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Abstract

This paper studies a variation on classical key-agreement and consensus problems in which the
set S of possible keys is the range of a random variable that can be sampled. We give tight upper
and lower bounds of dlog2 ke bits on the communication complexity of agreement on some key
in S, using a form of Sperner’s Lemma, and give bounds on other problems. In the case where
keys are generated by a probabilistic polynomial-time Turing machine, agreement is shown to be
possible with zero communication if every fully polynomial-time approximation scheme (fpras)
has a certain symmetry-breaking property.

Topics Computational complexity, cryptography.



1 Introduction

A fundamental problem in key agreement between two parties, commonly called “Alice” and
“Bob,” is for Alice to communicate some string w to Bob over an expensive, noisy, and/or
insecure channel. Most work allows w to be any given string, making no assumptions about its
source, or considers w to be drawn uniformly at random from strings of some length n. We study
cases in which w comes from a relatively small set S ⊆ { 0, 1 }n, namely the set of possible outputs
of a random variable (figuratively, a key generator) G. Alice and Bob can gain information about
S by interacting with G with the help of private coins, and each can send messages to the other.
They wish to agree on some key w ∈ S, while exchanging much fewer than n bits. Several kinds
of problems we consider are:

1. Any-key agreement. Upon the end of their conversation, Alice commits to a string sA ∈ S,
Bob commits to sB ∈ S, and they succeed if sA = sB.

2. Selected-key agreement. Alice commits to a designated key w ∈ S before the conversation,
and they succeed if after the conversation, Bob also commits to w.

3. Subset agreement. Upon the end of their conversation, Alice commits to a subset SA of S
of some pre-determined size m, Bob commits to SB, and they succeed if SA = SB.

4. Weak subset agreement. Same as last item, but with success if SA ∩ SB 6= ∅.

Our first point of significance is that these are interesting theoretical problems, with a practical
motivation that is speculative but suggestive: Consider Alice and Bob to be users at remote
sites. There are many applications that call for generating, say, one or a few primes of large
length n having special properties, and they want to make sure that with high probability they
generate the same primes. The simple method where Alice generates a prime p and sends it
to Bob costs n bits. Somewhat more economical is for Alice to send the rank of p in the set
S of admissible primes, costing log2 ‖S‖ < n bits. However, this requires both computing and
inverting the ranking function of S as defined on all of { 0, 1 }n, which can be (NP-) hard even
in cases where S has cardinality two (see [GS91]).

Suppose, however, that the generator G makes S relatively small in size. This is not unrea-
sonable: consider either the small seed space of a good pseudorandom number generator used
as input to a prime-number generator, or the possibility of restricting the size of S by setting
switches inside G (done blindly by the party supplying G and known to no one). The idea
is that Alice and Bob can achieve their goal by interacting with their private copies of G and
transmitting ranking information based on their samples of S. So long as the same copy of G
does not fall into enemy hands, the information on ranks within S itself should give away little
information about the actual values in S.

The first problem arises when it is sufficient for Alice and Bob to agree on some key. The
latter three are relevant when it is important that one or m keys be selected from S “at random”;
our intent is that Alice would build the designated key or keys, and then assist Bob in building
the same ones, or at least one of them. The statistical idea in solving the problems resembles,
on a smaller scale, the methods for learning discrete distributions in [KMR+94] (see also the
statistical query model of [Kea93, BFJ+94]).

Second, our setting gives a new twist on much-studied distributed-consensus problems. In
a typical consensus problem involving k processors, each processor is given some value, and
the goal is for the processors to agree on one of the values that were initially input. We can
extend our setting from Alice and Bob to k parties, and the difference is that now the keys
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are given as outcomes of a random variable, rather than being pre-set. In this abstract we
concentrate on the two-party case, without faulty parties. Like the methods for distributed-
consensus lower bounds in [CHLT93, BG93, SZ93, HS93, HS94], our lower bounds use a form
of Sperner’s Lemma, but with the difference that the nodes in the simplicial complex used are
labeled by random variables, rather than by processor IDs and features of local communication
graphs (see [CHLT93] or “views” in [BG93]).

Our work also differs from that of Maurer [Mau91, Mau93] and Ahlswede and Csiszàr [AC93]
in its emphasis on the communication complexity of the problems: Do restrictions on the size
or structure of the key space help Alice and Bob to agree while exchanging substantially fewer
than n bits? We treat questions of secrecy and channel noise as secondary, regarding them as
factors that can make communication expensive. Orlitsky and others [OG90, Orl90, Orl91b,
Orl91a, Orl92, NOS93] have studied communication complexity in settings where Alice observes
a random variable X, Bob observes a random variable Y (often dependent on X), and the object
is for them to exchange single outcomes each has seen. For example, Y may select two “teams”
i and j from a “league” S = { 1, . . . , k }, while X reveals the winner to Alice. In [Orl90] it is
shown that dlog2 ke bits are necessary and sufficient for a one-message protocol in which Alice
tells Bob the winner. If two messages beginning with Bob are allowed, however, Bob can tell
Alice the index l of the first bit where the binary representations of i and j differ, and Alice
sends the lth bit of her number, making at most dloglog ke+ 1 bits; both of these protocols are
error-free. Our setting has several differences: (i) the ability for Alice and Bob to take repeated
samples of the random variable G, (ii) the lack of advance knowledge by Alice and Bob of the
universe S ⊆ { 0, 1 }n, and (iii) the inherent role of randomness and error. The selected-key
problem can be represented in their framework, with Y null, but even here there are differences
in the representation and non-rankability of S. We show:

Theorem 1.1 For any-key agreement with exponentially vanishing error, dlog2 ke bits are both
sufficient and necessary, where k = ‖S‖. The upper bound is obtained by a one-message protocol
with runtime polynomial in n and k, while the identical lower bound holds for arbitrary protocols,
even when Alice is computationally omnipotent and knows the distribution of G.

This lower bound holds under the assumption that the source G is a “black box” random
variable, one that Alice and Bob can interact with only by sampling. When G is a feasible
generator , namely one computed by a probabilistic polynomial time Turing machine (PPTM),
the question of lower bounds leads to the problem of whether every feasible generator has a
“monic refinement,” as defined in Section 3. This is the same as asking whether the multi-
valued mapping from seeds to valid keys has a single-valued refinement (see [Sel91]) in the
class called “BPPSV” by Grollmann and Selman [GS88]. In Section 3 we relate this further to
questions about fully polynomial randomized approximation schemes (fpras) for functions in #P
(see [KL83, JVV86, JS89]), noting that an fpras can always be “rounded” to take at most two
values with high probability.

Theorem 1.2 If ties between two values in an fpras can be broken, then every feasible generator
with polynomial-time decidable key set has a monic refinement, and then any-key agreement for
a PPTM can be done with no communication, regardless of the size of S.

Note the contrast between the sharp lower bounds in the case of arbitrary G, versus the problem
that proving even a nonzero lower bound in the case of feasible G requires proving that P 6= #P.
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Lipton [Lip94] observed a related contrast between arbitrary and feasible channels in coding
theory, and noted that if there were a usable source in nature that is not feasible, then it could
be used to violate the random-polynomial-time analogue of Church’s Thesis, which is commonly
believed. Feasible channels have essentially the same formal definition as feasible generators.

2 Main Results

In this abstract we assume familiarity with interactive protocols, the formalization of an r-
round conversation (α1, β1, . . . , αr, βr) between Alice and Bob (beginning with Alice, and with
βr possibly null), and unambiguous encodings of conversations by binary strings α. (Details may
be found in [GMR89].) The case r = 1, βr null is a one-message protocol . Each of Alice and
Bob is allowed to interact privately with the random variable G by making “sample requests.”
Each sample request returns some string in { 0, 1 }n according to the distribution of G, and costs
n time units. Alice and Bob may also use their private coin in computations. Neither is allowed
to see the other’s coinflips or sample strings; i.e., there is no “common randomness.” When G is
fixed we write py as short for Prob[G = y]. The set S = { y : py > 0 } is called the support set of
G, and the number k stands for an upper bound on its cardinality. We express time bounds in
terms of n, k, and the error tolerance ε of the protocol on the problem at hand. The numbers n,
k, and ε are known by both Alice and Bob. A function ε(n) that is o(n−c) for every fixed c > 0
is said to be negligible, and if it is o(2−cn) for some c > 0, then it is exponentially vanishing .

The basic method for the upper bounds is to form a “histogram” of the strings received in
sample requests, and look for reproducible “gaps” in the observed frequencies.

Theorem 2.1 Any-key agreement, for any G with range S ⊆ { 0, 1 }n of size k, can be achieved
with exponentially-vanishing error by a protocol in which Alice sends one message of at most
dlog2 ke bits, and in which Alice and Bob run in time polynomial in n, k, and log(1/ε).

Proof Sketch. Let N be large enough so that for each element y ∈ S, the probability that the
observed frequency of y in N independent trials belongs to the interval [py−1/k2 . . . py +1/k2] is
greater than 1− ε/2. N is bounded by a polynomial in k and log(1/ε) independent of py. Alice
makes N sample requests and observes some number k′ ≤ k of distinct strings returned by G.
Let f1, . . . , fk′ , in nonincreasing order, stand for the observed frequencies of the strings in her
histogram, and for convenience put fk′+1 = 0. Then there exists some i, 1 ≤ i ≤ k′, such that
fi − fi+1 > 2/k2. This represents a “non-negligible gap” in her histogram. Alice chooses any
such i (e.g., the least one) and sends i to Bob.

Then Bob makes N sample requests, and forms his own histogram with frequencies f ′1, . . . , f
′
l ;

here l may differ from k′. Then with error at most ε, the set SA of the i most-frequent strings
observed by Alice is the same as the set SB observed by Bob. Thus if Alice commits to the
lexicographically greatest member of SA, and Bob likewise with SB, they succeed with probability
at least 1− ε.

The case where all elements of S are equally likely makes i = k and meets the stated upper
bound dlog2 ke in the protocol. Note that on the promise that this is the case, or even that
all elements of S occur with probability that is non-negligible in k, Alice and Bob can agree
with zero communication by doing polynomially-many samples until, with high probability, each
sees all k distinct elements. In general, Alice and Bob can try the strategy of doing some pre-
determined (or communicated) numbers of trials and committing to the lex greatest string each
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sees. This may fail when S has elements of probability 1/kc for many different values of c. A
different strategy is for Alice and Bob to choose their most-frequent elements, and this can be
augmented with communication about lex high or low or otherwise “distinctive” elements among
the frequent ones. With all of this latitude even for 0-bit and 1-bit protocols, it seems surprising
that the upper bound in Theorem 2.1 cannot be lowered even by 1 bit. This is so even when
Alice knows the true distribution of G and is computationally omnipotent! We first prove this
in the case of a 1-message protocol.

Theorem 2.2 The best success probability achieved by a one-message protocol, where Alice has
u distinct messages available to her and Bob is polynomial-time, is bounded above by u/k.

Proof. Let a PPTM B representing “Bob” be fixed. It is enough to consider random variables
G whose range S is a subset of k elements e1, . . . , ek whose identities are known to both Alice
and Bob in advance. The one important point is that if ei /∈ S, i.e. if Prob[G = ei] = 0, and Alice
and Bob commit to ei, they are considered not to succeed, in accordance with the stipulation
that they agree on a member of S.

We furthermore consider random variables G with the property that for some m > 0, and all
i, Prob[G = ei] is a multiple of 1/2m. (We use m and 2m this way for notational uniformity with
the next section, and to relate Bob’s time bound to m.) The space of all such random variables
forms a simplicial complex Sk embedded in the nonnegative orthant of the (k − 1)-dimensional
hyperplane of points in Rk whose coordinates sum to 1. Two nodes in Sk are adjacent iff they
differ by 1/2m in two coordinates, and agree in all the others. The maximum clique size in this
graph is k, and a k-clique is called a simplex in Sk. Sk has k-many extreme nodes Gi defined
by Prob[Gi = ei] = 1, and the nodes G where Prob[G = ei] = 0 are said to form the opposite
facet of Gi. Every interior node, i.e. where all elements have nonzero probability, has k2 − k
neighbors, and belongs to 2k-many simplexes.

Now we define a “coloring function” C : Sk → { 1, . . . , k } for all nodes G by: Take some
i ∈ S and message xt (1 ≤ t ≤ u) that maximizes the probability that Bob, given message xt and
sampling G, commits to i. (If i is not unique, any such i will do.) This probability is well-defined
since there is no further interaction after xt is transmitted, and a computationally omnipotent
Alice can do no better than committing to i. Then define C(G) = i. This coloring satisfies the
hypotheses of Sperner’s Lemma, using the statement in [CHLT93], namely:

Suppose for each i, C(Gi) = i, and for every node G in the opposite facet to i,
C(G) 6= i. Then there exists at least one simplex whose k mutually-adjacent nodes
are given k distinct colors by C.

Since there are only u different messages Alice can send, at least k/u of these nodes are op-
timized by sending the same message xt. Since these nodes represent random variables whose
component probabilities differ by 1/2m at most, Bob cannot statistically distinguish them in the
polynomially-many trials he is allowed. Hence for any element ej , the differences among these
nodes G in the probability that Bob receiving xt commits to ej are at most δ(m), where δ(m)
is exponentially vanishing in m. Since an optimal Alice commits to a different element at each
node, there is one at which Bob is correct with probability at most u/k+ δ(m). Letting m→∞
and exploiting metric completeness and closure yields the conclusion.

If we restricted attention to r.v.’s G with range S of cardinality exactly k, then the argument
trivially fails if Alice and Bob know S in advance, but it goes through for the case of arbitrary
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S ⊆ { 0, 1 }n if k � 2n. The proof works even if Bob runs in sub-exponential time, so long as m
can be chosen large enough (e.g. m = Θ(n)) that Bob cannot distinguish the adjacent nodes in
his time bound.

The reduction from multi-round protocols to one-message protocols can lower the success
probability and blow up the running time by moderate amounts.

Theorem 2.3 For every b-bit protocol (A,B) for any-key agreement that runs in time t and
succeeds with probability p, and δ > 0, there is a one-message protocol (A′, B′) that succeeds with
probability p− δ, and that runs in time linear in t, nearly-linear in 2b, and polynomial in 1/δ.

Proof Sketch. There are at most N = 2b possible conversations under the unambiguous encod-
ing. For each i, 1 ≤ i ≤ N , let qi denote the probability that Alice and Bob have conversation αi,
and let pi be the success probability conditioned on αi occurring. Then p =

∑
i piqi. Elementary

calculation shows that there exists some i such that pi ≥ p− δ and qi ≥ Q = δ/N(1− p+ δ).
Both A′ and B′ are given copies of the old Alice A and the old Bob B to simulate. A

computationally-omnipotent A′ who knows the distribution of G could calculate i herself and
send αi to B′. We observe that a polynomial-time A′ can do almost as well: she can simulate
enough runs of the (A,B) protocol so that with confidence at least 1−δ/2, she finds a conversation
αi that gives qi > Q/2 and pi > p− 2δ. The number of runs needed is on the order of:

N logN(1− p+ δ)(p− δ)(1− p+ δ) log3(1/δ)/δ3. (1)

When B′ receives αi from A′, he does multiple runs of the old (A,B) protocol until conver-
sation αi occurs, and chooses the same value B did in the first such run. With probability at
least 1 − δ/2, this happens in the first (1/qi) loge(2/δ) runs, so the time taken by the new Bob
upon receiving a message from Alice can be bounded by a constant times tN log2(1/δ)·(1− p)/δ,
which is less than the time for A′. The conclusions follow.

Note that if p is close to 1, and δ is about (1− p)/2 in Equation 1, then then the number of
trials needed works out roughly to N ·(1/δ). In any event, if we tolerate a falloff in the success
probability of the form 1/polynomial, then A′ and B′ still run in polynomial time. When the
new Alice is computationally omnipotent and knows the distribution, however, the hit on the
running time is only a factor of log(1/δ), which is polynomial even when 1 − p is exponentially
vanishing. This suffices to prove the lower bound in the following stronger form of Theorem 1.1,
while the proof of the upper bound is deferred to the next subsection.

Theorem 2.4 For any integer a ≥ 0, in order to attain success probability 1/2a− 1/2n for any-
key agreement with a polynomial-time Bob, dlog2ke−a bits are both necessary and sufficient.

2.1 Other Agreement Problems

Now we study the communication complexity of the other three problems in the Introduction,
namely selected-key agreement, subset agreement, and weak subset agreement. Where the al-
lowed error probability ε on the protocol is unstated, it is assumed to be exponentially vanishing.

Theorem 2.5 Agreement on a selected key w can be achieved in expected polynomial time (in
n, k, and 1/pw) by a one-message protocol that communicates at most 2dlog2 ke bits.
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Proof Sketch. Let w denote the element that Alice wishes to communicate. Let c be such
that pw > 1/kc. Assume further that Alice knows the value of c (if not, she can sample in
increasing powers of k until she obtains a good estimate of pw). Let N be large enough so
that the probability that the observed frequency of w in N independent trials is in the interval
[pw − 1/4k2 . . . pw + 1/4k2] is greater than ε/2. Alice makes N sample requests and chooses a
“gap” of at least 1/kd in her histogram, for some d > c. Note that such a gap must exist since
pw > 1/kd. Let fi and fi+1 denote the observed frequencies on either side of the gap, so that
fi − fi+1 > 1/kd. Let SA denote the elements whose observed frequencies are at least fi. As
before, Alice sends to Bob the index i of the gap. In addition, Alice sends the lexicographic rank
of w in the set SA.

Bob samples until he sees all i elements promised by Alice and knows their frequencies with
enough confidence to perceive the gap, and then deduces w from the rank information in Alice’s
message.

(Remarks: If we want Bob to shut himself off in polynomial time in all possible computations,
it seems we need Alice also to communicate c to Bob, taking an extra log c = loglog(1/pw) bits.
When c is fixed; i.e., when the probability of the selected key is non-negligible, the time bounds
are polynomial in k.)

This leaves an interesting question about the gulf between 2dlog2 ke bits in the upper bound
and the lower bound of dlog2 ke bits that carries over from Theorem 1.1. If Bob were able
to compute the ranking function of S, as obtains in other cases of key-transfer we know in the
literature, then clearly dlog2 ke bits would suffice. Our point is that when S is an arbitrary subset
of { 0, 1 }n of moderate size (log2 k < n/2), we see no way for Alice to tell Bob what to look for
without taking samples and communicating some robust feature of the results, in addition to the
ranking information. We suspect that our upper bound is tight, but have not been able to prove
it.

For the problem of subset agreement, let m denote the sizes of sets SA and SB that Alice
and Bob must commit to. We first observe that m can be at most k′, where k′ ≤ k denotes the
number of elements that occur with non-negligible probability.

Corollary 2.6 For subset agreement in expected polynomial time, dlog2 ke bits are necessary and
sufficient.

Proof Sketch. The lower bound follows immediately from Theorem 2.2. The protocol used
in the proof of Theorem 2.1 can be modified to work for the subset agreement case. Alice
samples sufficiently many times, and chooses a gap i such that there are at least m elements with
observed frequencies at least fi. Such a gap must exist, since there are at least m elements with
non-negligible probability. Alice then sends the number of elements above the “chosen gap.”
Finally Alice and Bob commit to the lexicographically largest m strings from this set.

(Remarks: Again, if Bob is required always to shut himself off in a given time bound, we
have Alice send an additional loglog(1/pm) bits, where pm is the frequency of the mth most likely
element.)

Before proceeding to the problem of weak subset agreement, we prove the upper bound in
Theorem 2.4, re-stated in the following way. Let ` = dlog2 ke.

Proposition 2.7 With b bits of communication, Alice and Bob can achieve any-key agreement
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with success probability at least 1/2`−b − 1/2n, in polynomial time.

As in the proof of Theorem 2.1, Alice finds an index i, 1 ≤ i ≤ k′, such that the observed
frequencies fi and fi+1 satisfy the “gap” requirement fi − fi+1 > 1/k2. Instead of sending i to
Bob, Alice sends the most significant b bits of the binary representation of i. Bob “fills in” the
least significant ` − b bits of the index i randomly. Clearly, the probability that Bob hits the
index that Alice intended is at least 1/2`−b.

Using similar ideas, we provide an upper bound for weak subset agreement.

Corollary 2.8 Weak subset agreement can be achieved with dlog2 k − log2me bits.

Proof. Alice chooses a “gap index” i and sends the binary string x that represents the most
significant dlog2 k− log2me bits of i. Alice and Bob, respectively, initialize SA and SB to Ø. For
each possible binary string y of dlog2me bits, Alice and Bob consider the index j = xy obtained
by concatenation. Let ejA and ejB, respectively, denote the lexicographically largest members of
the set of elements that Alice and Bob observe to have frequencies at least fj . Alice and Bob add
ejA and ejB, respectively, to SA and SB. Clearly, SA and SB have m elements each. Moreover,
both Alice and Bob must consider the index i that Alice picked initially; by the proof of Theorem
2.1, eiA = eiB with very high probability, so SA ∩ SB 6= Ø with high probability. The running
times are similar to those in Theorem 2.1.

Next we prove that dlog2 k − 2 log2me bits are necessary for weak-subset agreement. We
leave open whether either of these bounds can be improved to meet the other.

Corollary 2.9 Weak subset agreement requires at least dlog2 k − 2 log2me bits.

Proof. Let ε be an exponentially vanishing quantity. Suppose to the contrary that there is a
protocol P that uses log2 k−2 log2m−1 bits of communication to succeed with probability 1− ε
on any random variable G. We show that Alice and Bob can use the protocol P to beat the
lower bound of Theorem 2.2: Alice and Bob simply run protocol P to commit to sets SA and SB
of size m, and then pick elements sA ∈ SA and sB ∈ SB uniformly at random. The probability
that sA = sB equals 1/m2, which is greater than the upper bound of 1/2m2 implied by Theorem
2.2, by a non-negligible quantity.

3 Feasible Generators

In this section we remove the assumption that the generator G is a “black box,” and instead
suppose that it is modeled by a probabilistic polynomial-time Turing machine (PPTM) MG.
Without much loss of generality we may suppose that MG has a binary fair coin, and makes m
coinflips in any computation. Then MG can be regarded as an ordinary deterministic Turing
machine computing a function from { 0, 1 }m to { 0, 1 }n, with uniform distribution over strings
u ∈ { 0, 1 }m.

In order to talk about asymptotic complexity in a uniform manner, we give n to MG on
its input tape, and we also suppose that m(n) = nO(1). For a useful extension of generality,
we allow the input tape of MG to hold an argument string x ∈ { 0, 1 }n. Then MG represents
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an ensemble of random variables Gx, with valid key-sets Sx. Formally, for any language S, let
Sx := { y : 〈x, y〉 ∈ S }, where 〈, 〉 is some fixed feasible pairing function.

Definition 3.1. A feasible generator consists of a set S and a PPTM M , such that for all
arguments x, M makes m(|x|) coinflips and Probu[M(x, u) ∈ Sx] > 3/4.

Note that it is not the case that every random seed u leads to a valid key, but the probability of
failure is not too large. If S is polynomial-time decidable, we can equivalently suppose M(x, u) =
⊥ if M(x, u) /∈ Sx. Two examples where as yet no deterministic polynomial-time algorithm is
known are generating certified primes or normal bases for finite fields (the latter is known for
fixed characteristic [Len91]). The existing generators have the above properties: not every run
gives a certified prime or a normal basis, though since the certificates or normality can be checked
in polynomial time, invalid outputs can be discarded. In general we allow that S may not admit
deterministic polynomial-time generation in the sense of Sanchis and Fulk [SF90].

In the primes and GF(2) cases, the argument x is used only for its length n. Jerrum, Valiant,
and Vazirani [JVV86] considered generators in which x stands for a graph, and Sx is e.g. the set
of perfect matchings in x. They were interested in generating elements with uniform or nearly-
uniform distribution on Sx, as holds for normal bases [vzGG90]. We pose intuitively the opposite
question: can the distribution on Sx be heavily biased in favor of one element, or a small number
of elements?

Definition 3.2. A feasible generator (M,S) has a monic refinement M ′ if for all arguments x,
there exists a single y ∈ Sx such that Probu[M ′(x, u) = y] > 3/4.

Here the “3/4” is amplifiable by majority vote to give exponentially-vanishing error in
polynomially-many trials. The function mapping x to y then belongs to the class BPPSV de-
fined by Grollmann and Selman [GS88]. Having a monic refinement is different from the notion of
probabilistically “isolating a unique element” in Chari, Rohatgi, and Srinivasan [CRS93]. They
use the method from [MVV87] of assigning random weights to edges so that with high proba-
bility, there is a unique minimum-weight perfect matching (when one exists at all), but different
random weightings can yield different matchings.

Now we reconsider the problems of Section 1 when the generator is feasible, and when Alice
and Bob share the argument string x. This models the situation of two remote users working
on the same problem who want to generate the same primes or normal bases without common
randomness or heavy communication. In these examples the size k of the key sets S is exponential
in n, and so the sampling methods for the upper bounds in the last section take too long. Instead:

Proposition 3.1 Alice and Bob can solve any-key agreement with no communication (and suc-
cess probability 3/4) for a feasible generator iff it has a monic refinement.

We show, however, that the question of monic refinements is hard even when k = 2, using
a natural class of PPTMs. A function f : Σ∗ → N is said to have a fully polynomial time
randomized approximation scheme (fpras) [KL83, JVV86] if there is a PPTM M such that for
all x ∈ Σ∗ and ε > 0 (where we suppose ε = 1/c for some integer c):

Pru
[
f(x)

(1 + ε)
≤ M(〈x, 0c〉, u) ≤ f(x)(1 + ε)

]
> 3/4. (2)
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Jerrum and Sinclair [JS89] showed that the permanent function for “dense” 0-1 matrices, which
is still #P-complete, has an fpras.

Note that M is multi-valued. We observe that the approximation can be done by a to-
tal function which is at most 2-valued. The “3/4” here and in (2) can be amplified to give
exponentially vanishing error.

Proposition 3.2 Let f have an fpras. Then there is a p-machine M ′ such that for all x ∈ Σ∗

and c > 0, there are two values y1, y2 such that f(x)/(1 + ε) ≤ y1 ≤ y2 ≤ f(x)(1 + ε) and
Prr[M ′(x, 0c) ∈ { y1, y2 }] > 3/4.

The proof idea is to let a = M(x, u) and round a off to the nearest of appropriately-chosen
gridpoints. However, if the true value of f(x) is midway between gridpoints, then we may expect
“equal scatter” between the two values, with no non-negligible advantage for either. If instead
we always “round down,” then we have a similar situation when f(x) is close to a gridpoint. We
call the problem of whether M ′ can be made single-valued the “symmetry-breaking problem for
fpras.” We first show:

Theorem 3.3 If every 2-valued feasible generator has a monic refinement, then all feasible gen-
erators with S ∈ P have monic refinements.

The proof is not so simple as for analogous results about NP-machines in [Sel91, HNOS93]. One
attempt is to let M be given, and by analogy with the next-ID function of an NP-machine, define
g(x, v) 7→ b if (∃u w vb)M(x, u) ∈ S. (Here b ∈ { 0, 1 }.) However, v might be a node in the tree
of M with very few valid outputs below it, and hence the valid outputs of g may not have high
enough probability. A second attempt is to define g(x, v) 7→ 1 if Pruwv[M(x, u) ∈ Sx] ≥ 1/4, and
g(x, v) 7→ 0 if Pruwv[M(x, u) ∈ Sx] ≤ 3/4. Then g does meet the requirements of two-valuedness
and high probability, so by hypothesis there is a total single-valued restriction g′ and an M ′

which computes it with high probability. However, depth-first backtrack search on ‘1’ values of
g′ might take exponential time. Our proof modifies the second attempt to make the search halt
in expected polynomial time, using a trick analogous to the “method of conditional probabilities”
in [AS92].

Proof Sketch. Given f and the PPTM M , let q(n) = 2p(n) + 5. For all a, 0 ≤ a ≤ p(n) + 1,
and all v ∈ { 0, 1 }<p(n), define

g(x, v) 7→ a if Pruwv[M(x, u) ∈ Sx] ∈ [
2a
q(n)

. . .
2a+ 3
q(n)

].

This covers [0 . . . 1] with p(n) + 1 intervals so that adjacent intervals overlap, but no point is
in more than two intervals and there is a large gap between every second interval. Then g
is total. Since graph(f) ∈ P, one can estimate Pruwv[M(x, u) ∈ Sx] to within an additive
term of 1/p(n)2 with high probability by taking polynomially many trials. Hence g meets the
requirements of two-valuedness and high probability. By hypothesis, g has a monic refinement
g′. The probability of error in g′ can be made exponentially vanishing in polynomial time, so
that with high probability, a search which requests polynomially many values of g′ never obtains
an erroneous one. The conclusion follows from the observation that if g′(x, v) = a, then at least
one child w of v has g′(x,w) ≥ a − 1. The root has value g′(x, λ) = p(n) + 1. Hence the path
which takes the left child iff its value is at most one less than the current node hits the bottom
before the probability reaches zero.
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The attempt to do the left-leaning path directly with g again runs into symmetry-breaking
problems if the value g(x,w) of the left child of v is in the overlap between “one less” and ‘two
less.” Now we observe:

Theorem 3.4 If the symmetry-breaking problem can be solved for fpras, then every feasible gen-
erator M with S ∈ P has a monic refinement.

Proof Sketch. Let M be given, and with reference to the last proof, define

h(x, v) = 2p(n) + 2|v| · ‖{u ∈ { 0, 1 }p(n) : u w v ∧ M(x, u) ∈ Sx }‖.

Then h ∈ #P. We claim that thanks to the padding term 2p(n), h has an fpras computable
by sampling polynomially many values as in the previous proof. (Before, g only estimated the
number of witnesses below node u additively, not up to a multiplicative factor of (1+ε), and might
give zero if the number were small, but now that the numbers are between 2p(n) and 2p(n)+1, the
factor pulls off a large interval.) Taking ε ≈ 1/p(n) makes it possible to cover [2p(n) . . . 2p(n)+1]
by p(n) + 1 overlapping intervals of roughly equal size whose endpoints are powers of (1 + ε).
Symmetry breaking for the fpras allows monic selection of these endpoints, which then plays the
role of g′ in the previous proof.

The question of whether the lower bounds on any-key agreement in Section 2 carry over to
the case of feasible generators motivates the following two hypotheses, intending also that S ∈ P.

(1) There exist feasible generators (M,S) that have no monic refinement.

(2) (stronger) There exist feasible generators (M,S) such that for every PPTM M ′, if M
satisfies (∀∞x)(∃y ∈ Sx) Probu[M ′(x, u) = y] ≥ 1/k + ε(n), where k = ‖Sx‖, then ε(n) is
exponentially vanishing.

We find it strange that we have been unable to show that the failure of the weaker hypothesis
(1) causes any “drastic” collapse of complexity classes, even of BPP into RP or ZPP, or relating
to knowledge complexity (e.g. in [GOP94]). Moreover, there seems to be no straightforward con-
nection between hypothesis (2) and the hypothesis that good pseudorandom number generators
exist. These become interesting problems to study, and seem to be fairly natural and important.

4 Conclusion

Besides the open problems given in Section 2 and above, there appear to be several avenues
for significant further work. One concerns the difference between “arbitrary” distributions and
computable distributions. It is interesting that while the lower bound in Theorem 1.1 holds for
arbitrarily-powerful Alice, the upper bound is achieved by polynomial-time computation, and
applies in the worst case over all possible distributions of G. This leaves open the possibility
that when G has the structure of a feasible generator, or when the distribution of keys has some
smoothness properties, better upper bounds on both time and communication can be obtained.

We remark that the upper bounds also carry over to k-party environments, with fault-free
processors, by having one designated party play the role of “Alice” while each of the other k− 1
plays the role of “Bob.” In the fault-free case, it remains to ask whether the same lower bounds
still apply. The introduction of either “noise” or systematic faults in the communicated sampling
data leads to a completely new problem, and perhaps the conjunction of ideas in our work,
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the noise-tolerant learning model developed by Kearns [Kea93], and the work on distributed
protocols cited in the Introduction will bear fruit. Overall our results and their technical content
have interesting and important ramifications related to other current research.

References
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