that

cs
cs+1

=
dn−1
d0

.

Let f = dn−1
d0

. For 0≤ j ≤ n−1,

f c j+1 =
c j

c j+1
c j+1 = c j.

Similarly we get for any 0≤ j ≤ n−1, that

d j−1
d j

=
c0

cn−1
,

which implies the statement for the Di j’s of the Lemma, and note the multiplier f is indeed the
same for C and D.

The above lemma tells us that for each row i there is a root of unity f and nonzero ai
and bi so that Ci = (ai, f ai, . . . , f n−1ai), and Di = (bi, f bi, . . . , f n−1bi). It is not too difficult to
see that these multiplier must be distinct for different rows. Namely, if for i 6= j, rows i and
j use the same multiplier, then Ci = λC j and Di = ξD j, for certain scalars λ and ξ. But then
(Cix)(Diy) = λξ(Cix)(Diy). In other words the ith and jth multiplication gate are restricted to
be some fixed scalar multiple of each other. Hence the input to E is of dimension less than n,
hence the output of the circuit has dimension < n, which is a contradiction.

So the full set {ω0,ω, . . . ,ωn−1} with w = e2πi/n is used. Without loss of generality we
assume wi is used for row i. Hence we get

C = diag(a0, . . . ,an−1)DFTn

D = diag(b0, . . . ,bn−1)DFTn. (4.6)

From (4.6), and the fact that {rT
i ri : 0 ≤ i ≤ n− 1} is a linearly independent set with ri equal

the ith row of DFTn, we obtain:

Proposition 4.3.8 The set of polynomials {(Cx×Dy)i : 0≤ i≤ n−1} is linearly independent.
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The above proposition tells us that there is exactly one matrix E such that E(Cx×Dy) =
Circ(x)y. It can be verified using Theorem 2.1.4 that the matrix

E =
1
nDFT∗ndiag(

1
a0b0

, . . . ,
1

an−1bn−1
).

fits the equation.
We now complete the proof of this section’s main theorem. Let ∆ =

diag(a0b0, . . . ,an−1bn−1), dC = |det(diag(a0, . . . ,an−1))|, and dD = |det(diag(b0, . . . ,bn−1))|.
Then |det(∆)|= dCdD. Fix 0 < ε < 1/2. If dC ≥ n−n(ε/2+1/4), then

|det(C)|= dC|det(DFTn)|= dCnn/2 ≥ nn(1/4−ε/2).

Similarly, if dD ≥ n−n(ε/2+1/4), then |det(D)| is at least nn(1/4−ε/2). Otherwise |det(∆)| is at
most n−n(ε+1/2). This implies that |det(E)| is at least nεn.

As a corollary to the above theorem we get the following:

Corollary 4.3.9 For any n× n matrices E, D and F with determinant equal to 1, any orbit
circuit FΓ(Ex,Dy) with exactly n multiplication gates computing Circ(x)y must have size at
least Ω(n logn).

Proof. Let Mx and My be the linear maps computed at the input in the x and y variables, re-
spectively, and let Mo be the linear map of the circuit at mapping the values from multiplication
gates to output. These are all maps from Cn to Cn. By Theorem 4.3.1, one of the three linear
mappings, call it M, of the output circuit must have determinant of absolute value at least nn/6.
The map M can be written as a product of a determinant-1 matrix that does not count towards
the circuit size, and another matrix N that is computed by gates. Hence using Theorem 2.1.1,
the number of gates to compute N is at least lognn/6 = Ω(n logn).

The above corollary implies a lower bound on bounded-coefficient complexity (when re-
stricted to n multiplication gates) of the entire bilinear SLn(C)-orbit of the mapping Circ(x)y.
Namely we have:

Corollary 4.3.10 For any two n× n matrices E and D in SLn(C), the size of a bounded-
coefficient circuit with n multiplication gates computing Circ(Ex)Dy must be Ω(n logn).

4.4 Orbits of ΣΠΣ- Formulae
In this section we extend our lower bounds from Chapter 3 to ΣΠΣ formulas with arbitrary
linear transformations at the inputs. These linear transformations might themselves require n2

formula size. More precisely, we consider orbit circuits of the form C(Ex), where E ∈GLn(C)
and C is a ΣΠΣ-formula. To emphasize, constants on wires are unrestricted. Let `o

3( f ) denote
the smallest number of wires for a ΣΠΣ-formula C for which there exists invertible matrix E
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such that C(Ex) = f . Regular ΣΠΣ-formula size, that is fixing E to be the identity map in the
above, is denoted by `3( f ).

Let us note that for polynomial f and affine subspace A of codimension κ, we can represent
f|A by a substitution f (Bx + b) for some matrix B of rank n− κ and vector b. For a set of
polynomials T , dim[{t(Bx+b) : t ∈ T}] is the same for all B of equal rank and fixed vector b.

Lemma 4.4.1 Let g ∈ C[y1, . . . ,yn] and let E ∈ GLn(C). Suppose f = g(Ex). If it holds that
for every affine subspace A of codimension κ, dim(∂d( f )|A) > D, then also for every affine
subspace B of codimension κ, dim(∂d(g)|B) > D.

Proof. Suppose there exists affine subspace B of codimension κ such that dim[∂d(g)|B)]≤ D.
Let S = ∂d(g), S(Ex)= {s(Ex) : s∈ S} and T = ∂d( f ). Observe that T ⊆ span(S(Ex)). Suppose
the restriction to B is represented by substitution (Bx+b). E−1B is also affine of codimension
κ, and by the remark before this lemma,

dim[∂d( f )|E−1B] = dim[{p(E−1Bx+E−1b) : p ∈ T}]

Since {p(E−1Bx + E−1b) : p ∈ T} is contained in the span of S(Bx + b), we obtain a contra-
diction.

Theorem 4.4.2 Let f ∈ C[x1, . . . ,xn]. Suppose for integers d,D,κ it holds that for every affine
subspace A of codimension κ, dim(∂d+1( f )|A) > D. Then

`o
3( f )≥min(

κ2

d +2 ,
D

(κ+d
d )

).

Proof. Suppose f = C(Ex), where C is a ΣΠΣ formula with `3( f ) many wires and E is some
invertible matrix. Write Let g = C(y). Observe that by Lemma 4.4.1 we have for any affine A
of codimension κ,

n
∑
i=1

dim[∂d(
∂g
∂yi

)|A]≥ dim[∂d+1(g)|A] > D. (4.7)

Let M1, . . . ,Ms be the multiplication gates of C. We have that g = ∑s
i=1 Mi, where for 1≤ i≤ s,

Mi = Πdi
j=1li, j with deg(li, j) = 1 and di = fan-in(Mi). Write

li, j = ci, j,1y1 + ci, j,2y2 + . . .+ ci, j,nyn + ci, j,0.

Computing the partial derivative of g w.r. to variable yk we get

∂g
∂yk

=
s

∑
i=1

di

∑
j=1

ci, j,k
Mi
li, j

. (4.8)
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Let S = {i|dim(Mh
i )≥ κ}. If |S| ≥ κ

d+2 , then `3( f )≥ κ2

d+2 . Suppose |S|< κ
d+2 . If S = /0, then let

A be an arbitrary affine subspace of codimension κ. Otherwise, we have d +2 < κ. It is possible
to pick d + 2 input linear forms l j,1, . . . , l j,d+2 of each multiplication gate M j with j ∈ S, such
that {lh

j,1, . . . , lh
j,d+2| j ∈ S} is a set of at most κ independent homogeneous linear forms. Define

A = {y|li, j(y) = 0, i ∈ S, j ∈ [d +2]}. By Proposition 3.1.1, we have that codim(A)≤ κ. Wlog.
assume codim(A) = κ. For each i ∈ S, d+2 linear forms of Mi vanish on A. This implies that

dim(∂d(
Mi
li, j

)|A) = 0.

For i /∈ S, by Proposition 3.3.6,

dim(∂d(
Mi
li, j

)|A) < (κ+d
d ).

Let Dk = dim(∂d(
∂g
∂yk

)|A). By equation (4.7), we have that ∑n
k=1 Dk > D. By Proposition 3.3.7

and equation (4.8),

Dk ≤ ∑
i, j

ci, j,k 6=0

dim(∂d(
Mi
li, j

)|A).

Hence there must be at least Dk
(κ+d

d )
terms on the r.h.s., i.e., there are at least that many wires

from yk to gates in the next layer. Hence in total the number of wires to fanning out from the
inputs of C is at least ∑n

i=1
Di

(κ+d
d )

> D
(κ+d

d )
.

We compare the above with Theorem 3.3.3 and Shpilka and Wigderson’s result that we
quoted as Theorem 3.3.2. Let us define

ρd,k( f ) = min
codim(A)=k

dim[∂d( f )|A]

Lemma 4.4.1 implies that for f in the GLn(C)-orbit of g, i.e. f = g(Ex), for some non-singular
matrix E, that ρd,k( f ) = ρd,k(g). However, it does not hold in general that

min
codim(A)=k

(

n
∑
i=1

dim[∂d(
∂ f
∂xi

)|A]

)

= min
codim(A)=k

(

n
∑
i=1

dim[∂d(
∂g
∂xi

)|A]

)

.

This is the reason that we lose the “potential extra factor of n” arising from the summation
in Theorem 3.3.3. Theorem 4.4.2 comes very close in its statement to Theorem 3.3.2. The
only essential difference is the condition dim[∂d( f )|A] versus dim[∂d+1( f )|A]. We will give an
example in the applications that shows how this enables in certain cases for our Theorem 4.4.2
to outperform Theorem 3.3.2.



4.4. ORBITS OF ΣΠΣ- FORMULAE 57

4.4.1 Lower Bounds
Theorem 4.4.3 For 1≤ d ≤ logn, `o

3(S2d
n ) = Ω(n

2d
d+1
d ).

Proof. By Lemma 4.14 in [SW99] we have that for any affine subspace A of codimension κ
and d ≥ 0,

dim(∂d+1(S2d+2
n )|A)≥ ( n−κ

d+1 ).

Applying Theorem 4.4.2 we get that

`o
3(S2d+2

n ) ≥ min(
κ2

d +2 ,
(n−κ

d+1 )

(κ+d
d )

)

= min(
κ2

d +2 ,
(n−κ

d )

(κ+d
d )

n−κ−d−1
d +1 )

≥ min(
κ2

d +2
,
(n−κ

d )

(κ+d
d )

n−2κ
d +1

)), (4.9)

subject to the condition (d +1) < κ. Set κ = 1
9 n

d+1
d+2 . Then we have that

(n−κ
d )

(κ+d
d )

n−2κ
d +1

≥ (
n−κ
κ+d )d n−2κ

d +1

≥ (
8/9n

2/9n
d+1
d+2

)d n−2κ
d +1

= 4dn
d

d+2
n−2κ
d +1

≥ n
2d+2
d+2

d +1
.

Hence (4.9) is at least min( n
2d+2
d+2

81(d+2) ,
n

2d+2
d+2

d+1 ) = Ω(n
2d+2
d+2

d+2 ).

Recall the product-of-inner-product polynomial:

PIP2
n = (

n
∑
j=1

a jb j)(
n
∑
i=1

cidi).

We prove:
Theorem 4.4.4 `o

3(PIP2
n ) = Ω(n4/3).

Proof. Set d = 1,κ = n2/3. Observe that ∂PIP2
n

∂aic j
= bid j. Let A be any affine subspace of codi-

mension κ with basis B. At least n−κ variables in {b1, . . . ,bn} are not in B. Symmetrically,
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at least n− κ variables in {d1, . . . ,dn} are not in B. So for at least (n− κ)2 indices (i, j),
∂PIP2

n
∂aic j |A

=
∂PIP2

n
∂aic j

. These are independent terms, hence dim(∂2(PIP2
n )|A) ≥ (n−κ)2. Applying

Theorem 4.4.2 we get that `o
3(PIP2

n )≥min(n4/3

3 ,
(n−n2/3)2

n2/3+1 ) = Ω(n4/3).

The above is an example, where the different conditions of dim[∂d( f )|A] > D versus
dim[∂d+1( f )|A] > D in the statements of Theorems 3.3.2 and 4.4.2 matter. Recall our pre-
vious remark that [SW99] yields only a trivial Ω(n) lower bound for this polynomial. More
generally, we have the product of d inner products:

PIPd
n =

d
∏
i=1

(
n
∑
j=1

ai
jbi

j),

for variables ai
j,bi

j with i, j ∈ {1, . . . ,n}.

Theorem 4.4.5 For constant d ≥ 2, `o
3(PIPd

n ) = Ω(n
2d

d+1 ).

Compare with `∗3(PIPd
n ) = Ω(n

2d
d+2 ) in [SW99].

Theorem 4.4.6 `3(zT Circ(x)y) = Ω(n 4
3 ).

Proof. Let f = zT Circ(x)y. Aply Theorem 3.3.3 for d = 1. Since ∂1( ∂ f
∂zi

) contains all variables
x1, . . . ,xn, we conclude dim[∂1( ∂ f

∂zi
)|A] is at least n−κ for any affine A of codimension κ. Hence

`3( f )≥min(κ2/3, n(n−κ)
κ+1 ). Taking κ = n2/3 yields `3( f ) = Ω(n4/3).

Note that zT Circ(x)y can be computed in O(n logn) size using a bounded constant ΣΠΣΠΣ
circuit, and also note that Theorem 3.1 and 3.2 of [SW99] are rendered useless for this poly-
nomial, because the dimension of the set of first partials and also the dimension of the set of
second partials is just O(n).

We cannot prove a non-linear lower bound on `o
3(zT Circ(x)y), because there exists a poly-

nomial in the orbit of zT Circ(x)y that has O(n) ΣΠΣ-formula size! Namely, separately in
each set of variables, apply DFT−1

n to x, Fn to y and F−1
n to z. By Theorem 2.1.4, Circ(x) =

Fndiag(λ)F−1
n for λ = DFTnx. Hence we get zT F−1

n Circ(DFT−1
n x)Fny = zT diag(x)yT .

The above is an example of a polynomial where the extra factor of n obtained by the
summation in Theorem 3.3.3 matters: dim[∂2( f )|A] = O(n), but ∑i dim[∂1(

∂ f
∂zi

)]≥ n(n−κ), for
any affine A of codimension κ. This polynomial also provides us with a counter-example to the
claim that for any f = g(Ex),

min
codim(A)=k

(

n
∑
i=1

dim[∂d(
∂ f
∂xi

)|A]

)

= min
codim(A)=k

(

n
∑
i=1

dim[∂d(
∂g
∂xi

)|A]

)

.

If this were true, we could prove equally strong lower bounds for the ΣΠΣ-orbit model as
obtainable with Theorem 3.3.3 for regular ΣΠΣ-formulas. However, this does not hold, and we
had to weaken Theorem 3.3.3 somewhat, resulting in its analogy Theorem 4.4.2.
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As a last application, we define
Definition 4.4.1. For d ≥ 1, define the linear-sum of the product of d n×n matrices X 1, . . . ,Xd

to be the polynomial

LMMd =
n
∑
i=1

n
∑
j=1

ai j(X1 ·X2 . . . ·Xd)i j.

We prove the following lower bound:

Theorem 4.4.7 For constant d ≥ 1, `o
3(LMM2d+1) = Ω(n4− 4

d+2 ).
Proof. Rewrite

LMM2d+1 = ∑
i0,...,i2d+1∈{1,...,n}

ai0,i2d+1x1
i0,i1x2

i1,i2 . . .x2d+1
i2d ,i2d+1

.

Consider fixed indices i0, . . . , i2d+1. Taking (d + 1)-order partial with respect to the variables
x1

i0,i1,x
3
i2,i3, . . . ,x

2d+1
i2d ,i2d+1

of LMM2d+1 yields the monomial

ai0,i2d+1x2
i1,i2x4

i3,i4 . . .x2d
i2d−1,i2d .

Consider an arbitrary affine subspace A of codimension κ. Since in each matrix there are at
least n2−κ unassigned variables when doing the substitution corresponding to restriction to A,
we conclude that there are at least (n2−κ)d+1 choices for the indices, which produce a partial
derivative that is not altered by restricting to A. Since each choice yields a different partial we
conclude dim[∂d+1(LMM2d+1)|A]≥ (n2−κ)d+1. Taking κ = n

2d+2
d+2 and applyingTheorem 4.4.2

yields the result.

4.5 Remarks
As a stepping stone towards proving lower bounds for unbounded constant circuits, we defined
a computational model that allows for more unbounded constants than previously considered
in the literature (e.g., see [BL02]), but that does this in some moderated sense. The model
also serves the dual purpose of investigating the computational complexity of all mappings
that are present in the G-orbit of a given bilinear map, for various matrix groups G under
consideration. Given that taking G = GLn(C) results in a model that is at least as powerful
as the unbounded constants case, the next natural thing we attempted was to lift the random
substitutation technique of [BL02, Raz02] to the SLn(C)-orbit model.

This turned out to be hard because of two conflicting issues. Namely, there is the apparent
requirement in the random substitution technique to select the random input from a subspace
U of some dimension εn with ε < 1, which seems to be about the only way to make the outputs
of the linear forms on which substitution is performed “reasonably” bounded. Provided that
is true, they can be replaced by “few enough” repeated additions, and this way a reduction to
the (well understood) linear case is achieved. Unifying this modus operandi of the restriction
technique with the abundance of ill-conditioned matrices present in SLn(C) is problematic.
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Geometrically speaking only n-dimensional volumes retain the same volume under such trans-
formation, but any lower dimensional volumes can be arbitrarily stretched or squashed. In any
configuration of the argument we considered this becomes an issue. Either the msvr-volume of
the target linear form one reduces to is negatively impacted, or, attempting to salvage this, the
outputs of linear forms on which one performs substitution are ill-behaved, and vice-versa.

We did manage to show that techniques from [BL02, Raz02] continue to stand while al-
lowing the circuit to have for free at the inputs linear transformations in SLn(C) that have
condition number O(1). In particular unitary matrices present no problem. We also managed
to show the desired result of proving an Ω(n logn) size SLn(C)-orbit model lower bound for
circular convolution assuming only n multiplication gates are used.

We considered orbits in conjunction with ΣΠΣ-formulas. The fact that lower bounds for
∗-complexity are maintained unaltered under such an extension is trivial. Interestingly enough,
we showed +,∗-complexity lower bounds can also still be established, although in certain cases
the results are weakened.

In the next two chapter we will focus on DLn(C)-orbits, that is, allowing for free arbitrary
diagonal matrices of determinant 1 at the inputs. Also these matrices can be arbitrary ill-
conditioned, and hence will still provide a formidable proving ground.

We first will make an exposition of the complexity theoretic issues that are involved in
interlude Chapter 5, outlining the global structure of the lower bound proof we are going to
pursue. Then in Chapter 6 we will set up a framework that allows for a rigorous attack on
the involved problems. Using Fourier analysis, in particular involving a discrete variant of
the Heisenberg uncertainty principle, we will be able to establish some lower bounds for the
circular convolution bilinear map. We will also establish a result about random Vandermonde
matrices, and derive a circuit lower bound from that. Finally, some limitations will be explored
using result known about the asymptotic eigenvalues of the prolate matrix [Sle78].



Chapter 5

Diagonal Orbits

Our aim is to extend the arguments by Raz and Bürgisser-Lotz [Raz02, BL02] with regard
to the number of unbounded constants allowed in the circuit, and to give lower bounds on
entire orbits f (Dx,Ey), where f is a natural bilinear function like matrix multiplication or
convolution, and D,E are matrices of unit determinant. We begin with the very special case
where E is the identity and D is a diagonal matrix. Handling this case is not sufficient, but it
brings out connections to major matrix problems about minors, in case of convolution about
the discrete Fourier matrix DFTn. The general two-sided case will be dealt with in Chapter 6.
Accordingly, in this chapter and the next, we focus on circuits of the form

Γn(x1 ·dn
1 , . . . ,xn ·dn

n ,y1,y2, . . . ,yn),

where {Γn}n>0 is a family of bounded-coefficient bilinear circuits and

{Dn = (dn
1 ,dn

2 , . . . ,dn
n)}n>0,

is a family of n-tuples satisfying that for any n,
n

∏
i=1

dn
i = 1.

These circuits compute bilinear mappings in the set of variables {x1,x2, . . . ,xn} and
{y1,y2, . . . ,yn}. As done before for orbit circuits, for circuit size we only count the size of
Γn. In other words, the constants dn

i do not count against the size. They can be considered
unary helper gates.

In this chapter we lay out the complexity theory side of the lower bound strategy. The next
chapter attacks the mathematical problems involved, and establishes some lower bounds, and
also indicates some limitations of the taken approach.

5.1 Strategy and Conditional Result
As in [BL02, Raz02], one of the inputs is going to be fixed by constants (we fix y), thereby
reducing the bilinear case to a question about linear circuits. Once y is fixed, the outputs of the

61
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linear forms in y output constants that are used at the multiplication gates. These multiplica-
tions with constants can be replaced by performing repeated additions. In a way to be made
more precise later, one can only do this, if the outputs of the linear forms in the y variables are
“reasonably” bounded. If this is true, only few repeated addition will be needed, leaving the
blow-up in size of the circuit limited. Also, with y fixed, the circuit computes a linear transfor-
mation in the x variables. If one manages to fix y so that the resulting linear map has provably
high complexity, while at the same time leaving blow-up in size caused by the repeated addition
to be limited, one would conclude the original circuit must have been of “high” complexity.
For the purpose of bounding the magnitude of the linear forms when fixing y, we prove the
following lemma.

Lemma 5.1.1 Given k× n matrix F computed by b.c. linear circuit Γ with n inputs and k
outputs, for all 0≤ l < n, there exists U ⊆ Cn of co-dimension l such that for all a ∈U

max
1≤i≤k

|(Fa)i| ≤ ||a||2 ·2
3s(Γ)+3n

2l+2 .

Proof. By the min-max charaterization of singular values (Theorem 4.1.7)

σn(F) = min
||a||2=1

||Fa||2.

If σn(F) < 1, add n gates to the circuit that make a copy of the inputs. We obtain a circuit Γ′
of at most s(Γ)+n gates computing a k′×n matrix G with σn(G)≥ 1 and k′ ≥ n.

Consider G∗G. Using Theorem 4.1.3 (Binet-Cauchy), we get that

det(G∗G) = ∑
|T |=n
|det(GT )|2 ≤

(

k′
n

)

22s(Γ′).

The last inequality follows from Morgenstern’s Theorem 2.1.1. So

det(G∗G)≤ 2k′22s(Γ′) ≤ 23s(Γ′) ≤ 23s(Γ)+3n.

Also
det(G∗G) =

n
∏
i=1

σi(G)2.

For arbitrary 0≤ l < n,

σl+1(G)l+1 ≤
l+1
∏
i=1

σi(G)

≤
n

∏
i=1

σi(G)

≤ 2
3s(Γ)+3n

2 .



5.1. STRATEGY AND CONDITIONAL RESULT 63

So σl+1(G)≤ 2
3s(Γ)+3n

2l+2 . By Theorem 4.1.7 (Courant-Fisher-Weyl min-max)

σl+1(G) = min
codim(U)=l

max
unit x∈U

||Gx||2.

Hence we conclude that there exists U ⊆ Cn of co-dimension l such that for all unit x ∈U ,

max
1≤i≤k

|(Fx)i| ≤ max
1≤i≤k′

|(Gx)i|= ||Gx||∞ ≤ ||Gx||2 ≤ 2
3s(Γ)+3n

2l+2 .

The statement of the lemma now follows by linearity.

We compare the above with the proofs of Lemma 4.1 in [Raz02] and Lemma 4.2 in [BL03].
There the definition of rigidity is used to obtain a subspace U from which selecting a random
input a yields a bound on the magnitudes of Fa with high probability. We obtain a subspace U
such that for all unit a ∈U these magnitudes are bounded, alas with a slightly weaker bound.
Namely, a standard Gaussian vector in an n− l dimensional vector space has expected norm√

n− l, but this factor crucially gets dampened in [BL03] and [Raz02]. Nevertheless, Lemma
5.1.1 will suffice for our purposes. We have the following conditional theorem:

Theorem 5.1.2 Let {Dn = (dn
1 ,dn

2 , . . . ,dn
n)}n>0 be a family of n-tuples satisfying that for any

n, ∏n
i=1 dn

i = 1. Suppose {Γn}n>0 is a family of bounded-coefficient bilinear circuits such that
for all n,

Γn(x1 ·dn
1 , . . . ,xn ·dn

n ,y) = xT Circ(y).

Let
In = {i : 0≤ i≤ n−1 with dn

i < 1},
and define `n = |In|. If for every δ > 0, there exists a k0 > 0 so that for all but finitely many n,
for any affine linear space U of codimension b `n

k0
c, there exists a ∈U with ||a||2 = 1 such that

Circ(a) has an `n× `n minor M with rows In with

|det(M)| ≥ 2−δn log n,

then there exists γ > 0 such that for infinitely many n,

s(Γn)≥ γn logn.

Let us first make some preliminary remarks. Suppose that in the above `n = Ω(n).
This means there exists an 0 < ε0 < 1 so that for all but finitely many n, `n ≥ ε0n. In
this case we think of the dn

i that are larger than 1 as help gates as in [BL02]. There are at
most (1− ε0)n many such help gates. Currently known techniques can already handle this
amount of unbounded constants. Namely, Theorem 6.4 of [BL02] tells us that in this case
s(Γn) = Ω(n logn). The question we would like to address is whether we can manage to deal
with n−o(n) many unbounded constants in the circuit. This situation arises when `n = o(n).
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Proof. (of Theorem 5.1.2) Wlog. we assume all dn
i values are distinct. (If this is not true

make infinitismal perturbations of the dn
i and add n gates to correct these again.) For each n,

let i1,n, . . . , in,n be such that

dn
i1,n < dn

i2,n < dn
i`n,n < 1 < dn

i`n+1,n < .. . < dn
in,n.

In case
log

n
∏

j=`n+1
dn

i j,n = o(n logn),

then we can replace the constants which are bigger than 1 by bounded constant repeated addi-
tions. This takes at most ∑n

j=`n+1 logdn
i jn

= o(n logn) additional gates. Hence we would obtain
a family of regular bounded-coefficient bilinear circuits of size s(Γn) + o(n logn) computing
xT Circ(y), but such a family must have size Ω(n logn) by [BL02]. Hence we would conclude
s(Γn) = Ω(n logn).

So assume that there is a δ > 0 such that for infinitely many n, ∏n
j=`n+1 dn

i j,n
> 2δn log n.

This implies that for infinitely many n,

`n

∏
j=1

dn
i j,n < 2−δn logn, (5.1)

Let us consider some large enough n for which (5.1) holds, and let us drop the sub and
superscipts n on our variables.

We are going to perform the following substitution on the circuit. Set xi j = 0 for all j > `
and substitute xi j = z j/di j otherwise. This yields a bounded coefficient bilinear circuit of size
no bigger than s(Γ), and it computes

(z1, . . . ,z`)diag(d−1
i1 , . . . ,d−1

i` )M,

where M is the `×n minor of Circ(y) corresponding to rows In.
Now set r = n−b `

k0
c, where k0 is the constant that is assumed to exist by the statement of

the theorem for δ
2 . Let f1, . . . , fk be the linear forms in y of Γ. Lemma 5.1.1 provides us with a

linear subspace U of dimension n−b `
k0
c such that for any unit a ∈R U , we have that

logmax
i
| fi(a)| ≤ 3s(Γn)+3n

2b`/k0c+2 . (5.2)

For any unit a ∈ U and any `× ` minor M0 of Circ(a) with rows I we can obtain from Γn a
bounded coefficient linear circuit computing the Cm→ Cm map

(z1, . . . ,zm)diag(d−1
i1 , . . . ,d−1

i` )M0,

by removing the outputs not corresponding to M0 and replacing multiplications with fi(a) by
fi(a)/µ and correcting this by adding at most ` logµ repeated additions at the output gates,
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where µ = maxi | fi(a)|. Hence the number of gates we added is at most

` logmax
i
| fi(a)| ≤ `

3s(Γn)+3n
2b`/k0c+2

≤ k03s(Γn)+3nk0

≤ 4k0s(Γn).

So the size of the resulting b.c. linear circuit is at most (4k0 +1)s(Γ). However, by the condition
of the theorem, and given that n is assumed to be large enough, the above can be done for a
minor M0 for which

|det(M0)| ≥ 2−
δ
2 n logn,

This means that
|det(diag(d−1

i1 , . . . ,d−1
il )M0)| ≥ 2

δ
2 n logn.

However, by Morgenstern’s bound (Theorem 2.1.1) any bounded coefficient circuit com-
puting diag(d−1

i1 , . . . ,d−1
im )M0 then requires at least δ

2n logn gates. Hence s(Γn)≥ δ
8k0+2n logn.

5.2 Finding good minors
Using the notation of Theorem 5.1.2, and given our preliminary remark, we see that we are
essentially left with establishing the following condition:

(Condition I) For every family {In⊆{0,1, . . . ,n−1}}n>0 with `n = |In|= o(n), and every
δ > 0, there exists a k0 > 0 so that for all but finitely many n, for any affine linear space U of
codimension b `n

k0
c, there exists a ∈U with ||a||2 = 1 such that Circ(a) has an `n× `n minor M

with rows In with
|det(M)| ≥ 2−δn log n.

By our preliminary remark, we know the conclusion of the theorem is true for `n = Ω(n),
without need to establish anything further. So actually, for complete coverage of all cases, we
would want to establish the condition for functions `n that are not Ω(n), but we are already
going to be content with the weaker theorem that would result from satisfying condition I for
`n = o(n).

Let us remark the sets In and the subspace(s) U mentioned in the condition are adversarial
in nature, they are determined by a hypothetical orbit circuit for circular convolution of size
o(n logn), that we are trying to show does not exist. Hence the universal quantification over
these quantities in the statement of condition I.

Given that Theorem 2.1.4 allows us to write

Circ(a) = Fndiag(DFTna)F∗n ,



66 CHAPTER 5. DIAGONAL ORBITS

it is no supprise that condition I is related to finding minors of DFTn on a given set of rows In
that have “reasonably” large determinant. We state the following condition:

(Condition II) For every family {In ⊆ {0,1, . . . ,n− 1}}n>0 with `n = |In| = o(n), and
every δ > 0, there exists a k0 > 0 so that for all but finitely many n, for any b `n

k0
c columns

Jn ⊂ {0,1, . . .,n− 1}, there exists an `n× `n minor M of DFTn with rows In and columns
disjoint from Jn with

|det(M)| ≥ 2−δn log n.

Theorem 5.2.1 If Condition I holds, then so does Condition II.

Proof. Suppose Condition I holds. Let {In ⊆ {0,1, . . . ,n− 1}}n>0 be given, and define `n =
|In|. Assume that `n = o(n) and let δ > 0 be given. We want to argue it is now possible to select
a k0 > 0 so that for any family

{Jn ⊆ {0,1, . . . ,n−1}}n>0,

with |Jn|= b `n
k0
c, for all but finitely many n, there exists `n× `n minor M of DFTn with rows In

and columns disjoint from Jn with

|det(M)| ≥ 2−δn log n.

For each n, define Un to be the subspace of vectors v for which (Fnv) j = 0 for all j ∈ Jn. This
subspace has dimension n−|Jn|= n−b `n

k0
c. By condition I, for any δ′ > 0,there exists k′0 > 0

so that, provided n is large enough, we have unit a ∈Un such that Circ(a) has a square minor
M with rows In such that

|det(M)| ≥ 2−δ′n log n. (5.3)

Let Q(a) = Circ(a)Circ(a)∗. Using Theorem 2.1.4 write

Q(a) = DFTndiag(|λ0|2, |λ1|2, . . . , |λn−1|2)DFT∗n, (5.4)

where λ = Fn(a). Note that ||λ||2 = 1.
Using Theorem 4.1.3 (Binet-Cauchy Theorem) and (5.3) we get

det(Q(a)In,In) = ∑
|S|=`n

|det(Circ(a)In,S|2 ≥ 2−2δ′n log n, (5.5)

where in the sum S ranges over all subsets of size `n of {0,1, . . .,n− 1}. Also using Theorem
4.1.3 and now using (5.4) we can write

det(Q(a)In,In) = ∑
|S|=`n

|det(DFT n
In,S)|

2 ∏
s∈S
|λs|2. (5.6)

Since ||λ||2 = 1, for any S of size `n, ∑s∈S |λs|2 ≤ 1. Using the arithmetic-geometric mean
inequality, we then get

∏
s∈S
|λs|2 ≤ (

1
`n

)`n.
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By our choice of U , the only terms in (5.6) that are possibly non-zero are those for those sets
S that avoid Jn, namely ∏s∈S |λs|2 is zero for all others. Combining (5.5) and (5.6) we get that
there exists some set S disjoint from Jn that has

|det(DFT n
In,S)|

2 ∏
s∈S
|λs|2 ≥ 2−2δ′n logn−n,

and hence
|det(DFT n

In,S)|
2 ≥ 2−2δ′n logn−n``n

n .

The above holds for any δ′ > 0, so with δ′ chosen small enough we get that

2−2δ′n log n−n``n
n ≥ 2−δn log n,

This way we see Condition II is satisfied, provided Condition I holds.

In other words Condition II is a necessary condition for establishing Condition I. In Chap-
ter 6 we will see that Condition II would also be a sufficient condition for obtaining Condition
I. However, now that we have extracted the more fundamental notion of finding “good” mi-
nors on the Fourier matrix, let us have a look at some issues that are involved in establishing
Condition II.

As it turns out, Condition II is too strong to satisfy for arbitrary families of rows {In}n>0
and columns {Jn}n>0. To give an example of what can happen, suppose n is a square. Then
it can be seen that any

√
n×√n minor of DFTn that has rows which are multiples of

√
n and

avoids columns that are multiples of
√

n is singular. For example, letting ω = e2πi/9, DFT9 is
given by:





























1 1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω8

1 ω2 ω4 ω6 ω8 ω1 ω3 ω5 ω7

1 ω3 ω6 1 ω3 ω6 1 ω3 ω6

1 ω4 ω8 ω3 ω7 ω2 ω6 ω1 ω5

1 ω5 ω1 ω6 ω2 ω7 ω3 ω8 ω4

1 ω6 ω3 1 ω6 ω3 1 ω6 ω3

1 ω7 ω5 ω3 ω1 ω8 ω6 ω4 ω2

1 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω1





























Selecting rows 0, 3 and 6:




1 1 1 1 1 1 1 1 1
1 ω3 ω6 1 ω3 ω6 1 ω3 ω6

1 ω6 ω3 1 ω6 ω3 1 ω6 ω3





and then removing columns 0, 3 and 6:




1 1 1 1 1 1
ω3 ω6 ω3 ω6 ω3 ω6

ω6 ω3 ω6 ω3 ω6 ω3




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leaves a matrix with only two different kinds of columns, so any 3× 3 minor of it will be
singular. More generally, whenever n = ` · k, any `× ` minor with rows 0,k,2k, . . . ,(`− 1)k
and columns avoiding 0, `,2`, . . .,(k− 1)` can be seen to be singular. Consequently, one can
observe that for `n = ω(

√
n) Condition II does not hold. In the next chapter we will therefore

try to establish weaker versions of condition II, and derive (weakened) diagonal orbit lower
bounds therefrom. The final lower bound theorem we will arrive at, while deriving some
mathematical results that are interesting in their own right, will be the following result:

Main Result 5.2.1 Let {Dn}n>0 be a unit helper family, and suppose {Γn}n>0 is a family of
bounded-coefficient bilinear circuit such that for all n,

Γn(x1 ·dn
1 , . . . ,xn ·dn

n ,y) = xT Circ(y).

Define ln = |Dn∩ (0,1)|. We have that

1. If ln = O(n 1
2 ), then there exists γ > 0 so that s(Γn)≥ γn logn, for infinitely many n.

2. If ln = O(n 3
4 ) and {Dn}n>0 is asympotically contiguous, then then there exists γ > 0 so

that s(Γn)≥ γn logn, for infinitely many n.

3. If ln = Ω(n), then s(Γn) = Ω(n logn).

In the above, a family {Dn}n>0 where each Dn is an n-tuple of distinct positive real num-
bers (dn

1 , . . . ,dn
n) such that ∏n

i=1 dn
i = 1 is called a unit helper family. If for all but finitely many

n, the entries in Dn of value less than one are contiguous (in the circular sense), we say that
{Dn}n>0 is asymptotically contiguous. In other words, the theorem proves a lower bound for
orbit circuits of the form Γ(Dx,y), where D is diagonal and with unit determinant, but with
some further restrictions on how many helper constants are less than one, and how they are
located relative to each other.

Curiously, in the above theorem it is not the unbounded constants that form a problem, but
rather the seemingly innocent ones that are less than one, which the circuit could have supplied
itself without problem. Note that the above theorem implies that we can handle, without further
assumptions, any n− o(

√
n) many unbounded constants. At its most extreme this allows for

n− 1 unbounded constants in the circuit, balanced against a single small helper constant that
makes the product of all helper constants equal to one. This improves the εn many allowed
unbounded constants for fixed ε < 1 from [BL02]. Although it must be said that we have strict
requirements on where the constants are located in the circuit, and we have the requirement
that their product is one. [BL02] has neither of these additional restrictions. Of course lifting
the latter requirement puts one in the arena of the general unbounded constants case, which,
even for linear circuits, has been a standing open problem in theoretical computer science for
over 35 years.
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5.3 Symmetry properties of cyclic convolution
We refer to Hungerford [Hun80] for the group theoretical notions used in the following. A
curiousity is that in Chapter 4 we managed to lift the results of [BL02], amonst others, to orbit
circuits of the form Γ(U0x,U1x), where U0 and U1 are unitary. This includes the case where
the free maps are permutation matrices. However, Theorem 5.2.1, or better said its proof, is
incompatible with any such generalization. Of course, the two conditions of a unitary and
diagonal matrix together, leave only the identity matrix, but more can be said. Namely, there is
a certain lack of symmetry in the cyclic convolution map. In the following let Sn be the group
of permutations on n-vectors. We think of each π ∈ Sn to be a bijection π : Zn → Zn, where
Zn = {0,1, . . .,n−1} is the additive group of integers modulo n.

Definition 5.3.1. Call a permutation π ∈ Sn retrievable if there exist permutations π1 and π2 in
Sn, such that

π2[π(x)Circ(π1(y))] = xCirc(y).

for n-vectors of variables x = (x0,x1, . . . ,xn−1) and y = (y0,y1, . . . ,yn−1)T .

In other words, a permutation is retrievable if application of it to the n-vector of variables x can
be undone by applying a permutation to the n-vector y, and applying one to the result vector
obtained by convolution of the permuted x and y vectors. Elementary reasoning yields the
following:

Theorem 5.3.1 For any n, the retrievable permutations form a group, and are precisely those
permutation π : Zn→ Zn for which there exists b,g ∈ Zn with g relatively prime to n such that
for each i ∈ Zn,

π(i) = b+gi.

Proof. See Appendix B.

The retrievable permutations form a subgroup Rn of Sn of size at most n2−n, hence there
are in general vastly more unretrievable permutations than retrievable ones. So the circular
convolution map enjoys nice symmetry properties, but, perhaps unexpectedly, is not “all sym-
metric”.

We conclude that for any n > 3, it is not in general possible to undo a permutation on the x
variables by permuting the y variables, and then permuting the final result vector. If one could
do this, then one could easily convert any circuit computing π(x)Circ(y) into one computing
xCirc(y). Namely, simply permuting the y variables at the inputs and the outputs of the circuit
with the π1 and π2 that work for π, and one is done. By taking inverses, this would mean
that for any π, any circuit for xCirc(y) can be converted into a circuit computing π(x)Circ(y).
Perfoming this conversion on an orbit circuit

Γ(x1d1,x2, . . . ,xndn,y) = xCirc(y),
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we would get a circuit Γ′ such that

Γ′(xπ(1)d1,xπ(2), . . . ,xπ(n)dn,y) = xCirc(y).

which means we have a circuit Γ′′ with

Γ′′(x1dπ−1(1),x2dπ−1(2), . . . ,xndπ−1(n),y) = xCirc(y).

In other words, we would have a means of permuting the helper constants on the variables.
This would then allow us to at least establish item 2 of Theorem 5.2.1 without the contiguity
requirement.

From the above we conclude that one cannot in general convert a circuit for π(x)Circ(y)
into one computing xCirc(y) by permuting the y-inputs and outputs. However, something
weaker would suffice for our purposes. Namely, if for every permutation π there exists a
reduction that converts a circuit for π(x)Circ(y) into one for xCirc(y), using only o(n logn)
additional circuit hardware, then one would obtain the same conclusion of establishing item 2
of Theorem 5.2.1 without the contiguity requirement. It is not clear whether this can be done.

5.4 Contiguity and Chordal Product
Given that we cannot establish Condition II in general, one natural scenario to consider is
whether we can establish Condition II in case the set In is contiguous. Here we mean contiguous
in the modular sense: n− 1 and 0 are adjacent. In other words, In is contiguous if and only
if it is of the form {b + r mod n : i ≤ r ≤ j}, for certain integers b, i and j. Establishing this
weaker condition, would yield us a diagonal orbit lower bound for more restriced orbit circuits
for which the helper variables that are less than 1 appear as a contiguous block, i.e. are all
adjacent (again in the circular sense).

It is not hard to see that w.l.o.g. we can assume then that In consists of rows 0,1, . . . , `n−1
of DFTn. All `n× `n minors M with these rows are Vandermonde matrices of form M =
V (ω1,ω2, . . . ,ω`n) where the ω’s are nth roots of unity. Using the determinant formula for a
Vandermonde matrix, we have that |det(M)|= CP (ω1,ω2, . . . ,ω`n), where we define for any
finite set P = {p1, p2, . . . , pk} of points on the unit circle in the complex plane their chordal
product

CP (P) = ∏
1≤i< j≤k

|pi− p j|.

Let Ω = {ω0,ω1, . . . ,ωn−1} be the nth roots of unity. Condition II now becomes:

(Condition II′) For `n = o(n), and every δ > 0, there exists a k0 > 0 so that for all
but finitely many n, for any b `n

k0
c many roots of unity Jn ⊂ Ω, there exists `n roots of unity

x1,x2, . . . ,x`n ∈Ω\ Jn such that

CP (x1,x2, . . . ,x`n)≥ 2−δn logn.

Without the presence of the set of “off-limits” points Jn the CP (x1,x2, . . . ,x`n) is max-
imized at `

`n/2
n by selecting the `n points with equal separation between adjacent points on
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the circle. Namely, Wlog. we select the `nth roots of unity. Hence CP (x1,x2, . . . ,x`n) =

|det(DFT`n)|= `
`n/2
n . By the Hadamard Inequality (Theorem 2.1.3), this is the maximum mag-

nitude of the determinant of any `n× `n matrix with unit entries.
The above means for example that for `n = O(

√
n) it will be simple to satisfy Condition

II′. Say `n ≤ d
√

n, for some constant d > 0, for all large enough n. For simplicity lets assume
that `n divides n. Selecting k0 so that b `n

k0
c < 1

d2 `n ensures that of the n
`n

sets of `n equally
spaced points, since n

`n
≥ 1

d
√

n ≥ 1
d2 `n, there must exist at least one that contains no off-limit

point from Jn.
As we will see, we can actually establish condition II for `n = O(

√
n), so there is no need

for a contiguity requirement in this case at all. For general `n = o(n) there is no such simple
argument as we described above. We are faced with the following problem:

Problem. For some large n, consider the set Ω = {ω0,ω1, . . . ,ωn−1 } of all nth roots of unity
on the unit cirlce in the complex plane. Let R⊆Ω be a given set of roots that are “off-limits”.
For any `, what is the optimal strategy to select ` roots of unity ωi1 ,ωi2, . . . ,ωi` ∈ Ω \R that
maximizes CP (ωi1,ωi2, . . . ,ωi`) ?

Related to this question, what sets R in the above provide the worst-case scenario? That is:
Problem. For any k, `, for what kind of sets R⊆Ω of size k is

max
S⊆Ω/R
|S|=`

CP (S)

minimized, and what is this min-max value ?
We have some indication that sets R that are contiguous provide this worst-case scenario,

but the question is related to some standing open problems [DS89] that turn out to be supris-
ingly hard to solve, as we will discuss in the next chapter.

For establishing item 2 of Theorem 5.2.1 we consider a randomized strategy: pick the `n
points uniformly at random from the collection of points that are allowed. This strategy works
fairly well. It enables us to get out desired lower bound for `n = O(n3/4).

For `n = nε, with ε a constant arbitrarily close to 1, we give evidence that there is no
strategy at all that enables us to satisfy Condition II′. We will give evidence that Condition
II′ cannot be satisfied, even for ε = 4/5 + δ, where δ > 0 is constant. We do so by employing
what is known about the asymptotic spectrum of the discrete prolate spheroidal wave functions
[Sle78].
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Chapter 6

Uncertainty Principles & Matrix Games

The Heisenberg uncertainty principle in quantum mechanics is widely known, even to the
extent of having had a cultural impact. The principle is a theorem derivable from the axioms
of quantum mechanics, and expresses the inherent impossibility of simultaneously knowing,
to arbitrary precision, certain complementary observables in nature. For example, one cannot
simultaneously, through measurement, determine both the position and velocity of some given
elementary particle to arbitrary precision.

Physical interpretation aside, the uncertainty principle can be expressed quite generally as
a mathematical statement about operators in a Hilbert space H . Following Selig and Somaraju-
Hanlen [Sel01, SH05], say H has inner product denoted by 〈·, ·〉 and norm || · ||= 〈·, ·〉1/2. For
a linear operator A : H → H we denote its domain by D(A). Define the normalized expected
value of A with respect to f ∈D(A) by

τA( f ) =
〈A f , f 〉
〈 f , f 〉

and the standard deviation of A with respect to f by

σA( f ) = ||(A− τA( f )) f ||.
The uncertainty principle relates the standard deviations of two operators A and B to their
commutator [A,B], which is defined as [A,B] = AB−BA. An operator A is said to be symmetric
if 〈Ax,y〉= 〈x,Ay〉 for every x,y ∈D(A).

Theorem 6.0.1 (Uncertainty Principle, see [SH05]) Let A and B be symmetric operators in
some Hilbert space H . Then

σA( f )σB( f )≥ |〈[A,B] f , f 〉|
2

,

for all f ∈D(AB)∩D(BA).

For the Hilbert space L2(R) of all square integrable functions f : R→C, with inner prod-
uct defined by

〈 f ,g〉=
Z ∞

−∞
f (x)g(x)dx,

73
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the above implies the following classic uncertainty statement about the measures of concentra-
tion of a function f ∈ L2(R) and its Fourier transform f̂ : R→ C, defined by

f̂ (ω) =
Z ∞

−∞
f (x)e−iωxdx.

Namely we have that
Theorem 6.0.2 (see [SH05]) Let f ∈ L2(R) with || f ||= 1. Let

xa =

Z ∞

−∞
x| f (x)|2dx,

ωa =

Z ∞

−∞
ω| f (ω)|2dx,

∆x =
Z ∞

−∞
(x− xa)

2| f (x)|2dx, and

∆ω =
Z ∞

−∞
(ω−ωa)

2| f (ω)|2dω.

Then
∆x∆ω≥ π/2.

The above shows that for a function f : R→ C one cannot simultaneously localize f and
its Fourier transform f̂ to arbitrary extent: the smaller the standard deviation ∆x of f , the larger
the standard deviation ∆ω of f̂ must be. Going back to physical interpretation briefly, in this
scenario f could be the wave function of some particle (in one dimension, at some fixed time),
in which case one obtains the probability of detecting the particle by square integration of the
wave function. The position of the particle is a random variable, and the quantity xa is the
expected location of the particle. ∆x is the standard deviation of this position random variable.
As it turns out, f̂ is the wave function in momentum space, that is ωa and ∆ω are the average
and standard deviation of the momentum of the particle. The position and momentum arise
from probablity distributions as one can witness them in reality by carrying out some large
number of identically prepared experiments. The above gives limits on how much one can
narrow down simultaneously the deviations for position and momentum.

There are severals settings in which one can observe the uncertainty phenomena. The
above scenario is “continuous-to-continuous”, i.e. the Fourier transform and its inverse
move functions between continuous domains. Donoho and Stark [DS89] investigated several
“discrete-to-discrete” analogues of the above uncertainty relation. That is, for n-vector x and its
discrete Fourier transform x̂ = DFTnx, they considered as measure of localization the support
supp(x), which is the total number of non-zeroes of x. They also defined a more quantatively
subtle notion of ε-concentration of a vector x on a set of indices T ⊆ {0,1, . . .,n−1},which is
defined as the `2-norm of x restricted to T . For these two measures they proved inequalities in
the spirit of Theorem 6.0.2, showing the limits on the simultaneous concentration achievable
for any Fourier pair (x, x̂).

Uncertainty relations of the kind obtained by [DS89] are closely related to properties of
minors of the Fourier matrix DFTn. For proving lower bounds in the orbit model for the
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circular convolution bilinear map xT Circ(y), precise quantitative statements about these minors
regarding the magnitude of their determinant is exactly what we need, as we saw in Chapter 5
with Conditions I and II expressed there.

In the following sections we will express particular sufficient conditions for yielding orbit
model lower bounds in terms of certain games played on the DFTn matrix. These games will
take the place of Conditions I and II of Chapter 5. Using this linguistic tool will conveniently
suppress some of the lengthy quantifier alternations in our statements that we would otherwise
have.

To outline the idea, the game is played between a player and an adversary. The adversary
chooses a set of rows R and a set of columns C. Then the player tries to select a minor of DFTn
with rows R avoiding columns C in order to maximize the determinant. We will establish
connections between the existence of certain good strategies for this game to uncertainty type
relations in the “discrete-to-discrete” setting. We will then use this to prove Theorem 5.2.1.

For the first item of this theorem we will involve an uncertainty relation proven in [DS89].
Unfortunately, this argument breaks down, for reasons indicated in Chapter 5, for `n beyond
O(n1/2).

In order to establish some further results, we make additional assumptions on the con-
stant di present at the inputs. In case they are asymptotically contiguous, we can press on the
statement of our theorem for larger `n up to O(n3/4). Namely, in this case it will turn out that
for lower bounds it is sufficient for the player to win the more relaxed version of the Fourier
matrix game in which it is assumed that the set of rows R the adversary chooses in contiguous.
Consequently, determinants of Vandermonde matrices will play a role.

The problem becomes the following: with some number `n of the nth roots of unity being
disallowed by the adversary, how do we select `n other roots of unity x1,x2, . . . ,x`n in order
to maximize the determinant of the Vandermonde matrix V (x1,x2, . . . ,x`n) supported by those
points? We will show a randomized strategy for the player that is sufficient for proving orbit
model lower bounds in which we can tolerate up to O(n3/4) roots being disallowed by the
player. In order to achieve this result we prove a lower bound on the expected value of the
determinant of the Vandermonde matrix V (x1,x2, . . . ,x`n) with nodes on the unit circle. This
result is interesting in its own right, and may have further applications.

One application we give, is an uncertainty-type relation for a discrete analogue of the
bandlimited functions. In the continous setting, a function f : R→ C is called bandlimited if
there exists Ω∈R such that f̂ (ω) = 0 for all |ω|> Ω. For bandlimited functions more intricate
details are known about simultaneous concentration of f and f̂ than the standard uncertainty
principle. See for example [Sle78] for a study in the “continuous-to-discrete” domain.

Interestingly enough, [Sle78] will also give us some indications on the limits we can expect
with our taken approach. Desirable would be to find player strategies that can tolerate any
`n = o(n) number of roots being disallowed by the adversary. The worst-case scenario appears
to arise when the adversary chooses these roots to be contiguous. When he/she does, we have
some indication that there is no good strategy for the player (in a sense which we will make
more precise later) once `n = Ω(n4/5 log1/5 n).
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6.1 Minor Games on Matrices
Definition 6.1.1. We define the circulant game CIRC-Game(n, l,k,B) to be the following
single-round game against an adversary agent:

Adversary: selects a linear subspace U ⊂ Cn of co-dimension k and l dis-
tinct rows r1,r2, . . . ,rl ∈ {0,1 . . . ,(n−1)}.

Player: selects a∈U with ||a||2 = 1, and selects an l× l minor M of Circ(a)
with rows r1,r2, ..., . . . ,rl.

Result: The player wins if and only if |det(M)|> B.

Related to the above game is the following game on the DFTn matrix:

Definition 6.1.2. We define the Fourier matrix game DFT-Game(n, l,k,B) to be the following
single-round game against an adversary agent:

Adversary: selects l distinct rows r1,r2, . . . ,rl and k distinct columns
c1,c2, . . . ,ck in {0,1, . . .,(n−1)}.

Player: selects an l× l minor M of the n×n Fourier matrix DFTn with rows
r1,r2, . . . ,rl and columns disjoint from c1,c2, . . . ,ck.

Result: The player wins if and only if |det(M)|> B.

We define DFT-Game∗(n, l,k,B) and CIRC-Game∗(n, l,k,B) to the same games as above,
but with the relaxation that the adversary can choose only sets of rows R that are contiguous in
the cyclic sense: R = {b+ i mod n : 0≤ i≤ l−1} for some base point b.

For the contiguous circulant game it is immediately obvious that we can assume without
loss of generality that the adversary chooses any particular contiguous set R of our preference,
since for any two chosen sets R1 and R2, the matrices Circ(a)R1 and Circ(a)R2 just differ by a
cyclic shift. We can make the same assumption without loss of generality for the contiguous
Fourier game. Namely, for any l columns C = {c1,c2, . . . ,cl} and two contiguous sets R1 and
R2 with base points b1 and b2 respectively, we have that

DFTR1,C = DFTR2,C ·diag(ωrc1 ,ωrc2, . . . ,ωrcl),

where r = b1−b2, and ω = e2πi/n. Hence |det(DFTR1,C)|= |det(DFTR2,C)|.
We begin by proving a generalization of the phenomena we sketched in Chapter 5 with the

DFT9 example: for this matrix, any 3×3 minor with rows 0, 3, and 6 and columns avoiding 0,
3, and 6 is singular. In general we have the following:

Theorem 6.1.1 If n = l ·k, then the adversary has a winning strategy for DFT-Game(n, l,k,0).
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Proof. A winning strategy for the adversary is to take rows

ri = ki,

for i = 0,1, . . . ,(l−1), and columns
ci = li,

for i = 0,1, . . . ,(k−1).
Let A be the l×n minor of DFTn with rows r0,r1, . . .rl−1. The rth column Ar of A equals

(1,αr,α2r, . . . ,α(l−1)r)T , where α = e 2πi
n k = e 2πi

l . Hence for any r,

Ar = Ar+l mod n.

With columns 0, l,2l, . . .,(k−1)l disallowed, there are therefore only l−1 distinct columns in
the remaining set, so any l× l minor of A that avoids the disallowed columns will be singular.

Corollary 6.1.2 If n is a square, then the adversary has a winning strategy for
DFT-Game(n,

√
n,
√

n,0).

So if n = l · k, there is not much honor to achieve in general for the player as it comes to
playing DFT-Game(n, l,k, ·). This will also have a negative impact on the general lower bound
result we are trying to prove, as we will see. It is the reason why in Theorem 5.2.1 for item 1 we
stated a limitation of `n = O(n1/2). In case k · l < n however, this pathetic case does not apply,
and the player does have a non-trivial strategy. For k · l below n, perturbation theory kicks in,
and by applying the Binet-Cauchy Theorem one can guarantee the existence of a minor with a
“reasonable” lower bound on the magnitude of its determinant. We have the following result:

Theorem 6.1.3 The player has a winning strategy for DFT-Game(n, l,k,B), provided k · l < n,
and

B < (n− kl)l/2
(

n− k
l

)−1/2
.

Proof. Suppose the adversary chooses l rows R and k columns C. Let N = {0,1, . . . ,n− 1}.
Let A = DFTR,N/C and B = DFTR,C. Then

AA∗ = nI−BB∗

Both AA∗ and BB∗ are Hermitian, so by Theorem 2.1.2 (Weyl’s Perturbation Theorem), pro-
vided ||BB∗||2 ≤ n, for each i, the ith eigenvalue λi(AA∗)≥ n−||BB∗||2. We can write

BB∗ = ∑
i∈C

cic∗i ,

where ci is the ith column of DFTR,N. Since ||cic∗i ||2 ≤ ||ci||22 = l, then by subadditivity of the
`2-norm, ||BB∗||2 ≤ kl. Hence

det(AA∗)≥ (n− kl)l.
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By Theorem 4.1.3 (Binet-Cauchy Theorem),

det(AA∗) = ∑
|S|=l
|det(AR,S)|2.

Hence we conclude there exists S of size l such that

|detDFTR,S| ≥ (n− kl)l/2
(

n− k
l

)−1/2
.

For our lower bound results for circular convolution, we require good strategies not for the
Fourier matrix game, but rather for the circulant matrix game. Fortunately, these two games
are closely related. In one direction we have the following theorem:
Theorem 6.1.4 If the adversary has a winning strategy for DFT-Game(n, l,r,B), then it has
a winning strategy for CIRC-Game(n, l,r,

(n−r
l
)

n− l
2 B). The same statement holds with Game

replaced by Game∗.
Proof. Let R and C be the sets of l rows and r columns of the adversary’s winning strategy
in the fourier matrix game. Then for the circulant game the adversary chooses the set R for
the rows, and takes U to be the subspace of vectors v for which (Fnv)i = 0 for all i ∈C. This
subspace has dimension n− r.

Say the player picks unit a ∈U , and say T is the set of columns of the minor he chooses.
Using Theorem 2.1.4 write

Circ(a) =
1√
nDFTndiag(λ)DFT∗n,

where λ = Fn(a). Then ||λ||2 = 1.
Using Theorem 4.1.3 (Binet-Cauchy Theorem) we can write:

det(Circ(a)R,T) = ∑
|S|=l

(∏
s∈S

λs)det(DFTR,S)det( 1√
nDFT ∗S,T ).

Since ||λ||2 = 1, for any S of size l, ∑s∈S |λs| ≤
√

l. Using the arithmetic-geometric mean
inequality, we then get

∏
s∈S
|λs| ≤ (

1√
l
)l,

and note that there are at most n− r nonzero λs because of the choice of U . By Theorem 2.1.3
(Hadamard inequality) we then have

|det( 1√
nDFT ∗S,T )| ≤ (

√
l√
n)l.
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Since det(DFTR,S) < B for any S disjoint from C, and ∏i∈S λi = 0 for all other sets S, we get
that

|det(Circ(a)R,T)|< ∑
|S|=l,S∩C= /0

(
1√

l
)lB(

√
l√
n)l =

(

n− r
l

)

n−l/2B.

This proves the statement for the regular versions of the game. The statement for both
versions of the relaxed game can be verified analogously.

From this we see that the same pathetic case n = k · l arises for the circulant game. In this
situation again there is not much glory to achieve for the player. Namely, we have the following
corollary:

Corollary 6.1.5 If n = l · k, then the adversary has a winning strategy for
CIRC-Game(n, l,k,0). In particular, the adversary can win Circ-Game(n,

√
n,
√

n,0) in
case n is a square.

We can also prove a relation between the circulant and Fourier game in the reverse direc-
tion. The following lemma yields a way for the player to tranfer his strategy for the Fourier
game to the circulant game. The strategy for the player in this case is to use some randomiza-
tion: given the subspace U that the adversary selects, the player selects a standard Gaussian
vector in U . Given that the player has a “good” strategy for the Fourier matrix game, this will
combine to be a good strategy for the circulant game as well.

Theorem 6.1.6 For any n,r, l with l + r ≤ n, if the player has a winning strategy for
DFT-Game(n, l,r,B), then the player has a winning strategy for CIRC-Game(n, l,r,B′), where

B′ = Bδl/2
√

(n
r
)

4l(n− r)l
,

and δ is a constant approximately 0.02. More precisely δ = 2−(γ+
√

2φ) with γ =
1√
π

R ∞
0 t− 1

2 e−t logtdt, and φ = 1
2

R ∞
0 e− t

2 log2 tdt. The same statement holds with Game replaced
by Game∗.

Proof. Suppose the adversary chooses subspace U of dimension n− r and a set of l rows R in
the circulant game.

Consider standard Gaussian randomly selected a∈R U , then λ = Fna is also standard Gaus-
sian.

Write λ = Aα, where A is an n× (n− r) matrix that has orthonormal columns that span
FnU , and α is standard Gaussian in Cn−r. Apply Theorem 4.1.3 (Binet-Cauchy):

∑
|R|=n−r

|det(AR)|2 = det(A∗A) = 1.
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Hence there exists a set R of n− r rows with |det(AR)|2 ≥
(n

r
)−1. Since the player can win

DFT-Game(n, l,r,B), let T be a subset of R such that

|det(DFTR,T )|> B.

Note that det(AT A∗T )≥
(n

r
)−1. Namely det(AT A∗T ) = det(MM∗), where M is obtained by adding

n−r− l rows to AT which are orthonormal and orthogonal to the span of the rows of AT . Since
each row r of A has ||r||2 ≤ 1 we must have that |det(M)| ≥ |det(AR)|. That is, the |det(M)| is
the maximum determinant one can get by appending n− r− l rows of norm at most 1 to the l
rows AT .

The matrix AT A∗T is the covariance matrix of centered Gaussian vector (λi)i∈T . By Lemma
4.1.2, with probability greater than 1

2 we have that

∏
i∈T
|λi|2 ≥ δl det(AT A∗T )≥ δl

(

n
r

)−1
,

where δ is a constant approximately 0.02. More precisely, Lemma 4.1.2 gives δ = 2−(γ+
√

2φ)

with γ = 1√
π

R ∞
0 t− 1

2 e−t log tdt, and φ = 1
2

R ∞
0 e− t

2 log2 tdt.
Now let us bound the norm of the vector λ. We have that

E[||λ||22] = E[||α||22] = (n− r)E[|α1|2] = 2(n− r).

The last equality follows from Lemma 4.1.1. By the Markov inequality,

Pr[||λ||22 ≤ 4(n− r)]≥ 1
2
.

From the above we conclude there must exist a vector a ∈U such that if we let λ = Fna, then
||λ||22 ≤ 4(n− r) and simultaneously

∏
i∈T
|λi|2 ≥ δl

(

n
r

)−1
.

Say the player chooses a′= a
||a||2 , which is unit. Theorem 2.1.4 (Convolution Theorem) implies:

Circ(a′) = DFTndiag(λ′)Fn,

where λ′ = Fna′. Let D = Circ(a′)Circ(a′)∗. Then

D = DFTndiag(|λ′0|2, |λ′1|2, . . . , |λ′n−1|2)DFT ∗n .

Using Theorem 4.1.3 (Binet-Cauchy), we can write

det(DR,R) = ∑
|S|=l

(∏
i∈S
|λ′i|2)|det(DFTR,S)|2

≥ (∏
i∈T
|λ′i|2)|det(DFTR,T )|2

>
B2δl

(n
r
)

4l(n− r)l .
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Applying Binet-Cauchy once more, we have that

det(DR,R) = ∑
|S|=l
|det(Circ(a′)R,S)|2.

Hence there exists S such that

|det(Circ(a′)R,S)|>
Bδl/2

√

(n
r
)

4l(n− r)l
.

This is the minor that the player chooses.
The above argument goes through in case of playing the contiguous games. In this case

the R chosen by the adversary is contiguous, so to get the result it suffices for the player to
invoke its winning strategy for DFT-Game∗(n, l,r,B) instead.

As we can see in the above Lemma 6.1.6, there is some loss in the threshold B by which
the player can win the game. In our application in Section 6.5 however, it will turn out that
this loss is ignorable as a lower order term in our estimates. This gives us the convenience of
focusing on the more fundamental notion of playing the Fourier matrix game.

6.2 Random Vandermonde Matrices
We are going to employ the probabilistic method to show the existence of good strategies
for playing the contiguous Fourier matrix game. For the contiguous Fourier matrix game the
essential question becomes the following:

Problem. For some large n, consider the set Ω = {ω0,ω1, . . . ,ωn−1 } of all nth roots of unity
on the unit circle in the complex plane. Let R⊆Ω be a given set of roots that are “off-limits”.
For any `, what is the optimal strategy to select ` roots of unity ωi1 ,ωi2, . . . ,ωi` ∈ Ω \R that
maximizes the Vandermonde determinant:

∏
1≤s<t≤`

|ωis−ωit | ?

Related to this question, what sets R in the above provide the worst-case scenario? That is:
Problem. For any k, `, for what kind of sets R⊆Ω of size k is

max
S⊆Ω\R
|S|=`

∏
p6=q∈S

|p−q|

minimized, and what is this min-max value ?



82 CHAPTER 6. UNCERTAINTY PRINCIPLES & MATRIX GAMES

6.2.1 Related Work
The above two questions are related to the following. Suppose T ⊆ D := {0,1, . . . ,n− 1}.
What sets R minimize ||DFT n

T,R||2 ? If we let M = DFT n
T,R and N = DFT n

T,D\R, then

MM∗+NN∗ = nI.

So using the Theorem 2.1.2, if ||DFT n
T,R||2 < K we get that each eigenvalue λi(NN∗)≥ n−K,

and consequently that |det(NN∗)| ≥ (n−K)l, where ` = |T |. Then applying Theorem 4.1.3 one
gets that there exists an `×` minor of N with determinant of magnitude at least (n−K)`

(n−|R|
` )

. Donoho

and Stark considered the opposite question of which sets T and R maximize ||DFT n
T,R||2. They

define the “index-limiting” operator PR = diag(1R), where 1R is the 0,1-valued n-vector that
is 1 precisely for all indices in R, and the “frequence-limiting” operator PT = F∗n diag(1T )Fn.
Note that ||PT PR||2 = ||DFTT,R||2. They conjecture:
Conjecture 2 ([DS89]). For interval T and set R with |R| · |T | = n, ||PT PR||2 is maximized
when R is also an interval.

Potentially, maximizing ||DFT n
T,R||2 yields the converse effect of forcing |det(NN∗)| to be

small, although one cannot directly conclude this from Theorem 2.1.2. Forcing |det(NN∗)| to
be small also depresses the value

max
S⊆Ω\R
|S|=`

CP (S), (6.1)

where CP (S) is the chordal product of S, which we defined in Section 5.4 by

CP (S) = ∏
p6=q∈S

|p−q|.

So as answer to the second problem above, it appears plausible that the bad sets R that minimize
(6.1) are when R is chosen to be an interval, i.e. if R is a set of indices that is contiguous in the
modular sense. Computer runs seem to corroborate this idea, and in the analysis that follows
such R indeed seem to form the major difficulty.

Also related to our work, is the question of the conditioning of a Vandermonde matrix. For
real numbers r1,r2, . . . ,r`, the Vandermonde matrix V (r1,r2, . . . ,r`) infamously can be highly
ill-conditioned [Gau75]. For Vandermonde matrices with nodes in the complex plane, where
the nodes are arranged to be nicely spread out the situation can be better. Ferreira [Fer99] gives
some bounds for Vandermonde matrices with nodes on the unit circle in the complex plane that
show the matrix can be quite well conditioned provided the nodes are spread around the cirle
evenly.

We should also mention the powerful work done by Camdes, Romberg and Tao [CRT04].
They prove that for any T of size O( n

logn), if one selects the set S by independently choosing
for each column k to be in S with probability τ, where τ is some fixed constant, then with high
probability for M = DFT n

T,S, the determinant det(MM∗) is “not to small”. Unfortunately, their
moment method approach is not robust against the adversarial set R of points to avoid. At a
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critical juncture in their proof they rely on the cancellation property of the roots of unity, which
states that for any r not divisible by n we have

n−1
∑
i=0

ωri = 0,

where ω is any primitive nth root of unity. The presence of the set R implies that not all roots
appear with equal probability, indeed some may appear with probability 0. Consequenctly, after
taking expectations and doing a brute force application of the inclusion-exclusion principle, not
all roots of unity are guaranteed to appear in the final expression to be cancelled. Hence the
attempt to adapt their proof to our situation breaks down. Seen more holistically, since their
proof makes no assumption about T , except on its size, the presence of the set R must make
their proof break down, because of the phenomena we sketched in the introduction. Recall our
observation that if n is a square, then there exist sets T and R of size

√
n such that all minors

with rows T and avoiding columns R are singular. The question is whether we can do better by
assuming that T is contiguous. We will now turn to this question.

6.2.2 Randomized Selection Strategy
We first prove an estimate on a particular sum that is involved in the analysis.

Define the “ln-of-chord-length” function f (t) = ln |1− eit |, for t ∈ R \ {k2π : k ∈ Z}.
Straightforward geometry gives us:

f (t) =
1
2 ln(2−2cost),

which can be rewritten using the relation sin2 α
2 = 1−cosα

2 as

f (t) = ln2sin t
2 = ln2+ ln |sin t

2 |.

We will also consider a discretized version of this function, which per abuse of notation will
also be denoted by f . It will be clear from the context, whether f is referring to the discrete or
continuous function.

Lemma 6.2.1 Let ε(t) = ln |t|− f (t). Then for any t with |t|< 1,

0 < ε(t) <
t2

12
.

Proof. First of all for any t, f (t)= ln |1−eit |< ln |t|. We thus see that ε(t) is non-negative. For
t ∈ (0,2π), we have for the error function ε(t) = ln |t|− f (t) = ln |t|

2sin t
2
. For t > 0, sint ≥ t− t3

6 .

So on this interval, ε(t)≤ ln t
t− t3

24
= − ln(1− t2

24). For −1
24 < x < 1

24 , ln(1+ x) ≥ x− x2
2 . So for

0 < t < 1,

0 < ε(t) <
t2

24 +
t4

1152 <
t2

12 .
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The lemma follows by symmetry of f (t) and ln |t|.

Lemma 6.2.2 Let n ≥ 7, and let ω = e2πi/n. Define the discrete function f (d) = ln |1−ωd|,
for d = 1,2, . . . ,n−1. Then

n−1
∑
d=1

f (d)≥ 2− ln2− 2π2

3n2 .

Proof. Using the fact (see e.g. [RW04], p. 182, equation 55) that
Z π\2

0
ln(sinx)dx =−π

2
ln2,

we get that
Z 2π

0
f (t)dt = 2π ln2+

Z 2π

0
lnsin t

2dt

= 2π ln2+2
Z π

0
lnsin t

2
dt

= 2π ln2+4
Z π\2

0
lnsinxdx

= 0.

For j = 0,1, , . . .,n−1, define interval I j = [ j 2π
n ,( j +1)2π

n ]. By the above,

2π
n

n−1
∑
d=1

f (d) =
2π
n

n−1
∑
d=1

f (d)−
Z 2π

0
f (t)dt

=
2π
n f (1)−2

Z 2π/n

0
f (t)dt + 2π

n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt. (6.2)

We will approximate f (t) by ln t for t close to 0, and estimate the error incurred by this to
bound the first two terms of (6.2). Using Lemma 6.2.1 , provided n≥ 7,

f (1)≥ ln 2π
n − ε(

2π
n )≥ ln 2π

n −
π2

3n2

and
Z 2π/n

0
f (t)dt ≤

Z 2π/n

0
ln tdt

≤ [t ln t− t]2π/n
0

=
2π
n ln 2π

n −
2π
n .



6.2. RANDOM VANDERMONDE MATRICES 85

Hence (6.2) is at least

2π
n ln 2π

n −
2π3

3n3 −
4π
n ln 2π

n +
4π
n +

2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt ≥

2π
n ln n

2π
+

4π
n −

2π3

3n3 +
2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt. (6.3)

We will now bound the last two term in the above expression. Let us first consider the case
when n is even.

2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt =

2π
n

n−1
∑
d=2

f (d)−
n−2
∑
d=1

Z

Id
f (t)dt

=
2π
n

n/2

∑
d=2

[ f (d)+ f (n+1−d)]−2
n
2−1

∑
d=1

Z

Id
f (t)dt

=
2π
n

n/2

∑
d=2

[ f (d)+ f (d−1)]−2
n
2−1

∑
d=1

Z

Id
f (t)dt

=
2π
n

n/2−1

∑
d=1

[ f (d)+ f (d +1)]−2
n
2−1

∑
d=1

Z

Id
f (t)dt

=
n/2−1

∑
d=1

(
2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt). (6.4)

Since for 1≤ d ≤ n/2−1, f (t) is strict monotone increasing, we know that

2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt ≥−2π

n [ f (d +1)− f (d)].

Hence (6.4) is at least

2π
n

n/2−1

∑
d=1

[ f (d)− f (d +1)] =
2π
n [ f (1)− f (n

2)]

≥ 2π
n [ln 2π

n −
π2

3n2 − ln2].

Hence (6.2) is at least
4π−2π ln2

n − 4π3

3n3 .

Hence we conclude that in case n is even, that
n−1
∑
d=1

f (d)≥ 2− ln2− 2π2

3n2 .
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Let us now consider the case when n is odd. Then

2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt

=
2π
n

n−1
∑
d=2

f (d)−
n−2
∑
d=1

Z

Id
f (t)dt

=
2π
n f (n+1

2 )+
2π
n

(n−1)/2

∑
d=2

[ f (d)+ f (n+1−d)]−2
n−1

2 −1

∑
d=1

Z

Id
f (t)dt−

Z

I(n−1)/2
f (t)dt

=
2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt + 2π

n

(n−1)/2

∑
d=2

[ f (d)+ f (d−1)]−2
n−1

2 −1

∑
d=1

Z

Id
f (t)dt

=
2π
n f (n+1

2 )−
Z

I(n−1)/2
f (t)dt + 2π

n

n−1
2 −1

∑
d=1

[ f (d)+ f (d +1)]−2
n−1

2 −1

∑
d=1

Z

Id
f (t)dt

=
2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt +

n−1
2 −1

∑
d=1

(
2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt). (6.5)

Since for 1≤ d ≤ (n−1)/2−1, f (t) is strict monotone increasing, we know that
2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt ≥−2π

n [ f (d +1)− f (d)].

Hence (6.5) is at least

2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt + 2π

n

n−1
2 −1

∑
d=1

[ f (d)− f (d +1)] =

2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt + 2π

n [ f (1)− f (n−1
2

)] =

−
Z

I(n−1)/2
f (t)dt + 2π

n f (1) ≥

2π
n [ln 2π

n −
π2

3n2 − ln2],

and so we obtain the same bound as the n is even case.

Lemma 6.2.3 Let n ≥ 7, and let ω = e2πi/n. Define the discrete function f (d) = ln |1−ωd|,
for d = 1,2, . . . ,n−1, then

n−1
∑
d=1

f (d)≤ 2ln n
2π

+2+ ln2+
π2

5832n2 .
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Proof. For j = 0,1, , . . . ,n−1, define interval I j = [ j 2π
n ,( j +1)2π

n ]. As in the proof of Lemma
6.2.2 we can write

2π
n

n−1
∑
d=1

f (d) =
2π
n

n−1
∑
d=1

f (d)−
Z 2π

0
f (t)dt

=
2π
n f (1)−2

Z 2π/n

0
f (t)dt + 2π

n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt. (6.6)

Provided n≥ 7, we have by Lemma 6.2.1 that
Z 2π/n

0
f (t)dt ≥

Z 2π/n

0
ln t− ε(t)dt

≥ [t lnt− t]2π/n
0 − [

t3

36 ]
2π/n
0

=
2π
n ln 2π

n −
2π
n −

2π3

5832n3 .

Hence (6.6) is at most

2π
n f (1)+

4π
n ln n

2π
+

4π
n +

2π3

5832n3 +
2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt. (6.7)

We will now bound the last two term in the above expression. Let us first consider the case
when n is even. As in the proof of Lemma 6.2.2 we can write

2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt =

n/2−1

∑
d=1

(
2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt). (6.8)

Since for 1≤ d ≤ n/2−1, f (t) is strict monotone increasing, we know that

2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt ≤ 2π

n [ f (d +1)− f (d)].

Hence (6.8) is most

2π
n

n/2−1

∑
d=1

[ f (d)− f (d +1)] =
2π
n [ f (n

2)− f (1)]

=
2π
n [ln2− f (1)].

Hence (6.6) is at most
4π
n ln n

2π
+

4π
n (1+

1
2 ln2)+

2π3

5832n3 .
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Hence we conclude that in case n is even, that

n−1
∑
d=1

f (d)≤ 2ln n
2π

+2+ ln2+
π2

5832n2 .

Let us now consider the case when n is odd. As in Lemma 6.2.2 we can write

2π
n

n−1
∑
d=2

f (d)−
Z (n−1) 2π

n

2π/n
f (t)dt

=
2π
n f (n+1

2 )−
Z

I(n−1)/2
f (t)dt +

n−1
2 −1

∑
d=1

(
2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt). (6.9)

Since for 1≤ d ≤ (n−1)/2−1, f (t) is strict monotone increasing, we know that

2π
n [ f (d)+ f (d +1)]−2

Z

Id
f (t)dt ≤ 2π

n [ f (d +1)− f (d)].

Hence (6.9) is at most

2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt + 2π

n

n−1
2 −1

∑
d=1

[ f (d)− f (d +1)] =

2π
n f (n+1

2
)−

Z

I(n−1)/2
f (t)dt + 2π

n [ f (1)− f (n−1
2

)] =

−
Z

I(n−1)/2
f (t)dt + 2π

n f (1) ≤

2π
n [ln2− f (1)].

Hence we obtain the same bound as the n is even case.

We now turn to the main result in this section. Given that in the contiguous version of
the Fourier matrix game it does not really matter which block of rows the adversary chooses,
we will focus on playing the game on the first l many rows. In this case any selected minor
will be a Vandermonde matrix. In order to show existence of a good minor that avoids the
set of columns chosen by the adversary, we will consider selecting a random such minor, and
evaluate the expected value of its determinant.

More precisely, for complex numbers z0,z1, . . . ,zl−1, denote by V = V (z0,z1, . . . ,zl−1)

the l× l Vandermonde matrix defined by Vi j = z j
i for 0 ≤ i, j ≤ l− 1, we have the following

theorem:

Theorem 6.2.4 For any n and l,r with 0≤ r < n
π and l+r≤ n, Let N = {ωk|k = 0,1, . . . ,n−1},

where ω = e2πi/n. Let R be an arbitrary subset of N of size r. Consider the process of picking
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{z0, . . . ,zl−1} ⊂ N\R uniformly at random among all subsets of N\R of size l. Then for the
Vandermonde matrix V = V (z0,z1, . . . ,zl−1) we have

E[ln |detV |]≥ (n−2r)
(l

2
)

(n− r)(n− r−1)
(2− ln2− 2π2

3n2 )−
(l

2
)

(n− r)(n− r−1)
(r2 ln n

rπ
+ r2 +

r4π2

36n2 ).

Proof.

E[ln |detV |] = E[ln∏
i< j
|zi− z j|]

= E[∑
i< j

ln |zi− z j|]

= ∑
i< j

E[ln |zi− z j|] (by linearity of E)

=

(

l
2

)

E[ln |z0− z1|] (by symmetry).

Let η = E[ln |z0− z1|]. We can write the following expression for η:

η = ∑
p∈N\R

∑
q∈N\R,q6=p

Pr[z0 = p and z1 = q] ln |p−q|.

Since {z0,z1} is uniform among 2-subsets of N\R, for any p 6= q,

Pr[(z0 = p and z1 = q) or (z0 = q and z1 = p)] =

(|N\R|
2

)−1
.

Since the events [(z0 = p and z1 = q] and [(z0 = q and z1 = p] are disjoint and have equal
probability, we can conclude that Pr[(z0 = p and z1 = q] = 1

2
(|N\R|

2
)−1

= 1
(n−r)(n−r−1) . Define

f (k) = ln |1−wk|, for k = 1,2, . . . ,n−1, and let χ correspond to the characteristic function of
N\R. That is χ(i) = 1 if i ∈ N\R, and 0 otherwise. We have

η =
1

(n− r)(n− r−1) ∑
p∈N\R

∑
q∈N\R,q6=p

ln |p−q|

=
1

(n− r)(n− r−1)

n−1
∑
i=0

n−1
∑

j=0, j 6=i
χ(i)χ( j) ln|ωi−ω j|

=
1

(n− r)(n− r−1)

n−1
∑
i=0

n−1
∑
d=1

χ(i)χ(i+d mod n) ln |ωi−ωi+d |

=
1

(n− r)(n− r−1)

n−1
∑
i=0

n−1
∑
d=1

χ(i)χ(i+d mod n) ln |1−ωd |
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=
1

(n− r)(n− r−1)

n−1
∑
i=0

n−1
∑
d=1

χ(i)χ(i+d mod n) f (d)

=
1

(n− r)(n− r−1)

n−1
∑
d=1

f (d)
n−1
∑
i=0

χ(i)χ(i+d mod n)

=
1

(n− r)(n− r−1)

n−1
∑
d=1

f (d)c(d),

where we define

c(d) =
n−1
∑
i=0

χ(i)χ(i+d mod n).

Now for any d,

c(d) =
n−1
∑
i=0

χ(i)χ(i+d mod n)≥ n−2r,

since for fixed d, the number of indices i for which at least one of χ(i) and χ(i + d mod n) is
zero is at most 2r. Also we have that

n−1
∑
d=0

c(d) =
n−1
∑
d=0

n−1
∑
i=0

χ(i)χ(i+d mod n)

=
n−1
∑
i=0

χ(i)
n−1
∑
d=0

χ(i+d mod n)

=
n−1
∑
i=0

χ(i)(n− r)

= (n− r)2.

So
n−1
∑
d=1

c(d) = (n− r)2− (n− r) = n2−2rn+ r2−n+ r.

Since c(d) is always at least n−2r, define an “excess” function e(d) by

e(d) = c(d)− (n−2r).

The total excess equals
n−1
∑
d=1

e(d) =
n−1
∑
d=1

c(d)− (n−1)(n−2r) = r2− r.

We get that
n−1
∑
d=1

f (d)c(d) =
n−1
∑
d=1

f (d)[e(d)+(n−2r)]



6.2. RANDOM VANDERMONDE MATRICES 91

= (n−2r)
n−1
∑
d=1

f (d)+
n−1
∑
d=1

f (d)e(d)

≥ (n−2r)(2− ln2− 2π2

3n2 )+
n−1
∑
d=1

f (d)e(d),

where the last line follows from Lemma 6.2.2.
Note that for any d, c(d) ≤ n− r, and thus 0 ≤ e(d) ≤ r. We know that ∑n−1

d=1 f (d)e(d)
is smallest if the total excess r2− r is placed at much as possible at places where f (d) is the
smallest. By the concavity of f , one can conclude that in case r is odd,

n−1
∑
d=1

f (d)e(d) ≥
(r−1)/2

∑
d=1

f (d)r +
n−1
∑

d=n− r−1
2

f (d)r

= 2r
(r−1)/2

∑
d=1

f (d)

≥ 2r n
2π

Z
r−1

2
2π
n

0
f (t)dt

=
rn
π

Z

(r−1)π
n

0
ln t− ε(t)dt

≥ rn
π

[t ln t− t− t3

36
]
(r−1)π

n
0 {by Lemma 6.2.1}

= r(r−1) ln (r−1)π
n − (r−1)r− 1

36
r(r−1)3π2

n2

≥ r2 ln rπ
n − r2− r4π2

36n2 ,

and in case that r is even,

n−1
∑
d=1

f (d)e(d) ≥
r/2

∑
d=1

f (d)r +
n−1
∑

d=n+1− r
2

f (d)r

≥ r n
2π

Z rπ
n

0
f (t)dt + r n

2π

Z

(r−2)π
n

0
f (t)dt +

=
rn
2π

Z
rπ
n

0
lnt− ε(t)dt + rn

2π

Z

(r−2)π
n

0
ln t− ε(t)dt

≥ rn
2π

[t ln t− t− t3

36 ]
rπ
n

0 +
rn
2π

[t ln t− t− t3

36 ]
(r−2)π

n
0 {by Lemma 6.2.1}

≥ r2 ln rπ
n − r2− r4π2

36n2 .
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Hence we finally conclude that

E[lndetV ]≥ (n−2r)
(l

2
)

(n− r)(n− r−1)
(2− ln2− 2π2

3n2 )−
(l

2
)

(n− r)(n− r−1)
(r2 ln n

rπ
+ r2 +

r4π2

36n2 ).

As a special case it can be verified that the statement of Theorem 6.2.4 is also valid with
r = 0. In this case there are no roots of unity to be avoided. Combined with Lemma 6.2.3 we
get:

Corollary 6.2.5 For any n and any l ≤ n, Let N be the set of nth roots of unity. Let
{z0, . . . ,zl−1} ⊂ N be a uniformly at random selected subset of size l. Then for the Vander-
monde matrix V = V (z0,z1, . . . ,zl−1) we have that

E[ln |det(V )|] = Φ
(l

2
)

n−1 ,

where
2− ln2− 2π2

3n2 ≤Φ≤ 2ln n
2π

+2+ ln2+
π2

5832n2 .

Proof. Following the initial steps of the proof of Theorem 6.2.4 for r = 0 one obtains

E[ln |det(V )|] =
(l

2
)

n−1

n−1
∑
d=1

f (d).

Applying Lemma’s 6.2.2 and 6.2.3 gives the result.

Let us note however that in this case one knows the expected value of the determinant
exactly:

Proposition 6.2.6 For a random Vandermonde matrix V selected as in Corollary 6.2.5, we
have that E[|det(V )|2] = nl(n

l
)−1.

Proof. Let M be the set of all l× l minors of DFTn with rows 0,1, . . . , l−1. By Binet-Cauchy
(Theorem 4.1.3):

∑
V∈M

|det(V )|2 = nl.

Hence for a uniformly at random selected V ∈R M we have that E[|det(V )|2] = nl(n
l
)−1.

Theorem 6.2.4 gives us a strategy for winning the contiguous version of the Fourier matrix
game, which in turn, using Theorem 6.1.6, yields a strategy for winning the contiguous circu-
lant game. This strategy will be the basis for the circuit lower bounds we will prove in Section
6.5.
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Corollary 6.2.7 For any n and any l,r with 1≤ r < n
π and l + r ≤ n, the player has a winning

strategy for DFT-Game∗(n, l,r,eC), provided

C <
(n−2r)

(l
2
)

(n− r)(n− r−1)
(2− ln2− 2π2

3n2 )−
(l

2
)

(n− r)(n− r−1)
(r2 ln n

rπ
+ r2 +

r4π2

36n2 ).

Proof. Recalling our remark after Definition 6.1.2, we can assume with loss of generality that
the adversary chooses rows R = {0,1, . . . , l− 1}. Any l× l minor of DFTn with rows R is
a Vandermonde matrix. Let C be the set of columns the adversary chooses. Theorem 6.2.4
gives a lower bound on E[ln |det(M)|] for randomly selected l × l minor M of DFTn with
rows R avoiding columns C. There must exist at least one minor M ′ that has ln |det(M′)| ≥
E[ln |det(M)|]. So the player chooses such a minor, for which we then have the lower bound
on the absolute value of its determinant as stated in the corollary.

Let us express the above hiding some of the constants for later convenience:

Corollary 6.2.8 For any n and any l,r with 1≤ r < n
π and l + r ≤ n, the player has a winning

strategy for DFT-Game∗(n, l,r,B) for some B where

B≥ 2Θ( l2
n − l2r2

n2 log n
r )

.

6.3 Discrete Uncertainty Principles
In this section we will establish a relation between the matrix games and various known discrete
uncertainty relations. Let us begin with an alternative proof, which is new to our knowledge,
of the Donoho-Stark discrete uncertainty principle.

Definition 6.3.1. For an n-vector f , define the support of f to be the set supp( f ) = {i : fi 6= 0}.

The size of the support of a vector f is a crude measure of the amount of localization of a
vector. Analogous to the Heisenberg uncertainty principle, we can prove that for this measure
a vector f and its Fourier transform f̂ cannot both be arbitrarily narrowly localized. More
precisely, we have the following theorem:
Theorem 6.3.1 ([DS89]) For any n-vector f 6= 0,

|supp( f )| · |supp( f̂ )| ≥ n, (6.10)

where f̂ = Fn f is the discrete Fourier transform of f .
Proof. Consider an arbitrary Fourier transform pair ( f , f̂ ) with f̂ = Fn f and f 6= 0. Since

Circ( f ) =
√

nF∗n diag( f̂ )Fn,

we have that
supp( f̂ ) = rank(Circ( f )).
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Let R be the maximum number of zeroes following a non-zero entry in f (in the cyclic sense).
Then R≥ n

|supp( f )| −1.
Namely, if this were not the case, then imagine partitioning the entries of f as follows:

Start at an arbitrary nonzero position. Set i = 1. If there are no other zero positions then
Bi equals this position. Otherwise, let Bi be this position together with all the zero positions
that follow it (in the cyclic sense). Repeat this process for the next i. We obtain this way
B1,B2, . . . ,B|supp( f )| that partition all n entries of f . By the above then, for each i, |Bi| ≤
R+1 < n

|supp( f )| . So

|
[

i
Bi|< |supp( f )| · n

|supp( f )| = n.

This is a contradiction, because B1,B2, . . . ,B|supp( f )| partition the n entries of f .
The above implies the first R+1 rows of Circ( f ) are independent, because they contain a

square submatrix that is upper triangular (modulo cylic shifts). Hence rank(Circ( f ))≥ R+1≥
n

|supp( f )| .

Interestingly enough, divisibility properties of n play an important role in the analysis. For
example, Tao showed that, in case n is prime, the inequality (6.10) can be significantly im-
proved. The proof relies on the well-known fact that for prime p the discrete Fourier transform
matrix DFTp is regular.

Definition 6.3.2. An n× n marix A is called regular if any square submatrix of A is non-
singular.

Theorem 6.3.2 For prime p, DFTp is a regular matrix.

The first proof of this fact is attributed to Chebotarëv, who proved it in 1926 (see [SJ96]).
Although typical proofs of this fact are field theoretic in nature, Tao gives a proof by elementary
means. Once one has established this fact the following can be proved quite readily:

Theorem 6.3.3 ([Tao91]) For prime p, for any nonzero p-vector f and its Fourier transform
f̂ = Fp f we have that

|supp( f )|+ |supp( f̂ )| ≥ p+1.

Proof. Let k = p−|supp( f̂ )|. There are k zeroes in f̂ . Let I ⊆ {0,1, . . . , p−1} be the indices
of these zeroes. Suppose |supp( f )| ≤ k. Let J⊆{0,1, . . . , p−1} be a set of size k that contains
all indices of non-zero entries of f . We have that

(DFT p
I,J) fJ = (DFTp f )I = 0,

but fJ 6= 0 since f 6= 0. This is a contradiction since DFT p
I,J is non-singular. Hence |supp( f )|>

k = p−|supp( f̂ )|.

Actually, in the above proof we only used the fact that DFTp is a regular matrix, so more
generally we have:
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Theorem 6.3.4 Let A be an n×n regular matrix and consider pairs ( f , f̂ := A f ) where f 6= 0.
Then

|supp( f )|+ |supp( f̂ )| ≥ n+1.

Corollary 6.3.5 For any prime p, and any l + k ≤ p, the player has a winning strategy for
DFT-Game(p, l,k,0).

In what follows, we will establish relations between our matrix games and uncertainty type
relations. We will show that we can turn a refinement of the Donoho-Stark uncertainty relation
into a game strategy, and also provide a tranferral in the converse direction. The game strategy
obtained this way later will be used to prove our main lower bound theorem for orbit circuits.
We also show that the strategy obtained in Corollary 6.2.7 can gives us an uncertainty type
relation. This uncertainty relation will be for a discrete analogue of band-limited functions.

Definition 6.3.3. An n-vector f is called l-index-limited if

supp( f )⊆ {b+ i mod n : 0≤ i≤ l−1},

for some number b.

In other words a vector f is l-index-limited if its support is contained in a contiguous set (in
the cyclic sense) of size l.

Let us start by making some preliminary observations about index-limited vectors f in
conjunction with the support-size notion of localization. In the next section, we will turn to
a more precise localization measure than |supp( f )|. For index-limited vectors one can easily
prove a strengthening of the uncertainty inequality (6.10). We follow the same top-level idea
used to prove Theorem 6.3.3.

Theorem 6.3.6 For any n-vector f 6= 0 that is l-index-limited,

|supp( f̂ )|> n− l,

where f̂ = Fn f is the discrete Fourier transform of f .

Proof. Consider an arbitrary Fourier transform pair ( f , f̂ ) and let T = {b + i mod n : 0 ≤
i ≤ l − 1} be a contiguous set of indices containing supp( f ). Suppose |supp( f̂ )| ≤ n− l.
Then we can find a set S = {s1,s2, . . . ,sl} of size l so that f̂i = 0 for each i ∈ S. In
other words DFTS,T fT = 0 with fT 6= 0. So DFTS,T is singular. However, DFTS,T =
diag(ωs1b,ωs2b, . . . ,ωslb)V (ωs1,ωs2 , . . . ,ωsk), that is a (nonsingular) diagonal matrix multiplied
with a (nonsingular) Vandermonde matrix, and is hence not singular.

For l� n−2
√

n+1, the above guarantees |supp( f )|+ |supp( f̂ )| � 2
√

n, whereas Theo-
rem 6.3.1 can only guarantee |supp( f )|+ |supp( f̂ )| ≥ 2

√
n.
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6.3.1 Uncertainty relations imply game strategies
We now turn to a less crude measure of localization than the support of a vector. Following
[DS89]:

Definition 6.3.4. An n-vector f is ε-concentrated on a set T of indices if
√

∑
i/∈T
| fi|2 ≤ ε.

Theorem 6.3.1 can be refined as follows:

Theorem 6.3.7 ([DS89]) For any n-vector f with || f ||2 = 1 that is εT -concentrated on a set T
and f̂ = Fn f being εΩ-concetrated on a set Ω, we have that

|T | · |Ω| ≥ n(1− (εT + εΩ))2. (6.11)

Note that Brody and Meister [BM99] claim that the inequality (6.11) in the statement of
the theorem can be improved to

S(
|T | · |Ω|

n )≥ (1− (εT + εΩ))2,

where S(x) is defined as S(x) = 2
πSi(x)− 1

πsin(x), and where Si(x) is the sine-integral function:
Si(x) =

R x
0

sint
t dt.

Counter-examples can be given to this claim for any t and u with tu = n by taking T =
{0,u,2u, . . .,u(t−1)} and Ω = {0, t,2t, . . ., t(u−1)}. It is well know [DS89] that the indicator
for T transforms to the indicator of Ω when taking the Fourier tranform. In other words, there
exist a Fourier transform pair ( f , f̂ ) with f 0-concentrated on T and f̂ 0-concentrated on Ω.
However S(1) < 1, so the above would claim this is impossible. We have been unable to verify
the original intent of Brody and Meister’s claim, and the authors have not responded to our
queries.

Let us now use Theorem 6.3.7 in order to obtain a “fairly” good strategy for playing the
Fourier matrix game. This will be the basis for proving part of the bilinear circuit lower bounds
in section 6.5. For certain types of circuits Theorem 6.3.7 will be not be strong enough. This
is where the game strategy obtained in Corollary 6.2.7 comes in. From this game strategy we
will also be able to derive strengthened uncertainty relations for index-limited vectors.

Theorem 6.3.8 For any l,r with lr ≤ n and l + r ≤ n, the player has a winning strategy for
DFT-Game(n, l,r,B). for any

B < (
√

n−
√

lr)l
(

n− r
l

)−1/2
.

Proof. Suppose the adversary chooses a set of rows R of size l and set of columns T of size r.
Let M be the minor of Fn with rows R and columns T . By Theorem 6.3.7, for any unit vector f
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that is 0-concentrated on T , f̂ = Fn f is εR concentrated on R, where

εR ≥ 1−
√

lr
n .

Hence

||M||2 = max
||a||2=1

||Ma||2 ≤
√

lr
n .

Let N be the l× (n− r) minor of Fn corresponding to rows R and columns not in T . Since
NN∗+ MM∗ = I, λ is an eigenvalue of MM∗ if-and-only if (1−λ) is an eigenvalue of NN∗.
The singular values of M are the square roots of the eigenvalues of MM∗. Hence we conclude
the smallest singular value of N is at least

σ2
l (N)≥ 1−

√

lr
n ,

and hence that
σ2

l (
√

nN)≥
√

n−
√

lr.

Therefore
det(1

nNN∗)≥ (
√

n−
√

lr)2l.

By Theorem 4.1.3,

det(1
nNN∗) = ∑

|S|=l,S∩T= /0
|det(DFTR,S)|2.

Hence we conclude there exists a minor M1 with rows R and columns avoiding T that has
determinant at least

|det(M1)| ≥ (
√

n−
√

lr)l
(

n− r
l

)−1/2
.

Actually, Theorem 6.1.3 yields a slightly stronger strategy than the above theorem. For the
types of lower bounds we will prove in Section 6.5 the slight numerical differences will turn
out to be immaterial.

6.3.2 Games strategies imply uncertainty relations
Winning strategies against the adversary for the Fourier matrix game are useful for yielding
discrete uncertainty relations. Similarly, winning strategies against the adversary in the con-
tiguous Fourier matrix game imply uncertainty relations for index-limited vectors. The stronger
the player’s strategy, the stronger the uncertainty relation is obtained.
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Lemma 6.3.9 Suppose the player has a winning strategy for DFT-Game(n, l,k,B). Then for
any set T of size l and any set Ω of size r with r≤ k, if a unit n-vector f with Fourier transform
f̂ = Fn f is εT -concentrated on T , then f̂ is εΩ-concentrated on Ω with

εΩ > (1− εT )
B

nl/2 .

Proof. Consider an arbitrary Fourier transform pair ( f , f̂ ) with f εT -concentrated on arbitrary
set T of size l. T = {b+ i mod n : 0≤ i≤ l−1} Consider an arbitrary set of indices Ω of size
r with r ≤ k. By the definition of the Fourier matrix game and using the fact that DFTn is a
symmetric matrix, there exists l× l minor V of DFTn with columns T rows avoiding Ω such
that

|det(V )|2 ≥ B2.

Since

|det(V )|2 = det(VV ∗) =
l−1
∏
i=0

λi(VV ∗) =
l−1
∏
i=0

σi(V )2,

we conclude that the smallest singular value σl(V )≥ B
σl−1

1
. Being a minor of unitary matrix Fn,

σ1(
1√
nV )≤ 1, so σ1(V )≤√n. So

σl(
1√
nV )≥ B

nl/2 .

By the min-max characterization of singular values given in Theorem 4.1.7, we have for any
l× l matrix A that

σl(A) = inf
x6=0

||Ax||2
||x||2

.

Hence
|| f̂Ω||2 ≥ ||

1√
nV ( fT )||2 ≥ σl(

1√
nV )|| fT ||2 > (1− εT )

B
nl/2 .

6.3.3 An uncertainty relation for index-limited vectors
Let us generalize the notion of an index-limited vector to work with our ε-concentration notion
of localization:

Definition 6.3.5. An n-vector f is called ε, l-index-limited if there exists g with ||g||2≤ ε such
that f −g is l-index-limited.

Analogously to Theorem 6.3.6, one would hope to be able to improve Theorem 6.3.7
when restricting to index-limited vectors. For example, it should be possible to obtain lower
bounds on concentration for set T and Ω with |T | · |Ω| > n when dealing with index-limited
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vectors, eventhough Theorem 6.3.7 is trivialized beyond this range. A complete analysis of
this problem is still open. In order to make steps towards this goal, using Corollary 6.2.7, we
now give an uncertainty type relation that does manage to express non-trivial lower-bounds on
concentration for scenarios where |T | · |Ω|> n.

Lemma 6.3.10 Suppose the player has a winning strategy for DFT-Game∗(n, l,k,B). Then for
any unit n-vector f that is ε, l-index-limited and any set Ω of size r with r ≤ k, f̂ = Fn f is
εΩ-concentrated on Ω with

εΩ > (1− ε)
B

nl/2 − ε.

Proof. Consider an arbitrary Fourier transform pair ( f , f̂ ) and let T = {b + i mod n : 0 ≤ i ≤
l−1} be a contiguous set of indices containing supp( f −g) with g some vector with ||g||2≤ ε,
and || f ||2 = 1. Consider an arbitrary set of indices Ω of size r with r ≤ k. By definition of the
relaxed Fourier game and the fact that the Fourier matrix is symmetric, there exists l× l minor
V of DFTn with columns T and rows avoiding Ω such that

|det(V )|2 ≥ B2.

Similarly as in the proof of Lemma 6.3.9, we get for the smallest singular value σl of 1√
nV

σl(
1√
nV ) >

B
nl/2 .

Let Ω′ be the rows of V . Write

(Fn f )Ω′ = (Fn( f −g)+Fng)Ω′ =
1√
nV ( f −g)T +(Fng)Ω′.

By the min-max characterization of singular values given by Theorem 4.1.7, we have that

|| 1√
nV ( f −g)T )||2 ≥ σl(

1√
nV )|| f −g||2 > (1− ε)

B
nl/2 .

Since ||(Fng)Ω′|| ≤ ε, we get by the triangle inequality that

|| f̂Ω′||2 > (1− ε)
B

nl/2 − ε.

Since Ω′ is disjoint from Ω we conclude f̂ is εΩ concentrated on Ω with εΩ > (1− ε) B
nl/2 − ε.

We now state our uncertainty relation for index-limited vectors.

Corollary 6.3.11 Suppose f is a unit n-vector that is ε, l-index-limited with Fourier transform
f̂ = Fn f . Then for any set Ω of size r with r ≤ n

π and l + r≤ n, f̂ is εΩ-concentrated on Ω with

εΩ ≥ (1− ε)
eB

nl/2 − ε,
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where

B =
(n−2r)

(l
2
)

(n− r)(n− r−1)
(2− ln2− 2π2

3n2 )−
(l

2
)

(n− r)(n− r−1)
(r2 ln n

rπ
+ r2 +

r4π2

36n2 ).

Proof. This follows immediately from the player strategy shown to exist in Corollary 6.2.7 by
applying Lemma 6.3.10.

The lower-bound on concentration on Ω is fairly weak, but we should stress this bound is
given for any conceivable set Ω, not just contiguous ones. It is conceivable that the bound can
be significantly improved by directly analyzing the `2-norms of random Vandermonde matrices
instead of their determinants.

Assuming Ω to be contiguous should make even further improvements possible. This
would qualify for doing the discrete analogue of the work done by Slepian [Sle78]. A first step
has been taken by Grunbaum [Grü81], but this still remains to be a major open problem.

The most notable fact is that our theorem still yields non-trivial lower bounds on
concentration in case both l,r � √n, which is a breaking point for typical straightforward
calculations. For example, Theorem 6.3.7 yields a trivial lower-bound of εΩ ≥ 0 in case
|T | · |Ω| ≥ n, even if |T | is assumed to be contiguous.

6.4 The Circulant Game∗ - an ad hoc strategy
Before proving our circuit lower bounds, we pause for the following intermezzo, in which we
consider an ad-hoc strategy for winning the contiguous version of the circulant game. The
results of this section are stand-alone, and can be skipped by the impatient reader.

Definition 6.4.1. A vector space U ⊆ Cn is ε, l-flat with respect to given orthonormal basis
u0,u1, . . . ,un−1 if for every nonzero x ∈U , writing x = ∑n−1

i=0 aiui, there exists i ∈ {0,1, . . . ,n−
1} such that

|ai| ≤ ε||x||2 +
l−1
∑
j=1

(

|ai− j mod n|+ |ai+ j mod n|
)

.

In the following, if the basis is omitted when using this definition, it is understood we are
considering flatness with respect to the standard basis. If a space U is not ε, l-flat, we say it is
ε, l-bumpy, and in this case any nonzero vector x ∈U violating the above inequality is called
an ε, l-bumpy vector.

If for vector x, we have that |xi| > ε||x||2 and the previous or next l− 1 positions are 0,
we say x has a pure ε, l-halfbump. Analogously to the above we define a vector space U to be
purely ε, l-half-flat if it contains no pure ε, l-half-bumpy vectors.

Bumpiness is a projective notion in the following sense:



6.4. THE CIRCULANT GAME∗ - AN AD HOC STRATEGY 101

Proposition 6.4.1 If x is an ε, l-bumpy vector then so is λx, for any nonzero λ ∈ C. The same
holds with “bumpy” replaced by “purely half-bumpy”.

Lemma 6.4.2 If U ⊆Cn is purely ε, l-halfbumpy, then there exists unit x ∈U, such that for any
contiguous set of l rows R, there exists a contiguous set of l columns T , such that

|det(Circ(x)R,T )|> εl.

Proof. Consider any unit purely ε, l-half-bumpy vector x in U , which exists by Proposition
6.4.1. Write x = (x0,x1, . . . ,xn−1) w.r. to the standard basis. Without loss of generality assume
that for some i, |ci| > ε and |ci− j mod n| = 0, for j = 1,2, . . . l− 1. Also wlog. assume R =

{0,1, . . . , l−1}. Let T = {i, i+1, . . ., i+ l−1}. Let M = Circ(x)R,T . Then M is upper triangular
with xi on the diagonal, so |det(M)|= |xi|l > εl .

Lemma 6.4.3 If U ⊆ Cn is ε, l-bumpy, then there exists a unit vector x ∈U such that for any
contiguous set of l rows R, there exists contiguous set of l columns T , such that

|det(Circ(x)R,T )|> εl.

Proof. Consider any unit ε, l-bumpy vector x in U , which exists by Proposition 6.4.1. Write
x = (x0,x1, . . . ,xn−1) w.r. to the standard basis. Without loss of generality assume that for some
i, |ci| > ε + ∑l−1

j=1 |ci− j mod n|, and also wlog. assume R = {0,1, . . . , l− 1}. Let T = {i, i +
1, . . . , i+ l−1}. Let M = Circ(x)R,T . M has xi on all diagonal entries, so using the Greshgorin
disc theorem (see e.g. [Bha97]), for each eigenvalue, |λk(M)| ≥ |xi| −∑l−1

j=1 |xi− j mod n|+
|xi+ j mod n|> ε.

Definition 6.4.2. Let
1. ρ(n, l,k) = inf{ε : ∀U ⊆ Cn of co-dimension k that is ε, l-bumpy}, and

2. ρ′(n, l,k) = inf{ε : ∀U ⊆ Cn of co-dimension k that is purely ε, l-half-bumpy}.

The above defines an interesting notion in its own right, but with regards to the circulant
matrix games we immediately obtain the following:

Theorem 6.4.4 The player has winning strategies for Circ-Game∗(n, l,k,Bl), where B =
max(ρ(n, l,k),ρ′(n, l,k)).

Proof. Suppose the adversary chooses a set of l rows R and subspace U ⊂ Cn of dimension
n− k. Then we know that U is at least ρ(n, l,k), l-bumpy. Hence by Lemma 6.4.3 the player
can choose x ∈U and contiguous set of rows T so that det(Circ(x)R,T ) > ρ(n, l,k)l. Also we
know that U is at least ρ(n, l,k)′-half-bumpy. Hence by Lemma 6.4.2 the player can choose
x′ ∈U and contiguous set of rows T ′ so that det(Circ(x)R,T ′) > ρ′(n, l,k)l.
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Proposition 6.4.5 For any n,k, l with l−1 < n− k, ρ′(n,k, l)≥ 2−n+l−1.

Proof. Consider arbitrary U of co-dimension k. We can add l− 1 equations of the form xi =
xi−1 = . . . = xi−l+2 = 0 to define a subspace U ′ of U of nonzero dimension. Pick a unit x ∈U ′.
For purpose of contradiction assume that x is 2−n+l−1, l-flat. This means |xi+1| ≤ 2−n+l−1,
|xi+2| ≤ 2−n+l , etc.. so

||x||2 ≤
n−l
∑
k=0
|xi+k+1 mod n| ≤

n−l
∑
k=0

2−n+l−1+k ≤ 2−n+l−1(2n−l+1−1) < 1,

which is a contradiction.

6.5 Bilinear Circuit Lower Bounds
In this section we prove orbit lower bounds in the special case the free maps are diagonal with
respect to the standard basis and of determinant equal 1.

6.5.1 Strong asymptotic strategies
Definition 6.5.1. Let `n be a function with 2`n ≤ n. We say that the player has a strong asymp-
totic winning strategy for the contiguous (or regular circulant) game with respect to `n, if
for every δ > 0 there exists a k > 0 such that for all but finitely many n, the player has a
winning strategy for Circ-Game∗(n, `n,b `n

k c,2−δn logn), or Circ-Game(n, `n,b `n
k c,2−δn log n), re-

spectively.

Similarly we define the notion of a strong asymptotic winning stategy for the Fourier ma-
trix game and its contiguous version. We have shown there to be ways of transferring strategies
in both directions between the Fourier matrix game and the circulant game (Theorems 6.1.6 and
6.1.4). Some loss in the strength of the strategies was involved, but when considering strong
asymptotic strategies this loss is inconsequential. Namely, we have the following theorem:

Theorem 6.5.1 Let `n be a function with `n = O( n
logn). The player has a strong asymptotic

strategy for winning the circulant game with respect to `n if and only if it has a strong asymp-
totic strategy for winning the Fourier game w.r. to `n. The same statement hold for the contigu-
ous versions of both games.

Proof. Suppose the player has a strong asymptotic strategy w.r. to `n for winning the Fourier
matrix game. So for every δ0 > 0, there exists a k > 0, such that for all but finitely many n, the
player can win

DFT-Game(n, `n,b
`n
k c,2

−δ0n logn).
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By Theorem 6.1.6 this means the player can win

Circ-Game(n, `n,b
`n
k c,2

−δ0n log n ·G),

where with δ ≈ 0.02 being the absolute constant of Theorem 6.1.6, the loss-factor G is given
by

G =
δ`n/2

√

( n
b `n

k c
)

4`n(n−b `n
k c)
≥ 2−O(n).

To summmarize, for some constant c > 0, we have that for any δ0 > 0, there exists k such
that for all but finitely many n, the player can win

Circ-Game(n, `n,b
`n
k c,2

−δ0n logn−cn).

This implies he/she has a strong asymptotic winning strategy for winning the circulant game
with respect to `n.

For the converse direction, suppose the player does not have an asymptotic winning strat-
egy for the Fourier matrix game w.r.t. `n. So there exists a δ > 0 such that for any k, there are
infinitely many n, for which the adversary can win

DFT-Game(n, `n,b
`n
k c,2

−δn logn).

Then by Theorem 6.1.4, the adversary can win

Circ-Game(n, `n,b
`n
k c,2

−δn logn ·F),

where we can crudely bound the loss-factor F by

F =

(

n−b `n
k c

`n

)

n−`n/2 = 2O(n).

To summarize, there exist a constant c > 0 and a constant δ > 0, such that for all k, for infinitely
many n, the adversary can pick `n rows and a subspace U of dimension n−b `n

k c, such that any
`n× `n minor M of Circ(a) with rows as determined by the adversary has

|det(M)| ≤ 2−δn logn+cn.

So for any δ′ that is infinitisimally smaller than δ, provided n is large enough one gets a straight
|det(M)| ≤ 2−δ′n log n bound. This implies the player does not have a strong asymptotic strategy
for the circulant game w.r.t. `n.

The statement for the relaxed versions of the games holds because our “transfer” Theorems
6.1.6 and 6.1.4 hold with both regular games replaced by their contiguous versions.
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6.5.2 Main Result
Definition 6.5.2. A family {Dn}n>0 where each Dn is an n-tuple of distinct positive real num-
bers (dn

1 , . . . ,dn
n) such that ∏n

i=1 dn
i = 1 is called a unit helper family. If for all but finitely many

n, the entries in Dn of value less than one are contiguous (in the circular sense), we say that
{Dn}n>0 is asymptotically contiguous.

Lemma 6.5.2 Let `n be a function satisfying `n = O(
√

n). Then the player has a strong asymp-
totic winning strategy for the circulant game w.r.t. `n.

Proof. Let δ > 0 be given. Say `n ≤ c
√

n for all large enough n. Set k = 4c2. By Theorem
6.3.8 the player can win DFT-game(n, `n,b `n

k c,B) with

B := (
1
2
√

n)`n

(

n−b`n/kc
`n

)−1/2
.

Then applying Theorem 6.1.6 we obtain a strategy for winning Circ-game(n, `n,b `n
k c,D) with

D≥ (
1
2
√

n)`n

(

n−b`n/kc
`n

)1/2
ε`n/2

(

n
b`n/kc

)−1/2
(n−b`n/kc)−`n/2,

where ε is a constant approximately 0.02. This is certainly at least 2−δn log n, provided n is large
enough.

Lemma 6.5.3 Let `n be a function satisfying `n = O(n3/4). Then the player has a strong
asymptotic winning strategy for the contiguous circulant game w.r. to `n.

Proof. Let δ > 0 be given. Let k be a constant to be determined later. By Corollary 6.2.8,
provided n is large enough, the player has a winning strategy for DFT-Game∗(n, `n,b `n

k c,B) for
some B where

B≥ 2Θ(
`2n
n −

`4n
k2n2 log kn

`n )
.

Now applying Theorem 6.1.6, we obtain a strategy for winning Circ-game(n, `n,b `n
k c,D) with

D≥ 2Θ(
`2n
n −

`4n
k2n2 log kn

`n )ε`n/2
(

n
b`n/kc

)−1/2
(n−b`n/kc)`n/2,

where ε is a constant approximately 0.02. We see that it is possible to set k large enough to
make B at least 2−δn logn for all large enough n.

Theorem 6.5.4 Let {Dn}n>0 be a unit helper family, and suppose {Γn}n>0 is a family of
bounded-coefficient bilinear circuits such that for all n,

Γn(x1 ·dn
1 , . . . ,xn ·dn

n,y) = xT Circ(y).

Define `n = |Dn∩ (0,1)|. We have that
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1. If `n = O(n 1
2 ), then there exists γ > 0 so that s(Γn)≥ γn logn, for infinitely many n.

2. If `n = O(n 3
4 ) and {Dn}n>0 is asympotically contiguous, then then there exists γ > 0 so

that s(Γn)≥ γn logn, for infinitely many n.

3. If `n = Ω(n), then s(Γn) = Ω(n logn).

Proof. Let us first prove the third item. Suppose `n = Ω(n). Hence there exists an ε0 with
1 > ε0 > 0 so that for all but finitely many n, `n ≥ ε0n. In this case we think of the dn

i that are
larger than 1 as help gates as in [BL02]. There are at most (1− ε0)n many such help gates.
Theorem 6.4 of [BL02] yields that s(Γn) = Ω(n logn).

Let us now focus on the first two items. For each n, Let i1n, . . . , inn be such that

dn
i1n < dn

i2n < .. . < dn
inn.

In case
log

n
∏

j=`n+1
dn

i jn = o(n logn),

then we can replace the constants which are bigger than 1 by bounded constant repeated addi-
tions. This takes at most ∑n

j=`n+1 logdn
i jn

= o(n logn) additional gates. Hence we would obtain
a family of regular bounded-coefficient bilinear circuits of size s(Γn) + o(n logn) computing
xT Circ(y), but such a family must have size Ω(n logn) by [BL02]. Hence we would conclude
s(Γn) = Ω(n logn). In this case we can see that both item 1 and 2 of the theorem are satisfied.

So assume that there is a δ > 0 such that for infinitely many n, ∏n
j=`n+1 dn

i jn
> 2δn log n. This

implies that for infinitely many n,

`n

∏
j=1

dn
i jn < 2−δn log n. (6.12)

Let us consider some large enough n for which (6.12) holds, and let us drop the sub and
superscipts n on our variables.

We are going to perform the following substitution on the circuit. Set xi j = 0 for all j > `
and substitute xi j = z j/di j otherwise. This yields a bounded coefficient bilinear circuit of size
no bigger than s(Γ), and it computes

(z1, . . . ,z`)diag(d−1
i1 , . . . ,d−1

i` )M,

where M is the m×n minor of Circ(y) corresponding to rows I := {i1, . . . , i`}.
Now set r = n−b `

k0
c, where k0 is a constant to be determined later. Let f1, . . . , fk be the

linear forms in y of Γ. Lemma 5.1.1 provides us with a linear subspace U of dimension n−b `
k0
c

such that for any unit b ∈R U , we have that

logmax
i
| fi(b)| ≤ 3s(Γn)+3n

2b`/k0c+2 . (6.13)



106 CHAPTER 6. UNCERTAINTY PRINCIPLES & MATRIX GAMES

We think of the subspace U and the set I as chosen by the adversary.
For any unit b ∈U and any `× ` minor M0 of Circ(b) with rows I we can obtain from Γn

a bounded coefficient linear circuit computing the Cm→ Cm map

(z1, . . . ,z`)diag(d−1
i1 , . . . ,d−1

i` )M0

by removing the outputs not corresponding to M0, replacing multiplications with fi(b) by
fi(b)/µ, and correcting this by adding at most ` logµ repeated additions at the output gates,
where µ = maxi | fi(b)|.

Hence the number of gates we added is at most

` logmax
i
| fi(b)| ≤ `

3s(Γn)+3n
2b`/k0c+2 ≤ k03s(Γn)+3nk0 ≤ 4k0s(Γn).

So the size of the resulting b.c. linear circuit is at most 5k0s(Γ).
So provided the player has a strong asymptotic winning strategy with respect to `n for the

circulant game, we know a constant k0 can be chosen such that there exist unit b ∈U and M0
with

|det(M0)| ≥ 2−
δ
2 n logn,

and if we know in addition that I is contiguous, then only a strong asymptotic winning strategy
for the contiguous circulant game is required for the same fact. This would imply that

|det(diag(d−1
i1 , . . . ,d−1

i` )M0)| ≥ 2
δ
2 n logn.

However, by Morgenstern’s bound any bounded coefficient circuit computing
diag(d−1

i1 , . . . ,d−1
i` )M0 then requires at least δ

2 n logn gates. Hence s(Γn)≥ δ
10k0

n logn.
In case `n = O(n 1

2 ), we know by Lemma 6.5.2 that the player has a strong asymptotic
winning strategy w.r.t. `n for winning the circultant game, which establishes item 2 of the
theorem.

In case `n = O(n 3
4 ), we know by Lemma 6.5.3 that the player has a strong asymptotic

winning strategy w.r.t. `n for winning the contiguous circulant game. So provided the helper
family is asymptotically contiguous, the set I is contiguous, and this establishes item 3.

The model of computation that we are considering is admittedly exotic, but it should be
noted that the model allows for up to n− 1 unbounded constants, which is more than the εn
unbounded constants the help gates technique in [BL02] manages to handle, where 0 < ε < 1
cannot depend on n. We do have a strong restriction on where the unbounded constants can
appear in the circuit, and there is the restriction of their product being at most Θ(1). As we
observed before, the orbit model has computational power somewhere in between the general
unbounded-coefficient model and the bounded-coefficient model. However, it seems unlikely
that the model we consider is as powerful as the general unbounded-coefficient case in which
the helper constants di’s are unrestricted.

Stepping away from the orbit model, what Theorem 6.5.4 establishes with respect to the
standard bounded-coefficient model of computation, is a general lower bound for entire fami-
lies of bilinear mappings that appear in the SLn(C)-orbit of the circular convolution mapping.
Namely, the following corollary is immediate:
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Corollary 6.5.5 Let {Dn}n>0 be a unit helper family, and define `n = |Dn∩ (0,1)|. If `n satis-
fies one of:

1. If `n = O(n 1
2 ), or

2. If `n = O(n 3
4 ) and {Dn}n>0 is asymptotically contiguous, or

3. If `n = Ω(n),

then for any family of bounded-coefficient bilinear circuits {Γn}n>0 that computes

{xT Circ(d1y1,d2y2, . . . ,dnyn)}n>0,

there exists γ > 0 so that for infinitely many n, s(Γn)≥ γn logn.
Both in Theorem 6.5.4 and its Corollary 6.5.5 a knowledge gap is present, informally

speaking, for `n in between O(n3/4) and Ω(n). In Section 6.6 we will give some evidence that,
at least in our framework, we will not be able to close this gap. The analysis involves discrete
prolate spheroidal sequences and their remarkable eigenvalue properties. First however, we
will generalize Theorem 6.5.4 to two-sided orbits.

6.5.3 Two-Sided Diagonal Case
So far we have focused attention on diagonal orbit circuits in which only one side, which
w.l.o.g. was assumed to be the x-side, has helper constants. We now generalize Theorem 6.5.4
to the scenario in which we have helper constants on both the x and y-side. Obviously in this
more general case we will observe an analogous “knowledge-gap” as is present in Theorem
6.5.4, e.g., as it comes to dealing with `n that are not O(

√
n). We will show however that,

provided we have on both of the input sides of the circuit any of the favorable situations that
we did manage to handle before, then we can still establish the n logn lower bound.

Definition 6.5.3. Call a unit helper family {Dn}n>0 good if for `n = |Dn ∩ (0,1)| one of the
following holds:

1. `n = O(
√

n), or

2. `n = O(n3/4) and {Dn}n>0 is asymptotically contiguous, or

3. for some ε > 1/2, for all but finitely many n, `n ≥ εn.

We have the following theorem:
Theorem 6.5.6 Let {Dn}n>0 and {En}n>0 be unit helper families that are both good, and
suppose {Γn}n>0 is a family of bounded-coefficient bilinear circuits such that for all n,

Γn(x1 ·dn
1 , . . . ,xn ·dn

n ,y1 · en
1, . . . ,yn · en

n) = xT Circ(y).

Then there there exists γ > 0 such that for infinitely many n, s(Γn)≥ γn logn.
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Proof. Let `n = |Dn∩ (0,1)|. For each n, Let i1n, . . . , inn be such that

dn
i1n < dn

i2n < .. . < dn
inn.

In case
log

n
∏

j=`n+1
dn

i jn = o(n logn),

then we can replace the constants which are bigger than 1 on the x-side by bounded constant
repeated additions. This takes at most ∑n

j=`n+1 logdn
i jn

= o(n logn) additional gates. Hence
we would obtain a one-sided orbit bilinear circuits of size s(Γn)+o(n logn) that uses {En}n>0
as helper constants only. Since {En}n>0 is good, we obtain the conclusion of the theorem by
application of Theorem 6.5.4.

Hence assume we have δ > 0 and an infinity set N of input sizes such that for all n ∈ N,
n

∏
j=`n+1

dn
i jn ≥ 2δn logn.

Let `′n = |En∩ (0,1)|. For each n, Let j1n, . . . , jnn be such that

en
j1n < en

j2n < .. . < en
jnn.

If on the subsequence N (per abuse, we treat N as an infinite sequence of increasing numbers)
we have that

log
n

∏
k=`′n+1

en
jkn = o(n logn),

that is, if for any η > 0, for all but finitely many n ∈ N,

log
n

∏
k=`′n+1

en
jkn ≤ ηn logn,

then for each n ∈ N, we can replace the unbounded constants on the y-side by effectively
o(n logn) repeated additions. Hence obtaining for each n∈N, a one-sided orbit bilinear circuits
of size s(Γn)+ o(n logn) that uses {Dn}n>0 as helper constants only. Since {Dn}n>0 is good,
we obtain the conclusion of the theorem by now continuing as in the proof of Theorem 6.5.4.

Hence assume we have δ′> 0 and an infinity subsequence N ′ of N, such that for all n∈ N ′,
n

∏
k=`′n+1

en
jkn ≥ 2δ′n logn.

Case I: Suppose on N ′, `′n = Ω(`n), i.e. suppose there exists η > 0, such that for all but
finitely many n ∈ N ′, we have that `′n ≥ η`n.

Subcase A: If {Dn}n>0 is good because of clause three of the definition, Then also
{En}n>0 is good because of clause three. So we have ε,ε′ > 1/2 such that for all but finitely
many n, `n ≥ εn and `′n ≥ ε′n. Thinking of the helper constants as help gates as in [BL02],
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in this case the circuit contains at most (2− (ε + ε′))n unbounded constants. This is bounded
away from n by a constant factor, and thus via Theorem 6.4 of [BL02] we obtain the statement
of the theorem.

Subcase B: If {Dn}n>0 is good because of clause one of the definition, i.e., `n = O(
√

n),
then by Lemma 6.5.2 we know the player has a asymptotic winning strategy for the circulant
game w.r. to `n. Consider large enough n ∈ N ′, and let us drop the sub and superscipts n on our
variables.

We are going to perform the following substitution on the circuit. Set xi j = 0 for all j > `
and substitute xi j = z j/di j otherwise. This yields a one-sided orbit circuit Γ′ of size no bigger
than s(Γ), for which

Γ′(z1,z2, . . . ,z`,y1e1,y2e2, . . . ,ynen) = (z1, . . . ,z`)diag(d−1
i1 , . . . ,d−1

i` )M,

where M is the m×n minor of Circ(y) corresponding to rows I := {i1, . . . , i`}.
Now set r = n− b `

k0
c, where k0 is a constant determined large enough so that for any

subspace U of dimension r, there exists value b for y so that M (with y := b) has an `×` minor
M0 with det(M0) ≥ 2− δ

2 n log n. Since we have an asymptotic winning strategy for winning the
circulant game with respect to `n there exists such k0. Observe that enlarging k0 only makes the
circulant game easier for the player. This will enable us to also satisfy the requirement that k0
is chosen so that 1

k0
< η. Hence, in this case `′ > η` > `

k0
. Let J = { j1, j2, . . . , j`′}, i.e., J is the

set of indices j where e j > 1. Let V be the coordinate subspace determined by set of equation
y j = 0, for all j ∈ J. The dimension of V is `′. Modify circuit Γ′ into a bounded-coefficient
bilinear circuit Γ′′ by setting y j = 0, for all j ∈ J and pushing down ei constants that are smaller
than 1 onto the wires. For y restricted to V the output of Γ′′ and Γ′ are identical.

Let f1, . . . , fk be the linear forms in y of Γ′′. We still consider these as being defined over
all of the variables y1,y2, . . . ,yn, eventhough only `′ many y variables are used. This way we
can still consider them as defining n-input polynomial function. Lemma 5.1.1 provides us with
a linear subspace U of dimension n−b `

k0
c such that for any unit b ∈R U , we have that

logmax
i
| fi(b)| ≤ 3s(Γ′′)+3n

2b`/k0c+2
. (6.14)

Now since
dim[U ∩V ]≥ (n−b `

k0
c)+ `′−n = `′−b `

k0
c> 0,

we know there exists unit b ∈ U ∩V . We fix this b for the y inputs. Now the outputs of the
linear forms in y are just constants. Multiplication with these constants will be replaced by
repeated additions just as was done in Theorem 6.5.4. To give the details, for the minor M0 of
Circ(b) with rows I we can obtain from Γn a bounded coefficient linear circuit computing the
C`→ C` map

(z1, . . . ,zm)diag(d−1
i1 , . . . ,d−1

i` )M0,

by removing the outputs not corresponding to M0, replacing multiplications with fi(b) by
fi(b)/µ, and correcting this by adding at most ` logµ repeated additions at the output gates,
where µ = maxi | fi(b)|.
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Hence the number of gates we added is at most

` logmax
i
| fi(b)| ≤ `

3s(Γ′′n)+3n
2b`/k0c+2 ≤ 5k0s(Γn).

Since
|det(diag(d−1

i1 , . . . ,d−1
i` )M0)| ≥ 2

δ
2 n logn,

we conclude by Theorem 2.1.1 that s(Γn)≥ δ
10k0

n logn.
Subcase C: If {Dn}n>0 is good because of clause two of the definition, i.e `n = O(n3/4)

and {Dn}n>0 is asymptotically contiguous, we have an asymptotically winning strategy for
the contiguous circulant game. The proof proceeds similarly as in Subcase B. Having only a
strong strategy for the contiguous game is sufficient, since in the case the di constants that are
cancelled form a contiguous block, and we therefore are working with minors of Circ(y) that
are restricted to a contiguous block of rows.

Case II: Assume the opposite of Case I, i.e. assume for any η > 0, there are infinitely
many n ∈ N ′ such that `′n < η`n. Let N′′ be infinite subsequence of N ′ for which this holds.
On N′′, `n = Ω(`′n). This case now follows similarly as in Case I, but with the x and y-sides
interchanged and using N ′′ instead of N ′.

Let us note that at the current time item 3 of Definition 6.5.3 does not read `n ≥ Ω(n),
as would be desirable, since this is what we did for the one-sided case. The reason being
that Theorem 6.4 of [BL02] allows for up to εn unbounded constants present anywhere in the
circuit, with ε < 1. However, it is not clear how to generalize this result to allowing up to ε1n
unbounded constants on one side of the circuit (say the linear in x part) together with another
ε2n constants on the other side (the linear in y part), where potentially ε1 +ε2 > 1. The [BL02]
result can only be applied provided ε1 + ε2 < 1.

6.6 Closing the gap
Our original hope was to get item 2 of Theorem 6.5.4 to work for any `(n) = o(n). Unfortu-
nately, the following appears to be true:

Conjecture 3. There exists ε < 1, such that for `(n) = bnεc, the player does not have a strong
asymptotic strategy for winning the contiguous version of Fourier matrix game w.r. to `(n).

Actually we believe that the cut-off point lies somewhere for ε near 4/5, which we will
support using results obtained in [Sle78]. We state the following conjecture:

Conjecture 4. If `n = Ω(n4/5 log1/5 n) and `n = o(n), then

1. the player does not have a strong asymptotic strategy for winning the contiguous circulant
game w.r. to `n, and
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2. neither does the player have a strong asymptotic strategy for winning the contiguous
Fourier game w.r. to `n.

Given that we have fairly efficient ways of transferring strategies between the Fourier
matrix game and the circulant matrix game, it is no suprise that items 1 and 2 of conjecture 4
are closely related. Theorem 6.5.1 shows that items 1 and 2 are equivalent for `n = O( n

logn). It
is also clear that conjecture 4 implies conjecture 3.

So, let us have a look at conjecture 4. To analyze this, suppose ` = o(n). Con-
sider playing DFT-Game∗(n, `,r = b `cc,B), for some large enough n, where c is some con-
stant. For convenience let us assume that r is odd. Let N = {0,1, . . . ,n− 1}. Suppose
the adversary chooses rows R = 0,1, . . . , l− 1 and set C of columns 0,1, . . . ,(r− 1)/2 and
n− 1,n− 2, . . . ,n− (r− 1)/2. In this case, with F = n−1/2DFTn, letting K = FR,CF∗R,C, we
have that the entries of K are given by the Dirichlet kernel. Namely, for 0 ≤ s 6= t ≤ `− 1,
letting f = s−t

n , we have

n ·Kst =
(r−1)/2

∑
k=−(r−1)/2

e2πik f = e−2πi f (r−1)/2
(r−1)

∑
k=0

e2πik f = e−2πi f (r−1)/2 1− e2πir f

1− e2πi f

=
e−2πi f (r−1)/2− e2πi f (r+1)/2

1− e2πi f =
e−πi f (r−1)− eπi(r+1) f

1− e2πi f =
e−πi f (r−1)− eπi(r+1) f

1− e2πi f

=
eπi f (e−πir f − eπir f )

eπi f (e−πi f − eπi f )
=

e−πir f − eπir f

e−πi f − eπi f =
−2isin(r f π)

−2isin( f π)

=
sin(r(s− t)π

n)

sin((s− t)π
n)

,

where we can also take this formula to define Kst for s = t, provided it is understood that one
takes the limiting value Kst = r/n in this case.

Let M = I−K. We have that λ is an eigenvalue of M if and only if 1−λ is an eigenvalue of
K. If det(M) = 2−ω(n logn), since M is also given by M = FR,N/CF∗R,N/C, then by Binet-Cauchy
(Theorem 4.1.3),

det(M) = ∑
S⊂N/C
|S|=`

|det(FR,S)|2.

So any `× ` minor of DFTn that avoids rows C has magnitude at most n`/22−ω(n logn) =
2−ω(n log n) for ` = o(n), which means the player does not have a strong asymptotic strategy.
All eigenvalues of K are in the interval [0,1]. This is because the largest singular value of FR,C
is at most 1. Hence we have the same for M. To give an upper bound on det(M) it thus suffices
to show the largest eigenvalues of K cluster very close to 1.
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At this stage we introduce the discrete prolate matrix studied by Slepian [Sle78]. For
bandwidth parameter W , he defines the N×N matrix:

ρ(N,W )st =
sin2πW (s− t)

π(s− t) , for 0≤ s, t ≤ N−1,

where it is understood that for s = t the value on the r.h.s. equals 2W . Let us take W = r
2n and

N = `. Then
ρ(`,

r
2n)st =

sinr(s− t)π
n

π(s− t) , for 0≤ s, t ≤ `−1.

It is certainly clear that for fixed 0≤ s 6= t ≤ `−1, since ` = o(n),

lim
n→∞

Kst
ρ(N,W)st

= lim
n→∞

π(s− t)
nsin((s− t)π

n)

= lim
n→∞

π(s− t)
n(s− t)π

n

= 1,

and that on the diagonal both matrices have all entries equal to r
n .

6.6.1 Asymptotic Equivalence
Actually a much stronger relation holds between the matrix K and ρN,W . Considered as families
of matrices depending on the parameter n, these families are asymptotically equivalent. We
give the definition from [Gra02], modified to give some flexibility regarding the dimension of
the matrices:

Definition 6.6.1. Two sequences of `(n)× `(n) matrices An and Bn are said to be asymptoti-
cally equivalent if there exists a bound K such that

1. for all n, ||An||2, ||Bn||2 < K, and

2. limn→∞
||An−Bn||F√

`(n)
= 0.

Note that for an `(n)× `(n) matrix A, ||A||2 ≤ ||A||F ≤
√

`(n)||A||2, so the second condi-
tion in the definition is weaker than straightforwardly requiring that limn→∞ ||An−Bn||2 = 0.
For asymptotically equivalent matrices their eigenvalues have the same distribution in the fol-
lowing strong sense. Namely, Theorem 2.4 from [Gra02] can be tweaked for our scenario to
read:

Theorem 6.6.1 Let An and Bn be asymptotically equivalent families of `(n)× `(n) Hermitian
matrices. Let m and M be such that for each n, all the eigenvalues λi(An) and λi(An)of An and
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Bn are in the interval [m,M]. Let F(x) be an arbitrary function continous on [m,M]. Then

lim
n→∞

`(n)−1
`(n)

∑
i=1

F(λi(An)) = lim
n→∞

`(n)−1
`(n)

∑
i=1

F(λi(Bn)).

To give two examples, for F being the identity function, the above states that the aver-
ages of the eigenvalues, if convergent, converge to the same value. For F(x) = lnx, provided
eigenvalues are positive, one would obtain

lim
n→∞

lndet(An)
1/`(n) = lim

n→∞
lndet(Bn)

1/`(n).

We will now prove that the (families of) matrices K and ρ(`, r
2n) are asymptotically equiv-

alent.

Theorem 6.6.2 If `n = o(n), then for any sequence rn, the families of `n×`n matrices {K(n)}n
and {ρ(l, rn

2n)}n defined by

K(n)st =
sin(rn(s− t)π

n)

nsin((s− t)π
n)

and
ρ(`n,

rn
2n)st =

sinrn(s− t)π
n

π(s− t) , for 0≤ s, t ≤ `n−1,

are asymptotically equivalent.

Proof. First of all, since K(n) = FR,CF∗R,C, by submultiplicativity of the `2-norm we know
||K(n)||2 ≤ 1. From [Sle78] we know that ||ρ(`n,

rn
2n)||2 ≤ 1. Let D(n)st = ρ(`n,

rn
2n)−K(n)st .

Remains to show that
lim
n→∞

||D(n)||F√
`n

= 0.

We use Taylor expansions (see [RW04] p.197): for every t, there exists 0 < θ < 1 such that

sint = t− t3

6 cosθt.

Consider fixed 0 ≤ s, t ≤ `n− 1 and n. Let αn = sinrn(s− t)π
n , and let βn = π(s− t). Using

Taylor, write:

sin π
n (s− t) =

π
n (s− t)− π3

6n3 (s− t)3 cosθ
π
n (s− t)

=
βn
n −

γn
n

with 0 < θ < 1 depending on n and s− t and

γn =
π3

6n2 (s− t)3 cosθ
π
n (s− t).
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We have that

D(n)st =
αn
βn
− αn

βn− γn

=
αn(βn− γn)

βn(βn− γn)
− αnβn

βn(βn− γn)

=
−αnγn

β2
n−βnγn

=
−αn

π3

6n2 (s− t)3 cosθπ
n (s− t)

π2(s− t)2− π4

6n2 (s− t)4 cosθπ
n(s− t)

=
−αn

π
6n2 (s− t)cosθπ

n (s− t)
1− π2

6n2 (s− t)2 cosθπ
n(s− t)

.

Since `n = o(n), if n is large enough the denominator in above expression is aribtrarily close
to 1. The numerator has two oscillating factors, but converges to 0 as determined by the domi-
nating s−t

n2 factor. Hence there exists constant c > 0 so that for large enough n,

||D(n)||2F
`n

≤ 1
`n

`n−1

∑
s=0

`n−1

∑
t=0

c(s− t)2

n4

≤ c`4
n

`nn4

≤ cl3
n

n4 .

Since `n = o(n), we get that

lim
n→∞

||D(n)||F√
`n

≤ lim
n→∞

c1/2`
3/2
n

n2 = 0.

Asymptotic equivalence provides us with some preliminary evidence of the close similarity
of K(n) and ρ(`, r

2n), but by itself is not strong enough to resolve Conjecture 4. The task at hand
is to carry over the asymptotic eigenvalue analysis done for ρ(`, r

2n) to K(n). We will give some
experimental data that, together with what is already known about ρ(`, r

2n), suggest indeed one
could prove the truth of Conjecture 4 by doing a precise asymptotic eigenvalue analysis of
K(n). Such an analysis however, is still an infamous open problem in Fourier analysis, as we
will discuss (see also [AET99, Grü81, CX84]).
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6.6.2 Experimental Data
Let us do an experimental comparison between K(n) and ρ(`, r

2n). Define the function

Q(n) =
ln |det(I−ρ(`n,

`n
2n))|

ln |det(I−K(n))| , (6.15)

where we fix some 0 < δ < 1 and set `n = bnδc. Figure 6.1 show the function Q(n) for δ = 0.5.
The function appears to converge to a value just less than 1, suggesting that for any function
f (n),

|det(I−ρ(`n,
`n
2n))|= 2 f (n) =⇒ |det(I−K(n))|= 2Θ( f (n)). (6.16)

Appendix A contains some additional data for different values of δ. For δ close to 1 com-
putational precision becomes an issue, and the range for n must be chosen to be smaller for
data to be reliable. Nevertheless, we believe the data suggests that implication (6.16) holds
with `n = bnδc, for any 0 < δ < 1. The asymptotics of the eigenvalues of ρ(N,W ) are well-
understood. This translates to statements about the determinant of I−ρ(N,W ), which can be
seen to be smaller than 2−cn log n for any fixed c > 0, if `n = Ω(n4/5 log1/5 n). We will show this
momentarily. If indeed implication (6.16) holds for any 0 < δ < 1, then this would prove Con-
jecture 4, and rule out strong asymptotic strategies for the player once `n = Ω(n4/5 log1/5 n).

6.6.3 Eigenvalues of ρ(N,W )

In [Sle78], the following asymptotic values for the eigenvalues of ρ(N,W ) are given. For large
N and k with

k = b2W N(1− ε)c, with 0 < ε < 1,

we get

1−λk(ρ(N,W))∼ e−CL4/2e−L3N, (6.17)

where
A = cos2πW

and A < B < 1 is determined so that

Z 1

B

√

t−B
(t−A)(1− t2)

dt =
k
N π.

Furthermore, we have

C =
4
L2

[

N
2

L1 +(2+(−1)k)
π
4

]

mod2π
,



116 CHAPTER 6. UNCERTAINTY PRINCIPLES & MATRIX GAMES

0 50 100 150 200 250 300 350 400 450 500
0.975

0.98

0.985

0.99

0.995

1

1.005

n

Q
(n

)

Figure 6.1: Q(n) for δ = 0.5.

where [x]mod2π is defined to be the number in [0,2π) congruent to x modulo 2π. The variables
L1,L2,L3 and L4 determined by

L1 =
Z 1

B
P(t)dt L2 =

Z 1

B
Q(t)dt

L3 =
Z B

A
P(t)dt L4 =

Z B

A
Q(t)dt,

where

P(t) =

∣

∣

∣

∣

t−B
(t−A)(1− t2)

∣

∣

∣

∣

1/2
, Q(t) =

∣

∣(t−B)(t−A)(1− t2)
∣

∣

−1/2
.

We apply this with W = r
2n =

b`/cc
2n ≈ `

2cn , N = ` and ε = 3
4 . We will assume n is some

large enough number, and drop this index for the variables that depend on it. Note that in
[Sle78] the bandwidth parameter W is taken to be fixed, but let us here provide evidence for
our conjectures, modulo the assumption that this technicality can be resolved. We first perform
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a substitution t = sinφ on the integral determining B. Define

f (t) =

√

t−B
t−A

1√
1− t2

.

Then
Z 1

B
f (t)dt =

Z arcsin1

arcsinB
f (sinφ)cosφdφ

=

Z π/2

arcsinB

√

sinφ−B
sinφ−Adφ. (6.18)

Note that since A < B < 1, we have that π
2 − π`

cn < arcsinB < π
2 . Since ` = o(n) we can approx-

imate (6.18) by

1
2(

π
2 − arcsinB)

√

1−B
1−A ≈

1√
2
√

1−B
√

1−B
1−A =

1−B√
2−2A

.

Approximating A by 1− 1
2(2πW )2 = 1− π2`2

2c2n2 , we get that

B≈ 1− π2`2

c2n2 (1− ε).

So for ε = 3
4 , B ≈ 1− π2`2

4c2n2 , which is approximately in the middle of the interval [A,1]. We
will ignore the factor e−CL4/2 in (6.17), since this factor is certainly always less than 1. We will
now give a lower bound on L3:

L3 =
Z B

A

√

B− t
(t−A)(1− t2)

dt

≥
Z

A+B
2

A

√

B− t
(t−A)(1− t2)

dt

≥
√

B−A
2

Z A+B
2

A

1
√

(t−A)(1− t2)
dt

≥
√

B−A
2

Z
A+B

2

A

1√
t−A

dt

=

√

B−A
2

Z B−A
2

0

1√
δ

dδ

=

√

B−A
2

2
√

B−A
2

= B−A

≈ π2`2

4c2n2 .
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So we conclude that for the matrix M′ = I−ρ(N,W ),

λk(M′)≤ e−`L3 = e−
π2`3
4c2n2 ,

where k = bWN/2c ≈ `2

4cn . Hence

det(M′)≤ e−
π2l5

16c3n3 = e−Θ( `5
n3 )

.

If this bound would carry over to the matrix M, which certainly seems plausible given the
empirical evidence and also the asymptotic equivalence of the matrices K and ρ(`, r

2n), then in
order for the player to have a strong asymptotic strategy, `5

n3 must be o(n logn). In other words,
if `5

n3 = Ω(n logn), i.e., ` = Ω(n4/5 log1/5 n), then the player has no strong asymptotic strategy.
This would then prove Conjecture 4.

Unfortunately, the asymptotic equivalence of K and ρ(`, r
2n) is by itself not strong enough

to carry over eigenvalue results about the matrix M′ to M while retaining the precise quantitive
values provided by Slepian [Sle78]. We need to know about the precise rates of convergence.
Also given our sensitive requirements on the clustering of eigenvalues of K near 1, that is, our
need to observe eigenvalues that are exponentially close to 1, it seems difficult to carry over
results about ρ(`, r

2n) to K using any standard perturbation techniques, such as Theorem 2.1.2.
Namely, ||K− ρ(`, r

2n)||2 does not converge to 0 exponentially fast. Note also that Theorem
6.6.2 actually shows for some constant c > 0, that

||D(n)||2 ≤ c1/2 `2
n

n2 .

So for `n = o(n), we do have the `2-norm of the difference between K and ρ(`, r
2n) going to

zero. The problem is that this convergence is not rapid enough: taking s− t = 1, we can see
that D(n) has entries that are roughly Ω( `n

n2 ) and so certainly

||D(n)||2 = Ω(
`n
n2 ).

Hence in an application of Theorem 2.1.2, the exponentially close clustering of eigenvalues of
ρ(`, r

2n) near 1 would get lost in the approximation.
It appears that to know about the eigenvalues of K in the same precise manner that we

know about the eigenvalues of ρ(`, r
2n), we need to carry out the analogous analysis as done by

Slepian [Sle78]. However, as remarked before, this remains a major open problem [AET99]. A
first step was taken by Grünbaum [Grü81] into resolving this issue. To give an idea, Slepian’s
results are based on the fact that ρ(N,W ) is closely related to the integral operator

L≡
Z W

W
d f ′ sinNπ( f − f ′)

sinπ( f − f ′) .

For L Slepian manages to give a diffential operator M that commutes with L. This implies that
these operators have the same eigenfunctions. The eigenfunctions for L can be found by solving
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a diffential equation of Sturm-Liouville type. This then translates back to the eigenvectors and
eigenvalues of ρ(N,W).

For comparison, Grünbaum manages to give a tri-diagonal matrix M ′ that commutes with
K. This then means K and M′ have the same eigenvectors. Potentially, the eigenvectors of M ′
can be expressed in closed form by solving a difference equation, just like in the continuous
scenario a diffential equation needed to be solved. This certainly is going to be a formidable
task. Note that also some work towards this end has been done in [CX84], although at a more
elementary level.

In any case, regardless of whether we can formally prove this, it seems inplausible that the
knowledge-gap we observed in Theorem 6.5.4 and its Corollary 6.5.5 can be closed “all the
way up to” `n = o(n) by the game strategy framework we devised. Our random Vandermonde
matrix strategy gets us up to `n = O(n3/4). The above motivation leaves open the possibility one
can perhaps push this up to `n = o(n4/5 log1/5 n), but also suggests that at this point any DFT-
Game strategy oriented argument will cease to work: at the `(n) = n4/5+δ point the adversary
appears to have the upper hand.

6.6.4 Equal Spacing Strategy and its limitations
The previous section gave evidence why it is plausible that for large enough ε < 1, there is
no strong asymptotic strategy for the player with respect to `(n) = bnεc in the contiguous
Fourier matrix game. In this section, we will look at the particular scenario where the adversary
chooses a contiguous block of disallowed columns, and where the player chooses his columns
spaced at equal intervals in the remaining set of columns. This is a particularly instructive case
to look at with regards to Conjecture 3. As noted before, we have some indication that this is
the worst-case scenario as far as the adversary’s choices are concerned. It will be interesting to
see how well an intuitively good strategy, like spacing points equally in the allowed interval,
fares in this case.

Instead of analyzing this scenario discretely, we will analyze the following continuous
analogue. Let k be a constant, and suppose ` = o(n). Consider some large enough n. Say the
adversary fixes an arbitrary sector S of the unit circle of angle `

kn 2π. We will now try to find a
set of ` points on the unit circle that are equally spaced in some sense and avoid the set S.

Let us start out with a set M of m equally spaced points on the unit circle. Let R = M∩S.
Say R has r points. Let L = M/R. We want L to have ` points, so assume a set M is chosen so
r = m− `. Since the fraction of points of M that are in R will be proportional to the fraction
that S is of the entire circle, we have that r

m ∼ `
kn , so r ∼ `2

kn−` , and m∼ `kn
kn−` = `

1− `
kn

.
For finite sets A,B ∈ C, define

PAB = ∏
a∈A,b∈B,a6=b

|a−b|.

We are interested in PLL, since it relates to a Vandermonde determinant:

PLL = |V (x1,x2, . . . ,xl)|2,
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where x1,x2, . . . ,xn are the points in L. Observe that

PLL =
PLM
PLR

and PLR =
PRM
PRR

,

so
PLL =

PLM
PRM

PRR.

Let x be a point contained in M. By symmetry, PxM is the same for any point x of M. Now
PMM = |det(DFTm)|2 = mm, so PxM = m. hence PRM = mr and PLM = m`. Hence

PLL = ml−rPRR = m2`−mPRR.

Taking the crude upper bound that any chord between points in R is of length at most 2π`
kn , we

get that

PRR ≤
(

2π`

kn

)r(r−1)

.

Hence (using that m≤ 2` for large enough n)

PLL ≤ m2`−m
(

2π`

kn

)r(r−1)

≤ 2`2`

(

2π`

kn

)r(r−1)

= 22` log 2`+r(r−1) log2π`−r(r−1) log kn

= 2−Θ( `4
(kn)2 logkn)+Θ( `4

(kn)2 log`)+Θ(` log `)
.

Hence if ` = ω(n3/4), the dominant term −Θ( `4

(kn)2 logkn) will cause − logPLL to be of growth
order ω(n logn).

Returning to the contiguous version of the Fourier matrix game, the only difference in the
above scenario is that we cannot select arbitrary points on the unit circle, but must pick nth
roots of unity. If n is large the player can select `-many nth roots of unity that very closely
approximate the equal spaced points in the set L. Our analysis indicates that such an equal
spaced selection would not provide us with an asymptotically strong strategy for ` = ω(n3/4),
because in this case the resulting Vandermonde matrix has determinant of order 2−ω(n logn).

From inspection of small cases one can deduce that the equal spacing strategy is not the
optimal strategy against an adversary that chooses a contiguous block of columns. Slightly
skewing the selected points towards the set of disallowed roots can yield a larger determinant.
However, it appears unintuitive that by such minimal skewing one can produce an asymptoti-
cally strong strategy for arbitrary ` = o(n), given that the equal spacing stategy ceases to be
useful at ` = ω(n3/4).

It also should be emphasized that the equal spacing strategy works for ` = O(n3/4), but that
this does not provide a simpler alternative for our random Vandermonde derived strategy. The
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equal spacing stategy assumes the set of disallowed columns to be contiguous, wheareas the
random Vandermonde strategy get us up to ` = O(n3/4) with the disallowed ` many columns
being in arbitrary configuration. To conclude, we have given evidence to support the claim that
no strategy exists for the player for `(n) = n4/5+δ.
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Chapter 7

Bounded Depth Circuits

In light of the inherent difficulty in proving general circuit lower bounds, various researchers
have tried to make progress by adding one or more restricions to the computational model. One
popular restriction has been the one in which the circuit is restricted to be of constant bounded
depth. In this case arbitrary fan-in at gates is allowed in order to make the model nontrivial.

In boolean complexity the restriction to constant depth enables one to successfully prove
exponential lower bounds [Ajt83, FSS81, Yao85, Hås89]. These papers constitute a body of
work that is one of the shining gems of theoretical computer science. In the arithmetic world
however, the situation is less bright. Currently only weak lower bounds, i.e., just barely non-
linear, are known for constant depth circuits [RR03, Pud94].

Further progress has been made by adding additional restrictions to the computational
model. Exponential lower bounds were proved for the size of monotone arithmetic circuits
[SS77, MS80], and linear lower bounds are known for their depth [SS80, TT94]. In Chapter
3 we studied ΣΠΣ-formulas, which are of depth three. Over finite fields exponential lower
bounds are known for ΣΠΣ-formulas, for example for computing the permanent and/or deter-
minant polynomials [GK98, GR98]. Exponential lower bounds are known for multi-linear and
homogeneous ΣΠΣ-formula [Nis91, NW96]. For unrestricted ΣΠΣ-formulas the only known
lower bounds are the near-quadratic ones of [SW99], and the extensions of these results that
we proved in Chapter 3. Note that Raz proved super-polynomial lower bounds on the size of
general multi-linear formulas [Raz04a, Raz04b].

In this chapter we will proceed as follows. First we will prove two new versions of the
classic “Derivative Lemma” of Baur-Strassen [BS82]. This lemma is used in combination
with Strassen’s degree method [Str73a, Str73b] to obtain general Ω(n logn) arithmetical cir-
cuit lower bounds for single output functions. Originally Strassen’s degree method works for
proving lower bound on the size of straight-line programs computing several functions. The
Derivative Lemma converts any straight-line program for a single function into one that com-
putes the function together with all its partial derivatives with constant factor overhead, thereby
enabling application of the degree method. Let us note that the lower bounds obtainable this
way, for simple functions like xn

1 + xn
2 + . . .+ xn

n and less trivial functions like the determinant
and the permanent, are the only general super-linear arithmetical circuit lower bounds known
to date.

After exposition of our new versions of the Derivative Lemma, we will prove some lower
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bounds for a kind of bounded depth trilinear circuit, whose shape and form arises from appli-
cation of our derivative lemmas. We call these kinds of circuits “interpolation circuits”, and
they compute linear combinations

n
∑
i=1

zi pi(x1,x2, . . . ,xn) (7.1)

of a collection of polynomials p1, p2, . . . , pn, where we will consider the coefficients zi to be
a “special” set of variables. These results take the ideas from [Lok95] a step further for our
particular model.

Lokam considered bounded depth linear circuits with bounded coefficients, and bilinear
formulas, which essentially are linear circuits of depth 2. We will prove size-depth trade offs
for our special kind of bounded coefficient tri-linear circuit computing linear combinations of
the form (7.1), where the polynomials pi are bilinear polynomials of form xT Ay.

Then in the last section, we will switch gears and prove a non-linear lower bound on
the size of a bounded depth bilinear circuit computing circular convolution xT Circ(y). To
emphasize, the lower bound obtained there is without any restriction on the coefficients that
are on the wires. We will employ a lemma from [RR03] about superconcentrator properties of
the graph of a bilinear circuit, and we will combine this in a novel way with the uncertainty
principle proved by Tao [Tao91], as it is known for cyclic groups of prime order, in order to
obtain our lower bound.

7.1 Derivative Lemmas and Linear Interpolation
In this section inputs are not considered gates, fan-in is bounded by two and the size of circuits
is measured by counting gates.

Definition 7.1.1. An interpolation circuit for computing polynomials f1, . . . , fm in variables
x1, . . . ,xn is defined to be an arithmetical circuit with inputs x1, . . . ,xn and special inputs
b1, . . . ,bm that computes the linear combination ∑m

i=1 bi fi. Interpolation circuit size is defined
by i( f1, . . . , fm) = s(∑m

i=1 bi fi).

Our main interest is to consider interpolation circuits that have bounded coefficients. The
reason is that interpolation circuits with bounded coefficients have, like the orbit models we
defined before, computational power somewhere in between the bounded and unbounded co-
efficient model. An important technical detail is whether the circuit has access to a constant
1 gate. We will indicate explicitly by using superscipt 1 if that is the case. We use f ≤∗ g
to indicate asymptotic ordering f = O(g). Call a polynomial nontrivial if it is not equal to a
variable or a constant. We have the following easy observations.

Proposition 7.1.1 For any set of distinct nontrivial polynomials f1, . . . , fm we have that

1. ibc( f1, . . . , fm)≤∗ sbc( f1, . . . , fm).
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2. ibc,1( f1, . . . , fm)≤∗ sbc,1( f1, . . . , fm).

Applying the Baur-Strassen Derivative Lemma to a bounded coefficient interpolation circuit
without access to 1, yields us a bounded circuit computing the separate functions with access
to 1. Hence,
Proposition 7.1.2 For any set of distinct nontrivial polynomials f1, . . . , fm we have that

1. sbc,1( f1, . . . , fm)≤∗ ibc( f1, . . . , fm).

2. sbc,1( f1, . . . , fm)≤∗ ibc,1( f1, . . . , fm).

So we conclude that the bounded coefficient interpolation model with access to 1 is equally
powerful as bounded coefficients with access to 1:

Corollary 7.1.3 ibc,1( f1, . . . , fm) =∗ sbc,1( f1, . . . , fm).

For linear circuits we can summarize the above situation as follows. We denote by sbc,1
linear the

size of circuits that consists of addition gates computing homogeneous linear forms and addi-
tion gates computing constants, and allowing one multiplication gate at each output that multi-
plies a linear form and a constant gate. ibc

bilinear denotes the size of a bounded constant interpo-
lation circuit which is bilinear. Observe that for a linear map λx.Ax, ibc

bilinear(Ax)≤∗ sbc,1
linear(Ax),

because we can replace the multiplication gate with constant by performing repeated additions
at the single output of the interpolation circuit. Conversely, ibc

bilinear(Ax)≥∗ sbc,1
linear(Ax), by appli-

cation of the Baur-Strassen Derivative Lemma, and then transferring constant multiplications
to the outputs. Hence we have

Proposition 7.1.4 slinear(Ax)≤∗ sbc,1
linear(Ax) =∗ ibc

bilinear(Ax)≤∗ sbc
linear(Ax).

Examples can be given for which the interpolation model is more powerful than the bounded-
coefficient model, when disallowing access to 1. For example sbc

linear(2
nx1, . . . ,2nxn) = Ω(n2),

whereas ibc
bilinear(2nx1, . . . ,2nxn) = O(n). The ibc

bilinear-model can play a similar role as the or-
bit model in future research, namely provide an intermediate goal for proving lower bounds,
somewhere in between the bounded and unbounded constant model.

Theorem 7.1.5 Given a bounded coefficient circuit Γ computing f1, . . . , fm at (non-input) gates
of fanout zero in variables x1, . . . ,xn of size s, we can construct a bounded-coefficient circuit of
size at most 5s with extra inputs b0,b1, . . . ,bn computing

b0 f j +
n
∑
i=1

bi
∂ f j
∂xi

,

for all j = 1 . . .m.

Proof. We use induction on the number of gates r other than the outputs. The base case is
when r = 0. In this case each f j is a gate taking both inputs directly from the input variables,
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s = m and the theorem follows readily. Suppose r > 0. Let h be a gate taking both inputs
from the variables. Let Γ′ be the circuit obtained from Γ by replacing h with a new variable
xn+1. That is, add a new input xn+1, and whenever there is a wire from h to a gate, have the
same wire (with identical constant) to that gate from xn+1, and finally remove h. Say the new
circuit computes f ′1, . . . , f ′m. By induction, we obtain a bounded coefficient circuit Γ′′ with
inputs x1, . . . ,xn+1 and b0, . . . ,bn+1 computing

b0 f ′j +
n+1
∑
i=1

bi
∂ f ′j
∂xi

,

for all j = 1 . . .m of size at most 5(s− 1). Note that for each i, f ′i [xn+1← h] = fi. The chain
rule gives us the following equality for any j = 1 . . .m and k = 1 . . .n,

∂ f j
∂xk

=
∂ f ′j
∂xk

[xn+1← h]+
∂ f ′j

∂xn+1
[xn+1← h] · ∂h

∂xk
.

Let Γ′′′ be the circuit obtained from Γ′′ by replacing input variable xn+1 with the gate h. That
is, add the gate h, and whenever there is a wire from xn+1 to a gate have exactly the same wire
(with identical constant) from h to that gate, and finally remove xn+1. We see that Γ′′′ has a
gate g j computing

g j = b0 f ′j[xn+1← h]+
n+1
∑
i=1

bi
∂ f ′j
∂xi

[xn+1← h],

for j = 1 . . .m. Hence we obtain the required circuit by performing the substitution

bn+1←
n
∑
i=1

bi
∂h
∂xi

.

Since for any j = 1 . . .m,

g j[bn+1←
n
∑
i=1

bi
∂h
∂xi

] = b0 f ′j[xn+1← h]+
n
∑
i=1

bi
∂ f ′j
∂xi

[xn+1← h]+
n
∑
i=1

bi
∂h
∂xi
·

∂ f ′j
∂xn+1

[xn+1← h]

= b0 f j +
n
∑
i=1

bi
∂ f j
xi

.

The substitution for bn+1 can be done by adding at most 3 gates. That is, in case h =
αxi + βx j, we substitute αbi + βb j, which takes one gate. In case h = αxi ·βx j, we substitute
αβbix j + αβb jxi, which takes 3 gates. In both cases constants on the wires are 1 or constants
from the bounded-constant circuit Γ. We conclude that Γ′′′ has size at most 5(s−1)+4 ≤ 5s,
and that it is a bounded-constant circuit.

Corollary 7.1.6 In the statement of Theorem 7.1.5, if Γ does not use a constant 1 input gate,
then neither does the constructed circuit.
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The above property is violated by the Baur-Strassen lemma. To give an example, a
bounded coefficient bilinear circuit computing xT Ay is turned by that construction (when just
constructing ∂xi’s) into a bounded-coefficient circuit computing Ay , but using a constant 1 in-
put gate to build up constants, which get used at multiplication gates. This is an unfortunate
fact, because current volume and spectral techniques, in particular Morgenstern’s Theorem,
for proving lower bounds on linear circuits get defeated by such usage of constants. Note that
[NW95] overlooked this fact, and that the proof their “Corollary 3” is wrong. In this example,
our proof of Theorem 7.1.5 simply reproduces a bounded-coefficient bilinear circuit computing
bT Ay. Applying the corollary for m = 1 yields the following:

Corollary 7.1.7 ibc( f , ∂ f
∂x1

, . . . , ∂ f
∂xn

)≤∗ sbc( f ).

We can also obtain a “transpose” of the above theorem.
Theorem 7.1.8 Given a bounded coefficient circuit Γ computing f1, . . . , fm at (non-input) gates
of fanout zero in variables x1, . . . ,xn of size s, we can construct a bounded-coefficient circuit of
size at most 5s with extra inputs b1, . . . ,bm computing ∑m

i=1 bi fi and ∑m
i=1 bi

∂ fi
∂x j

, for all j = 1 . . .n,
whenever these are not identically zero.
Proof. We use induction to the number of gates r other than the outputs. The base case is
when r = 0. In this case each f j is a gate taking both inputs directly from the input variables,
s = m and the theorem follows readily. Suppose r > 0. Let h be a gate taking both inputs
from the variables. Let Γ′ be the circuit obtained from Γ by replacing h with a new variable
xn+1. That is, add the new input xn+1, and whenever there is a wire from h to a gate, have
the same wire (with identical constant) to that gate from xn+1, and finally remove h. Say the
new circuit computes f ′1, . . . , f ′m. By induction, we obtain a bounded coefficient circuit Γ′′ with
inputs x1, . . . ,xn+1 and b1, . . . ,bm computing ∑m

i=1 bi f ′i and ∑m
i=1 bi

∂ f ′i
∂x j

, for all j = 1 . . .n + 1 of
size at most 5(s− 1). Note that for each i, f ′i [xn+1 ← h] = fi. The chain rule gives us the
following equality for any i = 1 . . .m and k = 1 . . .n:

∂ fi
∂xk

=
∂ f ′i
∂xk

[xn+1← h]+
∂ f ′i

∂xn+1
[xn+1← h] · ∂h

∂xk
.

Let Γ′′′ be the circuit obtained from Γ′′ by replacing input variable xn+1 with the gate h. That
is, add the gate h, and whenever there is a wire from xn+1 to a gate have exactly the same wire
(with identical constant) from h to that gate, and finally remove xn+1. We see that Γ′′′ has a
gate computing ∑m

i=1 bi f ′i [xn+1← h] = ∑m
i=1 bi fi and for each j = 1 . . .n+1,

g j =
m
∑
i=1

bi
∂ f ′i
∂x j

[xn+1← h].

By the chain rule, whenever x j is not present in h, which is for all but at most two indices
j ∈ {1, . . . ,n}, g j = ∑m

i=1 bi
∂ fi
∂x j

. For the remaining indices j, add gates to compute

g j +gn+1 ·
∂h
x j

=
m
∑
i=1

bi
∂ f ′i
∂x j

[xn+1← h]+
m
∑
i=1

bi
∂ f ′i

∂xn+1
[xn+1← h] · ∂h

x j
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=
m
∑
i=1

bi

(

∂ f ′i
∂x j

[xn+1← h]+
∂ f ′i

∂xn+1
[xn+1← h] · ∂h

x j

)

=
m
∑
i=1

bi
∂ fi
∂x j

.

This can be done using at most 3 gates. Hence the final circuit has at most 5(s− 1)+ 3 ≤ 5s
gates.

7.1.1 Closed Form Bilinear Derivative Lemma
For a general homogeneous bilinear circuit computing the bilinear form f = xT Ay correspond-
ing to a matrix A, as we noted in the previous section, application of the Baur-Strassen con-
struction to obtain ( ∂ f

∂x1
, ∂ f

∂x2
, . . . , ∂ f

∂xn
), which are the linear forms given by Ay, yields a circuit in

which each gate computes a linear form in y, but using constant gates and allowing computed
constants to multiply linear forms. This is unfortunate since for such circuits currently there
are no lower bound techniques known. Hence there is no straightforward reduction of prov-
ing lower bounds for bilinear forms via the Baur-Strassen derivative lemma to the linear case.
This contrasts with the successful Raz/Bürgisser-Lotz strategy for bounded-coefficient circuits,
whose extension we studied in previous chapters. The culprit that causes the Bauer-Strassen
construction to introduce these undesired multiplications with build-up constants can be seen
to be linear part of the bilinear circuit below the multiplication gates. Here we will show that if
this lower layer is a not a circuit but a formula, then we do have a derivative-lemma construction
that leaves a homogeneous linear circuit with only addition gates.

In case the lower layer is a formula, we can assume wlog. that this lower layer consists of a
single unbounded fan-in addition gate summing the outputs of all multiplication gates. Namely,
multiplication gates with fan-out bigger than one can be duplicated so all multiplication gates
have fan-out one, and this can be done with constant factor overhead. Next all constant on
these fan-out wires can be pushed upward, resulting in a lower layer that just adds up the
multiplication gates. Hence we can state our theorem as follows:

Theorem 7.1.9 Suppose we have a linear circuit C1(x1,x2, . . . ,xn) computing homogeneous
linear forms l1(~x), l2(~x), . . . , lk(~x) and a circuit C2(y1,y2, . . . ,yn) computing homogeneous lin-
ear forms r1(~y),r2(~y), . . . ,rk(~y). Let f be a bilinear form given by

f =
k
∑
i=1

li(~x)ri(~y).

Then we can construct a homogeneous linear circuit computing ∂x f := ( ∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xn

) of
size O(s1 + s2), where s1 and s2 are the sizes of C1 and C2, respectively.

Proof. For each i ∈ {1,2, . . . ,k} write

li(~x) = ai1x1 +ai2x2 + . . .+ainxn,
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with ai1,ai2, . . . ,ain ∈ C. Then

∂ f
∂xs

=
k
∑
i=1

∂li(~x)ri(~y)
∂xs

=
k
∑
i=1

∂li(~x)
∂xs

ri(~y)

=
k
∑
i=1

aisri(~y)

In other words, defining the k×n matrix A = (apq)1≤p≤k,1≤q≤n,

∂x f = [r1(~y),r2(~y), . . . ,rk(~y)]A,

so that
(∂x f )T = AT [r1(~y),r2(~y), . . . ,rk(~y)]T .

Now circuit C1 computes λ~x.A~x. Since the circuit size of a matrix A and its transpose AT are the
same, we obtain a homegenous linear circuit C3 with k inputs and n outputs computing AT . By
the above we thus get a homogeneous linear circuit for ∂x f by composing circuits C2 and C3:
first r1(~y),r2(~y), . . . ,rk(~y) are computed by C2 and then these are taken as inputs to C3. Doing
so, the n ouputs of C3 will yield ∂x f .

7.2 Bounded Depth Bilinear Interpolation Circuits
In this section we are going to consider bilinear interpolation circuits of the following structure.
There are three sets of input vectors namely x, y and special interpolation inputs z. There are
two top-level linear mappings computing separately for input vectors x and y. Both these map-
ping are computed by depth d−1 circuits. Multiplication gates are allowed, but are restricted
to have exactly one of its inputs taken to be a z variable. We think of the z variables as if they
were constants taken from the underlying field C.

Say the outputs of these circuits are l1(x), ..., lk(x) and r1(y), . . . ,rk(y). These are actually
linear in x or y, but may contain higher powers of z variables.

Then there are k multiplication gates computing mi = `i(x)ri(y) for 1 ≤ i ≤ k. Finally
there is a single unbounded fan in addition gate, taking inputs from all multiplication gates.
Constants on the wires are assumed to have norm at most one.

We identify a bilinear form p(x,y) on n+n variables in a natural way with the n×n matrix
of coefficients (p)i j = the coefficient of the monomial xiy j. Linear forms `i(x) and ri(y) are
identified with row vectors. Under this identification we can thus say that each multiplication
gate mi computes `T

i ri. The function computed by the circuit is required to be of the form
m
∑
k=1

zk(xT Aky) = xT (
m
∑
k=1

zkAk)y ,
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for certain complex n× n matrices Ak. In this situation, we say the circuit is an interpolation
circuit for computing matrices A1,A2, . . . ,Am. The idea is that, by varying the assignments
of complex numbers to z, we can compute any of the bilinear forms xT My, for any matrix M
obtained as the linear combination M = z1A1 + z2A2 + . . .+ zmAm.

7.2.1 Preliminaries and Related Work
Definition 7.2.1 ([Lok95]). Let 1≤ r ≤ n, for an n×m matrix A we define its `2-r-rigidity to
be

∆2
A(r) = min{||A−B||2F : B is an n×m matrix of rank at most r},

where ||A−B||F denotes the Frobenius norm.

Lokam defined the `1-norm ||C||1 of a circuit to be the sum of the absolute values of all
constants on the wires of C. For a matrix A, defining ||C[d](lA)||1 to be the minimum `1-norm
of a linear circuit of depth d computing the linear mapping lA, he proved:

Lemma 7.2.1 ([Lok95]) For any r ≥ 1,

||C[d](lA)||1 ≥ r
(

∆2
A(r)
n

)1/2d
.

This results was later improved by Pudlák [Pud98] to

||C[d](lA)||22 ≥ dn|detA|2/dn,

where the `2-norm of a circuit is defined analogously to the `1-norm of a circuit.
One class of matrices for which we have good bounds on their `2-rigidity are Hadamard

matrices.

Definition 7.2.2. An n×n matrix H is called a generalized Hadamard matrix if HH∗ = nIn.

When the entries of the matrix H are restricted to be ±1 one gets the standard definition of a
Hadamard matrix. As an example, the Fourier matrix DFTn is a generalized Hadamard matrix.
One has:

Theorem 7.2.2 ([Lok95]) ∆2
H(r) = n(n− r).

Denoting by C[d]
1 (lA) the minimum number of wires of any depth d linear circuit with con-

stants on the wires of norm at most 1 that computes λx.Ax, one then has by Lokam’s result
that for any generalized Hadamard matrix H, C[d]

1 (lH) = Ω(n1+ 1
2d ), and by Pudlák’s improve-

ment C[d]
1 (lH) = Ω(n1+ 1

d ). Lokam also considered bilinear formulas, as introduced in [NW95],
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corresponding to a matrix A, which are formulas of form

bA(x,y) =
m
∑
i=1

xT qipT
i y,

where pi and qi are column vectors. The size L(bA) of the formula bA is taken to be the total
number of non-zero entries in the qi and pi vectors. These formulas are essentially depth 2
linear circuits: s(bA) = Θ(C[2](lA)) [NW95]. So one gets for bilinear formula with bounded
coefficients a lower bound Lb

1(bH) = Ω(n5/4) via Lokam and Lb
1(bH) = Ω(n3/2) via Pudlák’s

result, where H is a generalized Hadamard matrix. Lokam results yield the original bound
proved in [NW95], and Pudlák’s bound improves it.

7.2.2 Our Result
Theorem 7.2.3 Let C be an interpolation circuit of structure as defined above with multiplica-
tion layer at depth d that computes A1, . . . ,Am. Then for 1 ≤ r ≤ n, the number of wires of C
that do not fan out from z variables is at least

r
(

m
∑
i=1

∆2
Ai(r)

)1/(2d−1)

n−2/(2d−1).

Proof. Let C be given as indicated. Fix 1≤ r ≤ n. Let S equal the number of wires of C that
do not fan out of z variables. We call a gate or non z-variable special if the number of wires
fanning out from it is at least S/r. Note there can be at most r special gates. No multiplication
gate or the output gate can be special.

We now will consider what happens to a matrix Ai that is computed, in the sense that we
defined, as we remove a special gate g. That is, temporarily fix zi = 1 and zk = 0 for k 6= i.
Let l1, l2, . . . , lk be the linear forms in x and r1,r2, . . . ,rk be the linear forms in y computed by
the circuit, after this assignment. The output of the circuit with this assignment to z will be the
bilinear form xT Aiy. Now remove g and consider the modified output xT Anew

i y. We will have
six cases to consider.

Case 1: g is an input variable x j. In this case we remove the wires fanning out from x j.
That means that for each i, `new

i = `i with jth entry set to zero. Hence for each i, mnew
i = mi

with row j zeroed out. Since each output Ai is simply a linear combination of the matrices mi,
we get Anew

i = Ai with the jth row zeroed out, i.e. Ai gets modified by subtracting a matrix of
rank 0 or 1.

Case 2: g is an input variable y j. Similarly as above we can conclude each output gets
modified by subtracting a matrix of rank at most one.

Case 3: g is a multiplication gate mi = `T
i ri. The output gets modified by subtracting

a scalar multiple of mi. Observe that rank(mi) ≤ 1. So the output gets again modified by
subtraction a matrix of rank at most one.

Case 4: g is an addition gate linear in x. Suppose gate g computes the linear form l.
Then for each i, `new

i = `i− γil, for certain scalars γi. Hence for each i, mnew
i = (`new

i )T ri =
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`T
i ri− γilT ri. Since Ai = Σk

j=1α jm j, we get that

Anew
i = Σk

j=1α jmnew
j

= Σk
j=1α j(m j− γ jlT r j)

= Ai− lT Σk
j=1α jγ jr j.

Observe that lT Σk
j=1α jγ jr j has rank at most one. Hence again we have that each output is

modified by a matrix of rank at most one.
Case 5: g is an addition gate linear in y. Similarly as Case 4, we can show that each output

get modified by subtracting a matrix of rank at most one.
Case 6: g is a multiplication gate that has one of its inputs being a z variable. With z being

assigned to, we can consider this gate to be an addition gate, so this case reduces to Case 4 or
5.

Let C′ be the circuit obtained by consecutively removing all special gates. From the above
we conclude that for each i, if we set all z’s to be zero except zi = 1, then the output of the
circuit is a bilinear form xT (Ai−Bi)y, where Bi is some matrix with rank at most r.

The fanout of each gate in C′ is at most S/r. We are now going to estimate the following
quantity, which is the sum of norms of all entries of the computed matrices:

Φ =
m
∑
s=1

n
∑
i=1

n
∑
j=1
|(As−Bs)i j|2. (7.2)

For a given pair (xi,y j), there are at most (S/r)d · (S/r)d−1 pairs of paths starting in xi and
y j and that come together in the same multiplication gate. Then from that gate there is a single
edge to the output. We can estimate (7.2) by summing over all these pairs of paths and over
all assignments to z that set exactly a single zi = 1. One pair of paths can contribute to at most
one of the Ai−Bi. Namely, if the pair contains two multiplication gates with special zi and z j
input with i 6= j, then contribution to A j−B j and Ai−Bi is zero, since in either case the other
variable is set to zero. Since any constant on a wire has norm at most 1, we conclude each such
path contributes at most 1 to Φ. Hence

Φ≤ n2(S/r)2d−1.

Thus
S≥ rΦ1/(2d−1)n−2/(2d−1).

Observe that
Φ =

m
∑
s=1
||As−Bs||2F ≥

m
∑
s=1

∆2
Ai(r),

from which the theorem readily follows.

The above theorem yields lower bounds whenever the bilinear forms that are computed
have associated matrices of high `2-r-rigidity. For example:
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Corollary 7.2.4 let A1, . . .An be a set of n Hadamard matrices. Then any depth d bilin-
ear interpolation circuit, of the structure defined above, that computes A1, . . . ,An has size
Ω(n1+ 1

2d−1 ).

Proof. By Theorem 7.2.2, we know that for a Hadamard matrix H, ∆2
r (H)≥ n(n− r). Apply-

ing the above Theorem one gets that the number of wires not fanning out of z variables is at
least

r
(

m
∑
i=1

∆2
Ai(r)

)1/(2d−1)

n−2/(2d−1) ≥ r (n ·n(n− r))1/(2d−1) n−2/(2d−1) (7.3)

= r(n− r)1/(2d−1). (7.4)

Setting r = n/2 then yields the corollary.

7.3 Bilinear circuits with unbounded coefficients of depth
O(1)

In [RR03] a super-linear lower bound is proved on the number of edges of any bilinear circuit
with arbitrary coefficients and constant depth computing matrix multiplication. Their result
gives a lower bound on the number of edges present in the circuit below the multiplication
gates. In other words, the bilinear circuit gets to perform two linear transformations at the
inputs in the two different variable sets free of charge. In our orbit-related terminology, the
circuits are taken to be of the form Γ(Ex,Dy), where E and D are arbitrary matrices of ar-
bitrary dimension. The proof technique is graph theoretic in nature. It make use of certain
superconcentrator properties any circuit computing matrix product must posess.

In this section we will verify that this proof technique can also be successfully applied to
the circular convolution function xT Circ(y) which has been the main focus of our attention in
previous chapters. Interestingly enough, we will essentially reduce the problem to a question
about the superconcentrator properties of the discrete Fourier transform. Recall the definition:

Definition 7.3.1. An n-superconcentrator is a directed acyclic graph G = (V,E) with n input
nodes IG ⊆ V and n output nodes OG ⊆ V such that for every m, for every sets X ⊂ IG, and
Y ⊂ OG, there exist m vertex disjoints paths from X to Y .

In can be seen that for prime p, any linear circuit computing DFTp is a p-superconcentrator.
Namely, it is well-known that any minor of DFTp is non-singular [Tao91]. If there would exist
any sets X ⊂ IG and Y ⊂ OG of size m such that there are strictly fewer than m vertex disjoint
paths from X to Y , then the corresponding minor DFT p

X ,Y would be singular.
We will not directly use this fact, but rather use the discrete uncertainty principle proved

by Tao [Tao91], which was stated in Theorem 6.3.3. Nevertheless, the proof of this uncer-
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tainty principle relies on the fact that all minors of DFTp are non-singular, for prime p, so
superconcentrator properties of DFTp are involved, albeit indirectly.

We now introduce some prerequisites taken from [RR03]. We will need some definitions
about slow-growing functions and a lemma.

7.3.1 Prerequisites
Definition 7.3.2. For a function f : N→ N, define f (i) to be the composition of f with itself i
times:

1. f (0) is the identity function,

2. f (i) = f ◦ f (i−1), for i > 0.

Futhermore, for f such that f (n) < n, for all n > 0, define

f ∗(n) = min{i : f (i) ≤ 1}

As in [RR03], the following set of extremely slow-growing functions λd(n) will be used
to express the lower bounds. Each λd(n) is a monotone increasing function tending to infinity.

Definition 7.3.3. Let

1. λ1(n) = b√nc,

2. λ2(n) = dlogne,

3. λd(n) = λ∗d−2(n), for d > 2.

For a directed acyclic graph G, VG denotes the set of all nodes, IG those with in-degree 0,
and OG those with out-degree 0. The depth of G is the length in edges of the longest path from
IG to OG. Raz and Shpilka prove the following combinatorial lemma:

Lemma 7.3.1 ([RR03]) For any 0 < ε < 1
400 and any layered directed acyclic graph G of depth

d with more than n vertices and less than ε ·n ·λd(n) edges, the following is satisfied:
For some k with

√
n≤ k = o(n), there exist subsets I ⊂ IG, O⊂OG, and V ⊂VG for which

|I|, |O| ≤ 5ε · d · n and |V | = k, and such that the total number of directed paths from IG\I to
OG\O that do not pass through nodes in V is at most ε · n2

k .

7.3.2 Circuits for Circular Convolution
The circuits we will consider in this section are of the following form. They are bounded depth
bilinear circuits with arbitrary fan-in and fan-out with arbitrary constants on the wires. We will
assume our circuits are layered. We will give lower bounds on the number of edges present in
the circuit below the multiplication gates. In other words, these circuits get two arbitrary linear
transformations at the inputs for free. For use in this section only, we define:
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Definition 7.3.4. For a bounded depth bilinear circuit C we define its size s(C) to be the num-
ber of edges in the circuit between the multiplication gates and the outputs, and define by its
depth d(C) to be the length of a longest path in edges from a multiplication gate to an output.

We begin with the following easy proposition:

Proposition 7.3.2 Any bilinear circuit of depth 1 computing circular convolution xT Circ(y)
has size s(C)≥ n2.

Proof. A circuit of depth 1 has a very simple structure. There are some number r of multipli-
cation gates Mr computing products Mr = Lr(x)Rr(y), where Lr(x) and Rr(y) are linear forms.
Then there is one layer of output gates, each gate computing summation over some set of input
multiplication gates.

We will argue that each output gate must be connected to at least n multiplication gates.
For purpose of contradiction suppose that this is not the case. Say some output gate Oi takes
input from < n multiplication gates. Consider the subspace of dimension at least 1 defined
by equations L j(x) = 0, for each multiplication gate j attached to output Oi. We can select a
non-zero vector a from this space such that for any assigment y = b,

(aT Circ(b))i = 0.

This yields a contradiction, for example we can take bT to be equal to a∗ shifted by i, then
(aT Circ(b))i = ||a||22, which is non-zero, since a is a non-zero vector.

We now prove our main result for arbitrary constant bounded depth.

Theorem 7.3.3 There exists ε > 0 such that if p is a prime number, any layered bilinear cir-
cuit with inputs x = (x0,x1, . . . ,xp−1) and y = (y0,y1, . . . ,yp−1) of depth d computing cyclic
convolution xT Circ(y) has size s(C)≥ εpλd(p).

Proof. Consider the circuit computing

xT Circ(y) = xT Fpdiag(DFTp(y))F∗p .

We first apply substitutions xT := xT F∗p and y = 1
nDFT ∗P y at the inputs. This does not alter the

circuit below the multiplication gates, but now we have a circuit computing

xT diag(y)F∗p .

Let G be the directed acyclic graph of depth d given by the part of circuit below the multipli-
cation gates. The set IG is the collection of multiplication gates Mi = Li(x)Ri(y), where Li(x)
and Ri(y) are linear forms. Take OG = {1,2, . . . , p} to be the set of outputs of the circuit. Let
ε > 0 be some small enough constant to be determined later. Trivially G has at least p vertices.
Suppose that G has strictly fewer than εp ·λd(p) edges. Lemma 7.3.1 applies, and we obtain
sets I ⊂ IG, O⊂ OG and V ⊂VG such that
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1. |I|, |O| ≤ 5εdp,

2. |V |= k, with
√

n≥ k = o(p), and

3. the total number of directed paths from IG\I to OG\O that do not pass through nodes in
V is at most ε p2

k .

For each output node i ∈ OG\O, define P(i) to be the number of multiplication gates in
IG\I for which there exists a directed path that bypasses V and reaches node i. Let R be a set
of r = 10k output gates with lowest P(i) values. By averaging we get that

∑
r∈R

P(r)≤ r
|OG\O| ∑

r∈OG\O
P(r)≤ r

p−5εdp ·
εp2

k =
10εp

1−5εd .

Let I′ be the set of all multiplication gates in IG\I for which there exist directed paths to nodes
in R that bypass V . We can conclude that

|I′| ≤ 10εp
1−5εd .

Define a linear subspace W by the set of equations

Ri(y) = 0 for all i ∈ I∪ I ′.

For any fixed substitution for y ∈W the resulting circuit has all of the gates computing linear
function in the x variables. Relative to a fixed choice for y, define linear subspace Wy by
equations gv(x) = 0 for all v ∈V , where gv(x) denotes the linear form computed at gate v. Note
that dim(W )≥ p−5εdp− 10εp

1−5εd and dim(Wy)≥ p−k, for each y. Now we have arranged that
for each y ∈W , and each x ∈Wy,

(xT diag(y)F∗p )r = 0, (7.5)

for each r ∈ R.
In order to reach a contradiction, we will now argue that it is possible to select y ∈W and

x ∈Wy such that some output in R is non-zero.
First of all, fix a vector y ∈W that has at most 5εdp + 10εp

1−5εd zeroes: this can be done
because dim(W ) ≥ p− 5εdp− 10εp

1−5εd . Let A be the set of indices i for which yi = 0. Let
m = |A|. Let W ′y be a subspace of Wy of dimension 1 obtained by adding equations to the
defining set of Wy as follows. For the first stage add xi = 0 for each i ∈ A. In a second stage,
start adding equations that require xi = 0 for i /∈ A, until the dimension has been cut down to 1.
Since we are starting out with a space of dimension p− k, after the first stage, the dimension
will be cut down to at most p− k−m, so we will be able to add xi = 0 in the second stage for
at least p− k−m− 1. many i with i /∈ A. Provided ε is small enough, since k = o(n), k + m
will be less than a small fraction of p, so we are guaranteed that we can indeed complete this
process still leaving a subspace of non-trivial dimension. Select an arbitrary non-zero vector x
from W ′y . Observe that of the p−m indices i not in A, xi is non-zero for at most k + 1 entries,
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and that xi is zero for all i ∈ A. So xi is zero for each i for which yi = 0. Since x itself is a
nonzero vector there must be some place i where xi and yi are both nonzero.

Let f = xT diag(y) and f̂ = f F∗P . We thus conclude that f is a non-zero vector, but that
|supp( f )| ≤ k +1.

By the discrete uncertainty principle for cyclic groups of prime order [Tao91], stated in
Theorem 6.3.3, we have that

supp( f )+ supp( f̂ )≥ p+1.

Hence the output vector of the circuit f̂ is non-zero in at least p + 1− (k + 1) = p− k places.
Since R is of size 10k, by the pigeonhole principle, there must be some output in R that is
non-zero. This is in contradiction with equation (7.5).
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Chapter 8

Conclusions

Given the inherent hardness in proving lower bounds for Boolean circuits, we embarked upon
a study of arithmetical circuits. They bring the promise, more readily than Boolean circuits,
of involving sophisticated concepts from algebra and algebraic geometry in a successful lower
bound proof.

We continued the investigation of ΣΠΣ-formulas started by Shpilka and Wigderson
[SW99]. There we presented a new technique for proving lower bounds by introducing the
notion of resistance of a polynomial. Using this notion we proved tight lower bounds, amongst
others, on the sum of nth powers polynomial f = ∑n

i=1 xn
i . For any d, there are only n many dth

order partial derivatives for this polynomial, which makes it hard to derive lower bounds using
the partial derivatives technique from [SW99].

The partial derivatives technique yields lower bounds on multiplicative complexity only.
In Chapter 3, we showed how this method can be extended to give lower bounds on total
complexity, utilizing a closed form Baur-Strassen style derivative lemma for the ΣΠΣ case.
We have shown that this yields stronger lower bounds than those from [SW99], especially for
low-degree polynomials. In certain cases, this improvement manages to lift trivial Ω(n) lower
bounds, derived using the partial derivatives technique, to non-linear results. For instance, we
showed for the elementary symmetric polynomial of degree 4 that `3(S4

n) = Ω(n4/3), and for
the product-of-inner-product polynomial that `3(PIP2

n ) = Ω(n4/3).
Both the partial derivatives technique and our resistance technique are limited to yield-

ing quadratic lower bounds only. Such is tolerable when dealing with families of polynomials
that indeed have O(n2) size ΣΠΣ-formulas, like ∑n

i=1 xn
i and (using Ben-Or’s interpolation re-

sult) the elementary symmetric polynomials, but shows a severe gap in our knowledge when
dealing with families of polynomials that are believed to be much more complex. As origi-
nally remarked in [SW99], currently we know of no super-polynomial lower bounds for the
depth-three ΣΠΣ-formula model over fields of characteristic zero. For example, one would
like to establish such bounds for the determinant and permanent polynomials. This contrasts
with the situtation for Boolean circuits, for which we know exponential lower bounds for con-
stant depth circuits [Ajt83, FSS81, Yao85, Hås89]. Future work on ΣΠΣ-formulas should be
directed towards closing this discrepancy.

139
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Open Problem 5. Prove a super-polynomial lower bound on the ΣΠΣ-formula size for an ex-
plicit function, e.g., the determinant or permanent, over a field of characteristic zero.

Suspiciously absent in current lower bound techniques for ΣΠΣ-formulas are random re-
striction type arguments, whereas all the results of [Ajt83, FSS81, Yao85, Hås89] proceed
using random restrictions. Note that Raz manages to use random restrictions in conjunction
with a partial derivatives based technique in his work on multilinear arithmetical formulas
[Raz04a, Raz04b].

In Chapter 4 we investigated bilinear circuits with complex coefficients of O(1) bounded
magnitude. These circuits form a logical next place to investigate, given that linear circuits with
bounded coefficients are essentially understood [Mor73], and given that unbounded coefficient
linear circuits have confounded any form of non-trivial lower bound, even after 35 years of
intense research activity.

We introduced the bilinear orbit circuit model. For GLn(C)-orbits this model is at least
as powerful as the unbounded coefficient case, but for SLn(C) it provided a challenging com-
putational model to prove lower bounds for. The only known techniques for proving lower
bounds for bounded coefficient bilinear circuits of [BL02, Raz02] fail to stand in this model,
due to possible ill-conditioning of the free maps. The model was introduced because it allows a
moderated study of a computation model in which more unbounded coefficients can be present
than current techniques allow for. Secondly, lower bounds for the orbit circuit complexity of a
single polynomials p(x,y) translate to sweeping lower bounds on entire orbits of p(x,y).

Our study was focused on the circular convolution mapping λx,y.Circ(x)y. We showed
that if the free maps have condition number O(1), then the the proof of [BL02] can be adapted
to show that circular convolution still requires Ω(n logn) size. Future work could be directed
towards lifting this restriction, and prove general SLn(C)-orbit lower bounds, but there are
difficulties abound.

Namely, there is the apparent requirement in the random substitution technique to select
the random input from a subspace U of some dimension εn with ε < 1, which seems to be
about the only way to make the outputs of the linear forms on which substitution is performed
“reasonably” bounded. Provided that is true, they can be replaced by “few enough” repeated
additions, and this way a reduction to the (well understood) linear case is achieved. Unifying
this modus operandi of the restriction technique with the abundance of ill-conditioned matrices
present in SLn(C) is problematic. Geometrically speaking, only n-dimensional volumes retain
the same volume under such transformations, but any lower dimensional volume can be arbi-
trarily stretched or squashed. In any configuration of the argument we considered this becomes
an issue. Either the msvr-volume of the target linear form one reduces to is negatively im-
pacted, or, attempting to salvage this, the outputs of the linear forms on which one substitutes
are ill-behaved, or vice-versa.

We managed to prove tight Ω(n logn) size SLn(C)-orbit lower bounds for circular convo-
lution in case the circuit has precisely n multiplication gates. The proof shows that in this case
the convolution theorem circuit, which uses the discrete Fourier transform and its inverse, is
essentially unique.

We also considered orbits in conjunction with ΣΠΣ-formulas. The fact that lower bounds
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for ∗-complexity are maintained under such an extension is trivial. Interestingly enough, we
showed some of our lower bounds on +,∗-complexity can still be established, although some
of them needed to be weakened.

Given the difficulties proving lower bound on SLn(C)-orbit circuits, any attempt to lift the
O(1) condition number assumption perhaps is best attacked by first considering the diagonal
DLn(C)-orbit model as an important test case. Diagonal matrices of unit determinant can still
be arbitrarily ill-conditioned. We managed to prove both a “one-sided” and “two-sided” di-
agonal orbit lower bound, modulo some extra assumptions about the amount and placement
of helper constants less than 1 (see Theorems 6.5.4 and 6.5.6). We did so by introducing a
novel game to be played on the DFTn matrix, in which an adverary selects some rows that
must be included and some columns that must be avoided. Then the goal was to find a minor
satisfying these restrictions with maximum determinant. We related this game to several dis-
crete uncertainty principles. In the contiguous case of playing this game, i.e., where an interval
of rows is chosen, this led us to a randomized game strategy. We defined for any finite set
P = {p1, p2, . . . , pk} of points on the unit circle in the complex plane their chordal product

CP (P) = ∏
1≤i< j≤k

|pi− p j|,

and asked the fundamental question:

Open Problem 6. For some large n, consider the set Ω = {ω0,ω1, . . . ,ωn−1 } of all nth roots
of unity on the unit cirlce in the complex plane. Let R ⊆ Ω be a given set of roots that
are “off-limits”. For any `, what is the optimal strategy to select `-many nth-roots of unity
ωi1,ωi2 , . . . ,ωi` ∈Ω\R that maximizes CP (ωi1,ωi2, . . . ,ωi`) ?

We approached the above problem by simply selecting the ` roots of unity uniformly at random.
This yielded a result (Theorem 6.2.4) about random Vandermonde matrices with nodes on the
unit cirle, which appears of independent mathematical interest. This strategy fares fairly well.
In the terminology of Theorem 6.5.4, for `n = O(n3/4) this strategy was sufficiently strong to
imply circuit lower bounds.

Related to the question of what is the optimal strategy, is the question what sets R in the
above provide the worst-case scenario? That is:
Open Problem 7. For any k, `, for what kind of sets R⊆Ω of size k is

max
S⊆Ω/R
|S|=`

CP (S)

minimized, and what is its value ?
We have some indication that sets R that are contiguous provide this worst-case scenario,

but the question is related to some long standing open problems [DS89] that turn out to be
suprisingly hard to solve.

During our investigation, we also encountered an interesting numerical problem that is
interesting for purely mathematical reasons. Suppose we define the following sequence of
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points {pm}m≥1 on the unit circle: p1 = 1, and for m > 1, pm is the first point q (if it exists) in
counter-clockwise rotation around the unit circle after pm−1 such that ∏m−1

i=1 |q− pi|= 1. This
sequence arose in trying to devise a strategy that packs in points in a greedy manner, by adding
a point each time, but ensuring that the added point has good chord-product with the previously
added points. For those purposes, we also considered the modification of the above problem in
which there was some given sector on the unit circle off-limits.

In any case, the interesting feature is that the sequence {pm}m≥1 appears to be infinite,
and appears to enjoy a nice Θ(m1/2) growth (when seen in radians). It would be nice to give a
closed form expression for the points in this sequence. The sequence for the modified problem
is a little more erratic, but also appears to be infinite for “reasonable” disallowed sectors.

Beyond the `n = O(n3/4) growth rate a better strategy is required than random selection,
but as we posed in Conjecture 4, we do not believe there exists a strategy that can deal with
arbitrary `n = o(n). Conjecture 4 can be settle if one manages to carry over the asymptotic
eigenvalue analysis of the prolate matrix of [Sle78] to the discrete-to-discrete case. We have
made the conjecture plausible both from an empirical and theoretical standpoint. Carrying out
the discrete analogy of the eigenvalue analysis of [Sle78] however, will be no easy task. See
e.g. [Grü81, CX84, AET99]. In any case, this is an interesting problem in Fourier analysis,
but from the theoretical computer science point of view, it would be more interesting to see
whether one can devise an alternative lower bound argument that circumvents the issue.

As far as the contiguity assumption is concerned, one way to remove it, would be by
giving a reduction that converts a circuit for π(xT )Circ(y) into one for xT Circ(y), using only
o(n logn) additional circuit hardware. It is not clear whether this can be done. We showed
that one certainly cannot in general convert a circuit for π(xT )Circ(y) into one computing
xT Circ(y) by permuting the y-inputs and outputs. This would only work for permutations of
form π(i) = b + gi, where g is a generator of the additive group of integers modulo n (See
Appendix B).

In any case, if it is true that in the unbounded coefficient model the size of any bilinear
circuit computing xT Circ(y) is Ω(n logn), then it is also true that any orbit circuit Γ(Dx,Ey)
with D and E diagonal and of unit determinant has size Ω(n logn). We have managed to prove
the latter under some additional restrictions, but still left to be resolved is the situation for
general diagonal maps of determinant one:

Open Problem 8. Prove that any bilinear orbit circuit Γ(Dx,Ey), where D and E are diagonal
with unit determinant that computes circular convolution xT Circ(y), must have size s(Γ) =
Ω(n logn).

The presence of arbitrary diagonal matrices D and E of unit determinant defeats any of the
known volumetric techniques [BL02, Raz02]. Such is the case essentially because the matrix
D can be highly ill-conditioned, making it hard to find “good” minors (in the sense of having
large determinant) of the matrix Circ(a) that are in the “right” place. For the result in [BL02],
it is sufficient to argue the existence of a good minor, whereas in the orbit model one seems
to be forced to argue existence of good minors in a certain place of the matrix. The results
we obtained still manage to strengthen [BL02]. Provided we made some extra assumptions
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about D, we could indeed locate such good minors of Circ(a) in the required place, the way
our argument demanded.

We have tried to push the restrictions on D as far as possible, but for the kind of volumetric
technique we were pursuing, we met a roadblock in trying to win our matrix games under
extreme circumstances, because of phenomena related to the prolate spheroidal wave functions
in [Sle78].

The real question is how far any kind of volumetric technique will carry in the orbit model.
It seems non-volumetric techniques are called for, but that might be tantamount to proving
lower bounds in the unbounded coefficient model. As a main goal in our orbit model setup,
still open is the following problem:

Open Problem 9. Prove that any bilinear orbit circuit of form Γ(Dx,Ey) (or Γ(Dx,y)), where
D and E have unit determinant, computing circular convolution xT Circ(y) has size s(Γ) =
Ω(n logn).

For that matter, up to now we have concentrated on circular convolution, but more generally it
would be desirable to solve:

Open Problem 10. Prove a non-linear lower bound on the size of any bilinear orbit circuit
of form Γ(Dx,Ey) (or Γ(Dx,y)), where D and E have unit determinant for computing some
explicitly defined bilinear map.

Then there is of course the holy-grail of proving lower bounds for the undbounded coeffi-
cient model for bilinear or low degree functions, which is equivalent to proving lower bounds
in the orbit model for arbitrary diagonal maps. Even stronger than that (given that the linear
maps do not count against the size), one may try to solve:

Open Problem 11. Prove a non-linear lower bound on the size of any bilinear orbit circuit of
form Γ(Dx,Ey) (or Γ(Dx,y)), where D and E are arbitrary n×m matrices for computing some
explicitly defined bilinear map.

Finally, in Chapter 7 we considered bounded depth bilinear circuits and introduced inter-
polation circuits. We proved a Baur-Strassen style derivative lemma for this model, which has
the added advantage that it does not introduce additional constants, as the regular derivative
lemma notoriously does. We gave a closed form derivative lemma for a special kind of bilin-
ear circuits, whose bottom layer is a formula. Results of [Lok95] were extended to a special
kind of bilinear circuit. Finally, we proved a non-linear lower bound for bilinear circuits (with
unbounded coefficients) computing circular convolution in case the input size n is a prime
number. We did this using in the discrete uncertainty principle for cyclic groups of prime order
[Tao91], and combining it with a “superconcentrator-lemma” of [RR03]. It would be interest-
ing to see whether we can remove the assumption that n is prime. This might be hard, because
only if n is prime do we know that DFTn is a regular matrix, and thus that any linear circuit for
it must be a superconcentrator.
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Open Problem 12. Can one prove a non-linear lower bound for a bilinear circuit computing
Circ(x)y in case the input size n is composite?

To summarize, we extended the partial derivatives method for ΣΠΣ-formulas. Some con-
tributions were made to Fourier analysis and the theory of random matrices. We introduced
the usage of uncertainty principles for proving lower bounds, in particular the strengthened
uncertainty principle for cyclic groups of prime order [Tao91]. We extended the bilinear lower
bounds of [BL02, Raz02]. Overall we have deepened the lower bound results of several pub-
lished papers [SW99, BL02, Raz02, RR03, Lok95], and we have delineated mathematical ob-
stacles to proving more general lower bounds.
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Appendix A

The following figures refer to the function Q(n) defined in equation (6.15).
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Figure 1: Q(n) for ε = 0.75.

151



152 APPENDIX A

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Q(n) for ε = 0.8.



Appendix B

We refer to [Hun80] for the group theoretical notions used in the following.
In this Appendix we prove Theorem 5.3.1, which stated that for any n, the retrievable

permutations form a group, and are precisely those permutation π : Zn → Zn for which there
exists b,g ∈ Zn with g relatively prime to n such that for each i ∈ Zn,

π(i) = b+gi.

Note that numbers g that are relatively prime to n form precisely all generators of the additive
group Zn.

Proof. (of Theorem 5.3.1). In the following all indices of variables are considered ele-
ments of Zn, and all arithmetic with indices takes place within this additive group. Wlog.
we do the proof with n-vectors of variables indexed as x = (x1,x2, . . . ,xn−1,x0) and y =
(yn−1,yn−2, . . . ,y0)T . In this case, xCirc(y) has variables lined up nicely so the kth entry
(xCirc(y))k has for each term the x-index and y-index summing to k. Namely, for each
k = 0,1, . . . ,n−1 we have that

(xCirc(y))k = ∑
i, j∈Zn
i+ j=k

xiy j.

We first show any permutation π : Zn→ Zn that is of the form

π(i) = b+gi,

for some b ∈ Zn and generator g of the additive group Zn is retrievable. Wlog. we can assume
that b = 0, since b only produces a cyclic shift by b places. It is clear that a permutation π is
retrievables iff π composed with a cyclic shift is retrievable. Define permutation π1 by

π1(i) = π(i−n) = g(i−n),

for each i ∈ Zn. Then we get that the jth entry of π(x)Circ(π1(y)) equals

xπ(1)yπ1(n−1+ j) + xπ(2)yπ1(n−2+ j) + . . .xπ(n−1)yπ1(1+ j) + xπ(0)yπ1( j).

Consider an arbitrary term xπ(k)yπ1(n−k+ j) of the above expression. It has indices summing as
follows:

π(k)+π1(n− k + j) = gk +g(n− k + j−n)

= g j.
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So all terms have indices summing to the same value g j. Since g is a generator of the additive
group Zn, we see that all the n sum-values are presents at the n entries of π(x)Circ(π1(y)). In
other words, π(x)Circ(π1(y)) is a permutation of xCirc(y).

Let us now do the converse directions. Suppose π is a retrievable permutation, and let π1 be
a permutation of the y variables such that π(x)Circ(π1(y)) is a permutation of xCirc(y). Since
the x-indices and y-indices of each term of the j entry of xCirc(y) have to sum to the same
number j, there must exists b0,b1, . . . ,bn−1 so that the indices of each term of the jth entry
of π(x)Circ(π1(y)) sum to b j, for each j = 0,1, . . . ,n− 1. Observe that {b0,b1, . . . ,bn−1} =
{0,1, . . . ,n−1}. The jth entry of π(x)Circ(π1(y)) equals

xπ(1)yπ1(n−1+ j) + xπ(2)yπ1(n−2+ j) + . . .xπ(n−1)yπ1(1+ j) + xπ(0)yπ1( j),

which we can rewrite as
n
∑
i=1

xπ(n−i)yπ1(i+ j).

So we have the following condition satisfied:

(∀ j, i ∈ Zn), π1(i+ j)+π(n− i) = b j. (1)

This implies that for any s, t ∈ Zn, we have

(∀i ∈ Zn), π1(i+ s) = π1(i+ t)+(bs−bt).

In particular,
(∀i ∈ Zn), π1(i) = π1(i+1)+(b0−b1),

and
(∀i ∈ Zn), π1(i+1) = π1(i+2)+(b1−b2),

which is equivalent to saying

(∀i ∈ Zn), π1(i) = π1(i+1)+(b1−b2).

Repeating this for all s and t with t = s + 1, we get there exists some number g ∈ Zn so that
g = b0−b1 = b1−b2 = . . . = bn−2−bn−1 = bn−1−b0. The number g must be a generator of
Zn, since otherwise not every element of Zn would be in the range of π1. We can conclude that
we can write

b j = b0−g j,

for all j = 0,1, . . . ,n−1. However, specifying condition (1) with i = 0, we have

(∀ j ∈ Zn), π1( j)+π(0) = b j.

So π1 is defined by
(∀ j ∈ Zn), π1( j) = (b0−π(0))−g j.
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Which implies by condition (1) that π is defined, for each i = 0,1 . . . ,n−1, by

π(n− i) = b0−π1(i)

= b0− (b0−π(0))+gi

= π(0)+gi.

Hence we have that for each i ∈ Zn,

π(i) = π(0)+g(n− i)

= π(0)+(−g)i.

Since (−g) is also a generator of Zn, we conclude that π is of the form stated by the theorem.
By the above it can thus be seen that the retrievable permutations form a group Rn. Namely,

composing π1(i) = b1 +g1i with π2(i) = b2 +g2i one gets

π1(π2(i)) = b1 +g1π2(i)

= b1 +g1b2 +g1g2i.

The generators of Zn are precisely all integers (modulo n) that are relatively prime to n. So the
product g1g2 is again a generator, this showing the composition is of the required form. The
inverse of a permutation π(i) = b+gi is given by π−1(i) = c+hi, where c is the unique number
such that gc =−b, and h is the unique number so that gh = 1 in Zn.

Each choice for b and g yield a distinct permutation π, so |Rn|= nφ(n), where φ is the Euler
totient function, giving the number of natural numbers relatively prime to n. This is maximized
for prime n, in which case |Rn|= n2−n. Modulo cyclic shifts, Rn is isomorphic to the character
group Z×n (integers from {1,2, . . . ,n− 1} relatively prime to n under multiplication) through
regular representation g 7→ π(i) = gi. Namely, letting Hn be the sugroup of all cyclic shifts,
i.e., permutations of the form π(i) = b+ i, then Rn/Hn ' Z×n .


