
The Power of the Middle Bit of a #P Function

(Revised Version)

Frederic Green1

Clark University
Johannes Köbler2 3

Universität Ulm
Keneth W. Regan 4

SUNY/Buffalo

Thomas Schwentick 5

University of Mainz
Jacobo Torán 6 3

U. Politecnica de Catalunya

May 1994

1Clark University, Dept. of Math/CS, Worcester, MA 01610. Research partially supported by a
grant from the Dirección General de Investigación Cient́ıfica y Técnica (DGICYT), Spanish Ministry
of Education, while the author was visiting the U. Politècnica de Catalunya, Barcelona.

2Universität Ulm, Theoretische Informatik, Oberer Eselsberg, D-7900 Ulm, Germany.
3This research was supported by the DAAD (Acciones Integradas 1991, 313-AI-e-es/zk).
4SUNY/Buffalo, Computer Science Department, Buffalo, NY 14260. Supported by NSF Grant

CCR-9011248.
5Universität Mainz, Im Zuckergarten 17, D-6500 Mainz 42, Germany.
6U. Politecnica de Catalunya, Departamento L.S.I., Pau Gargallo 5, E-08028 Barcelona, Spain.

Research partially supported by ESPRIT-II Basic Research Actions Program of the EC under
Contract No. 3075 (project ALCOM).

Abstract

We introduce the class MP of languages L which can be solved in polynomial time with
the additional information of one bit from a #P function f . We prove that the polynomial
hierarchy and the classes ModkP, k ≥ 2, are low for this class. We show that the middle bit
of f(x) is as powerful as any other bit, and that a wide range of bits around the middle have
the same power. By contrast, the O(log n) many least significant bits are equivalent to ⊕P
[BeGiHe 90], and by a simple corollary to the result that PP is closed under intersection
[BeReSp 91], the O(log n) many most significant bits are equivalent to PP; hence these
bits are probably weaker. We study also the subclass AmpMP of languages whose MP
representations can be “amplified,” showing that BPP⊕P ⊆ AmpMP, and that important
subclasses of AmpMP are low for MP.

We translate some of these results to the area of circuit complexity using MidBit (middle
bit) gates. A MidBit gate over w inputs x1, . . . , xw is a gate which outputs the value of
the blog(w)/2cth bit in the binary representation of the number

∑w
i=1 xi. We show that

every language in ACC can be computed by a family of depth-2 deterministic circuits of
size 2(logn)O(1)

with a MidBit gate at the root and AND-gates of fan-in (log n)O(1) at the
leaves. This result improves the known upper bounds for the class ACC.

1 Introduction

The complexity classes PP (probabilistic polynomial time [Gi 77]) and ⊕P (parity polyno-
mial time [PaZa 83, GoPa 86]) have received much attention since the well known result by
Toda [Tod 89] proving that the polynomial time hierarchy (PH) is Turing reducible to PP.
These classes are closely related to the class of counting functions #P [Va 79] that count
the number of accepting paths on nondeterministic Turing machines. Observe that sets in
PP and ⊕P can be respectively decided with the information of the leftmost and rightmost
bit of a #P function. Toda’s proof combines two important results; on one side he shows
that PH is randomly reducible to ⊕P, and in a second part he proves that PP⊕P is included
in P#P. A careful observation of the proof of the last result shows that for this inclusion
the whole power of P#P is not needed. To decide an input x, a function f ∈ #P has to
be queried just once, and more interestingly, just one bit of information of f is needed, as
in the case of PP or ⊕P. It is natural to ask what other problems can be computed by
looking at just one bit of a #P function.

We consider the complexity class MP of languages that can be decided with the help of
any one selected bit. This class is a natural generalization of both PP and ⊕P, and seems
easier than the much-studied class P#P. We suppose that the values of a #P function
f(x) are encoded as binary numbers, possibly with leading zeroes, where the length of the
encoding is computable in polynomial time and with the least significant bits indexed first
(the index of the least significant bit being 0; note also that the most significant bit is zero
only if the length of the encoding is greater than log f(x)).

Definition 1.1 A language L is in MP if there exists a function f in #P and a function
g in FP (called a bit selection function) such that for all x, x is in L if and only if there is
a 1 at position g(x) in the binary representation of f(x).

That is, for all x, x ∈ L ⇔ bf(x)/2g(x)c mod 2 = 1. The “M” stands for “middle
bit”, since we show that without loss of generality g can be the function which indexes the
middle bit of the binary representation of f(x).

We investigate in Section 3 the basic properties of MP. It is known that the rightmost
O(log n) bits of a #P function still give the power of ⊕P [BeGiHe 90]; it is a simple
consequence of [BeReSp 91] that the leftmost O(log n) bits do likewise for PP. MP is closed
downward under polynomial time many-one reducibility and has complete problems. The
problem of whether MP is closed under intersection leads to a question of independent
mathematical interest about the size of integer-valued polynomials which satisfy certain
congruence equations. We discuss this question at the end of the section.

In Section 4 we consider subclasses of MP that correspond to special kinds of #P
functions, having many zeroes around the deciding bit. We show that these classes are

1

low for MP. Although those #P functions have a very special form, important classes like
the polynomial hierarchy (PH) and ⊕P in fact have such a representation. The class of
all languages that fulfill this “amplification condition” will be called AmpMP. We give
closure properties of AmpMP and show that any subclass of AmpMP which is closed under
conjunctive and disjunctive reducibilities is low not only for MP but also for AmpMP. Thus
many important subclasses of this class, including BPP and PH, are low for AmpMP and
for MP. Furthermore, if AmpMP = MP, or even if C=P ⊆ AmpMP, then the counting
hierarchy [Wa 86] collapses to MP.

Definition 1.1 makes sense even when f(x) is written in base k, k ≥ 3, rather than
base 2, and it is natural to ask whether the class defined remains the same. On one
hand, the classes ModkP analogous to ⊕P for the least significant bit are all believed to
be different. On the other hand, the “most significant bit = 1” definition of PP yields the
same class in any base, since PP is closed under Boolean operations [BeReSp 91]. We had
hoped to show that if MP is closed under intersection then its definition is independent of
the base, but are unable to do so in this paper. While it is immediate that ⊕P ⊆ MP it is
not so obvious whether Mod3P ⊆ MP since in order to decide whether a number written
in base 2 is congruent to 0 modulo 3, one needs the information of each one of its bits.
By constructing suitable #P functions we prove however in Section 5 that for each k the
class ModkP [BeGiHe 90] is in fact included in MP. Furthermore, we show that for every k,
ModkP is in AmpMP and since ModkP is closed under polynomial-time Turing reductions,
it too is low for MP. We describe the proof techniques for this result in greater detail below,
in the context of circuits.

In Section 6 we give an application of the previous results improving the known upper
bound for the circuit class ACC. This class was defined by Barrington [Ba 89] as the class
of languages accepted by bounded depth polynomial size circuits with AND, OR, NOT
and a finite set of Modk gates. Clearly ACC contains AC0 and is contained in TC0. Since
the PARITY function cannot be computed in AC0 the first inclusion is proper. Barrington
[Ba 89] conjectured that the second inclusion is also proper i.e., TC0 6⊂ACC, but no proof
of this fact has been obtained.

The intimate connection between results about Turing machine classes and results about
circuit classes is by now well-known. Exponential lower bounds for circuit classes imply
relativized separations of complexity classes. The contrapositive of this implication has
useful consequences for circuit complexity: that is, containment of one complexity class in
another relative to all oracles implies a quasi-polynomial size circuit simulation result. The
other direction also works in many cases, that is a quasi-polynomial size circuit simulation
can be used to prove a relativizable containment. Hence there are many available techniques
that can be applied in either domain. Our proofs, both for Turing machine classes and
circuit classes, rest on a number of techniques which have, over several years, led to some

2

very important results regarding the class ACC. It is worth-while to briefly review these
developments.

Toda proved the first part of his theorem, PH⊆BP·⊕P, using techniques introduced by
Valiant and Vazirani [ValVaz 86]. Using polynomial methods introduced by Razborov and
Smolensky, Allender [Al 89] proved the circuit analog of this result: any AC(0) predicate
is computed with high probability by a quasi-polynomial size circuit consisting of a parity
gate connected to small AND’s. Allender and Hertrampf [AlHe 90] subsequently found
that the technique of Valiant and Vazirani could also be applied to circuits to obtain a
uniform version of Allender’s result.

Yao [Yao 90] then showed that these techniques could be used to obtain the first non-
trivial upper bound for ACC. Applying the techniques of Valiant and Vazirani, as well as the
polynomials Toda constructed to prove that PP⊕P ⊆PPP, Yao showed that every language
in ACC is recognized by a family of depth-2 probabilistic circuits of size 2(logn)O(1)

with
a symmetric gate at the root and AND-gates of fan-in (logn)O(1) at the leaves. Recently
Beigel and Tarui [BeTa 91] have simplified Yao’s proof and improved the result, showing
that the circuits given by Yao can be made deterministic without increasing their size. (In
fact, even circuits with a symmetric gate at the root and ACC subcircuits can be simulated
by a depth 2 circuit consisting of a symmetric gate over small AND’s. As Beigel and Tarui
indicate, this is the circuit analog of the result that PH and all the ModmP classes are low
for P#P[1], relative to all oracles.)

In both results ([Yao 90] and [BeTa 91]), the symmetric gate at the root depends on the
number of inputs and the types of modular gates used in the ACC circuit. It is therefore
very hard to prove that a certain function cannot be computed by depth-2 circuits of
the type given in [Yao 90] or [BeTa 91] since all that can be said about the gates at the
root is that they belong to an infinite subfamily of the symmetric functions. We improve
the above upper bounds showing that the mentioned circuits can be restricted to have a
symmetric gate of type MidBit at the root. A MidBit gate over w inputs x1, . . . , xw is a
gate which outputs the value of the blog(w)/2cth bit in the binary representation of the
number

∑w
i=1 xi. Thus we prove that any family of ACC circuits can be computed by a

family of depth-2 deterministic circuits of size 2(logn)O(1)
with a MidBit gate at the root

and AND-gates of fan-in (logn)O(1) at the leaves (we refer to these as MidBit+ circuits;
see Definition 6.2). Furthermore, as is evident from our lowness results, even a circuit
consisting of a Midbit of ACC circuits can be simulated by MidBit+ circuits. Most of the
techniques of [BeTa 91] can be applied to prove this. The main technical contribution of
this paper regarding the ACC problem is a technique to prove that a MidBit of Modp gates
(for p prime) can be simulated by a MidBit+ circuit. This same technique is used to prove
our lowness results. By multiplying by a carefully chosen number which is not too large,
the rightmost “bit” of a number written in base p can be represented as a single bit in

3

the middle of a binary string. This key result is implicit in Lemma 5.1. By choosing an
appropriate Toda polynomial, the bit can be “isolated” from the rest of the string, giving
the lowness result (Theorem 5.2 and, in circuit form, Theorem 6.3).

Yao [Yao 90] conjectured that there are TC0 languages which cannot be computed by
probabilistic circuits consisting of a symmetric gate over small AND’s, and Beigel and Tarui
[BeTa 91] make a similar, probably weaker conjecture for deterministic circuits of this kind.
Likewise, we believe that there are TC0 languages that cannot be computed by MidBit+

circuits. The study of these circuits may therefore provide a way to show that TC0 is not
contained in ACC.

2 Preliminaries and Notation

All languages considered here are over the alphabet Σ = {0, 1}. The length of a string x ∈
Σ∗ is denoted by |x|. If n is a natural number, |n| denotes the length of its binary encoding,
namely |n| = dlog2(n+ 1)e. The notation 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ denotes a pairing function
that is computable in polynomial time and has inverses also computable in polynomial
time. For a set A, |A| denotes its cardinality. The characteristic function of a set A is
denoted by χA.

We assume that the reader is familiar with (nondeterministic, polynomial time bounded,
oracle) Turing machines and complexity classes (see [BaDiGa 87, Schö 86]). FP is the class
of functions computable by a deterministic polynomial time bounded Turing transducer.

The class of functions computable by a deterministic polynomial time bounded oracle
Turing transducer asking parallel queries to a (set or function) oracle in C is denoted by
FPCtt.

An NP machine is a nondeterministic polynomial time bounded Turing machine M

that on every computation path either accepts or rejects. The number of all accepting
computation paths of M on input x is denoted by #accM (x). A set L is said to be in the
class PP if there exists an NP machine M whose running time is bounded by a polynomial
p, such that for any x, x ∈ L iff #accM (x) > 2p(|x|)−1. A set L is in ⊕P if there exists an
NP machince M such that for any x, x ∈ L iff #accM (x) is odd. For any natural number
k > 2 the class ModkP is similarly defined except that x ∈ L iff #accM (x) 6≡ 0 (mod k).

For a relativizable language class C, CB[k] is the class of all sets in CB witnessed by a
machine of type C asking at most k adaptive queries on every computation path.

Let ≤α be any reducibility. The reduction class {A | ∃B ∈ C : A ≤α B} of all sets
≤α-reducible to some set in C is denoted by Rα(C).

4

3 Counting Classes and Bits of #P Functions

As indicated above, (PP ∪ ⊕P) ⊆ MP. In fact,

Proposition 3.1

(a) PP⊕P ⊆ MP ⊆ P#P[1].

(b) MP is closed under complementation.

(c) MP has complete sets under ≤p
m and is closed under ≤p

m.

Proof. (a) The inclusion PP⊕P ⊆ MP follows from inspection of Toda’s proof [Tod 89]
that PP⊕P ⊆ P#P. The inclusion MP ⊆ P#P[1] is obvious.

(b) Let f be a #P function and let g ∈ FP be a bit selection function witnessing
L ∈ MP. Consider the #P function h(x) = f(x) + 2g(x). Since there is a 1 at position g(x)
in the binary representation of f(x) if and only if there is a 0 at position g(x) in the binary
representation of h(x), it follows that L ∈ MP.

(c) The language UMP = {〈N,x, 0k, 0m〉 | N is a nondeterministic TM and there is a 1
at position k in the binary representation of the number of all accepting paths of length
≤ m of N on input x} can easily be seen to be complete for MP under ≤p

m. Now let B be in
MP via some #P function f and bit selection function g ∈ FP, and suppose that A ≤p

m B

via some FP function h. Then f ◦ h is in #P and g ◦ h is in FP, and it holds for all x ∈ Σ∗

that x ∈ A if and only if there is a 1 at position g(h(x)) in the binary representation of
f(h(x)), i.e. A ∈ MP. 2

Proposition 3.2 Let L be in MP via a function f ∈ #P and a bit selection function
g ∈ FP.

(a) [BeGiHe 90] If g(x) = O(log(|x|)), then L ∈ ⊕P.

(b) [BeReSp 91] If |f(x)| − g(x) = O(log(|x|)), then L ∈ PP.

Proof. (b) Let c be a constant such that |f(x)| − g(x) ≤ c log(|x|) for all x ∈ Σ∗.
Then f(x) < 2g(x)+c log(|x|), and the bits at the positions g(x) + c log(|x|) − 1, . . . , g(x) in
the binary representation of f(x) can be computed in polynomial time by binary search
asking c log(|x|) many queries to the PP oracle set {〈x, i〉 | f(x) ≥ i}. This shows that
L ∈ PPP[O(logn)], which equals PP [BeReSp 91]. 2

The previous theorem shows that the bits at either end are weak. However it is easy
to see that the bit in the middle is strong. Furthermore, a wide range of bits around the
middle are also strong including bits whose distance from either end of the string is as small
as any polynomial fraction of the length of the string.

5

Proposition 3.3 (a) Let L ∈ MP. Then there is a #P function f such that for all x,
|f(x)| is odd, and x ∈ L iff the middle bit of f(x) is a 1.

(b) Let L ∈ MP, and let the polynomial q and the constants ε, δ > 0 be fixed. Let g be
any FP function. Let p be any polynomial such that for all inputs x, with n = |x|,
p(n)δ/q(n) < g(x) < (1 − ε/q(n))p(n). Then L ∈ MP via a #P function f where
f(x) ≤ 2p(|x|) and using g as a bit-selection function.

Proof. (a) Let the NTM M , polynomial p, and bit-selection function g ∈ FP be such that
L ∈ MP via f and g, and for all x, #accM (x) < 2p(|x|). Then let M ′ be an NTM which
on any input x first calculates d := p(|x|)− g(x), makes d-many dummy nondeterministic
moves, and then simulates M(x). This multiplies the number of accepting computations of
M(x) by 2d, and thus moves bit g(x) of #accM (x) to position p(|x|). Now build an NTM
M ′′ such that for all x, #accM ′′(x) = #accM ′(x) + 22p(|x|), and let f(x) := #accM ′′(x).
Then f has the desired property. Part (b) is proved by similar “bit-shifting” methods. 2

Define a bit-query machine to be a machine which takes a function f as oracle and
makes queries of the form (y, i), receiving bit i of f(y) from the oracle. Since MP ⊆ PPP,
the leftmost bit can be used as an oracle for the middle bit. That is, for every L ∈ MP
there is a polynomial-time bit-query machine M , a #P function f , and a polynomial p
which bounds the lengths of values of f , such that M makes queries of the form (y, p(|y|))
and accepts L with oracle f . On the other hand, the rightmost bit probably cannot be
used as an oracle for the middle bit, since P⊕P = ⊕P and MP is unlikely to be contained
in ⊕P. The next result extends the range to the right of bits which can be used as oracles
for the middle bit.

Proposition 3.4 Let L ∈ MP, let δ > 0 and k ≥ 1 be fixed, and let g ∈ FP be such that
for all y, g(y) > δ|y|1/k. Then there is a polynomial-time machine M with oracle function
f ∈ #P such that on any input x, M(x) makes one bit query (y, g(y)), and accepts iff the
bit returned is a 1.

Proof. The string y has the form 0m1x, where m := d|x|k/δe − |x| − 1. The remaining
details are similar to those of Proposition 3.3 and are left to the reader. 2

The proof gives a many-one reduction; we do not know whether a Turing reduction
could use lower-order bits. Nor do we know more about the power of bits g(y) for functions
g which are ω(log |y|) and o(|y|ε) for all ε > 0.

Since a bit-query machine with a #P function as oracle can always be simulated by
a standard oracle TM with an MP language as oracle, and vice-versa, we revert to the
standard formalism in assessing the power of the number of bit-queries to a #P function:

6

Theorem 3.5

(a) PMP[1] = MP.

(b) MP is closed under intersection if and only if MP =
⋃
k≥1 PMP[k].

Proof. (a) It is easy to see that MP is closed under join. By Proposition 3.1, MP is also
closed under ≤p

m and under complementation, and thus it follows that MP is closed under
≤p1tt, i.e. PMP[1] = MP.

(b) Since MP contains P and is closed under polynomial time many-one reductions, it
follows that the bounded truth-table closure of MP (which is easily seen to be

⋃
k≥1 PMP[k])

coincides with the Boolean closure of MP [KöScWa 87]. Now, since MP is closed under
complementation, if MP is also closed under intersection then the Boolean closure of MP
equals MP. 2

Proposition 3.6

(a) PMP = PPP = P#P.

(b) FPMP
‖ = FP#P

‖

(c) The closure of MP under polynomial time tt-reductions equals P#P[1].

Proof. (a) is obvious.
(b) follows from the fact that the value of a #P function can be computed in polynomial

time by asking parallel queries to an MP oracle.
(c) Since P#P[1] is closed under polynomial time tt-reductions [CaHe 89], it follows that

Rtt(MP) ⊆ Rtt(P#P[1]) = P#P[1]. The converse inclusion follows from (b). 2

There are two unresolved structural properties of the class MP which seem both im-
portant and amenable to attack. The first is the problem of whether MP is closed under
intersection. The direct attempt to solve this by writing and solving equations leads to
the following purely numerical question, which we have circulated among mathematicians.
(Say x is top modulo 2k if x mod 2k ≥ 2k−1.)

In terms of k, what is the minimum degree of an integer-valued polynomial
p(x, y) such that for some polynomial t and for all x, y it is true that p(x, y) is
top modulo 2t(k) ⇐⇒ both x and y are top modulo 2k?

The simplest polynomial we know which satisfies this congruence relation is p(x, y) :=(2k−1

x

)(2k−1

y

)
2k−1. Smaller ones have been found by A. Odlyzko and M. Coster [personal

7

communication, 1991], but they still have exponential degree and coefficient size. If such p
can be found with degree polynomial in k, then p can be written as a polynomial-sized sum
of small binomial coefficients in x and y, which can then be used in building polynomial-
time NTMs. Then it would follow, after “lining-up” decision bits, that MP is closed under
intersection. A similar congruence relation modulo 2k with the same open problem is
p(x, y) = 0 ⇐⇒ (x = 0 ∧ y = 0).

The second open problem concerns whether the inclusions in Proposition 3.1(a) are
proper. It is not even known whether there is an oracle separating PP⊕P from P#P[1] or
even from PSPACE. Since PP⊕P is closed under polynomial-time truth-table reductions,
as follows by relativizing the proof for PP in [FoRe 91], MP = PP⊕P implies that both
classes are equal to P#P[1].

4 The Class AmpMP

Toda’s proof, which as mentioned in Prop. 3.1(a) yields PP⊕P ⊆ MP, actually shows that
languages L in PP⊕P have MP-representations of a special kind. Namely, there is a #P
function f such that for any input x and number m, not only does the middle bit of f(x, 0m)
equal ‘1’ iff x ∈ L, but also the m bits to the left of this bit are always ‘0’. We call this
property “amplification on the left of the decision bit.” Technically, (x, 0m) stands for the
string x10m, and the point is that m can be made as large as desired. In this section we
study the stronger notion of “amplification on both sides of the decision bit,” which leads
to the class AmpMP formalized as follows:

Definition 4.1 A language L is in AmpMP if there are a polynomial p and a #P function
f such that for every x ∈ Σ∗ and m > 0, f(x, 0m) is of the form

f(x, 0m) = a(x, 0m)2p(n)+2m+1 + χL(x)2p(n)+m + b(x, 0m)

where n = |x|+m and b(x, 0m) < 2p(n).

In other words, L is in AmpMP if there are polynomials p, r and a #P function f such
that for every x ∈ Σ∗ and m > 0, the binary representation of f(x, 0m) is of the form

ar(n) . . . a0 0 . . . 0︸ ︷︷ ︸
m times

χL(x) 0 . . . 0︸ ︷︷ ︸
m times

bp(n)−1 . . . b0

where b0, . . . , bp(n)−1, a0, . . . , ar(n) ∈ {0, 1}. The next lemma shows that the class AmpMP
is very robust, and closed under Boolean operations.

Lemma 4.2

(a) AmpMP is closed under complementation,

8

(b) AmpMP is closed under intersection,

(c) AmpMP is closed under bounded truth table reductions.

Proof. (a) Let L be in AmpMP. We have to show that there are a polynomial p and a
#P function h fulfilling the condition in the definition of AmpMP for the complement of
L. Since L is in AmpMP there are a polynomial p and a #P function f such that for every
x ∈ Σ∗ and m > 0, the binary representation of f(x, 0m) is of the form

ar(n) . . . a0 0 . . . 0︸ ︷︷ ︸
m times

χL(x) 0 . . . 0︸ ︷︷ ︸
m times

bp(n)−1 . . . b0

where n = |x|+m. Consider the following function f ′(x, 0m) whose value in binary is

ar(n) . . . a0 1 . . . 1︸ ︷︷ ︸
m times

χL(x) 1 . . . 1︸ ︷︷ ︸
m times

bp(n)−1 . . . b0

Clearly, f ′ ∈ #P, and there are a polynomial t and an NP machine M having on input
(x, 0m) exactly 2t(n) different computation paths such that #accM (x, 0m) = f ′(x, 0m) + 1.
Now the desired #P function h can be obtained by inverting f ′ bitwise, i.e. h(x, 0m) =
2t(n) − 1 − f ′(x, 0m) = #accM (x, 0m), where M is obtained from M by interchanging
accepting and rejecting states.

(b) Let A,B be two sets in AmpMP. We have to show that there are a polynomial p
and a #P function h fulfilling the condition in the definition of AmpMP for the set A∩B.
Since A,B are in AmpMP, there are polynomials pA, pB, t and #P functions hA, hB such
that t(n) ≥ pA(n) + 2m (letting n = |x|+m) and

hA(x, 0m) = a(x, 0m)2pA(n)+2m+1 + χA(x)2pA(n)+m + b(x, 0m) < 2t(n)

where b(x, 0m) < 2pA(n), and

hB(x, 0m) = a′(x, 0m)2pB(n)+2m+1 + χB(x)2pB(n)+m + b′(x, 0m)

where b′(x, 0m) < 2pB(n). Now define h(x, 0m) = hA(x, 0m) · hB(x, 0t(n)), then

h(x, 0m)

= [a′(x, 0t(n))2pB(n)+2t(n)+1 + χB(x)2pB(n)+t(n) + b′(x, 0t(n))] · hA(x, 0m)

= a′′(x, 0m)2pA(n)+pB(n)+t(n)+2m+1 + χA∩B(x)2pA(n)+pB(n)+t(n)+m + b′′(x, 0m)

where b′′(x, 0m) = χB(x)2pB(n)+t(n)b(x, 0m) + b′(x, 0t(n))hA(x, 0m) < 2pA(n)+pB(n)+t(n), and
a′′(x, 0m) = a′(x, 0t(n))2t(n)−pA(n)−2mhA(x, 0m) + χB(x)a(x, 0m).

(c) We first show that AmpMP is closed under many-one reductions. Let B be in
AmpMP, and suppose that A ≤p

m B via some FP function g. Since B is in AmpMP there

9

are a polynomial p and a #P function f such that for every x ∈ Σ∗ and m > 0, the binary
representation of f(x, 0m) is of the form

f(x, 0m) = a(x, 0m)2p(n)+2m+1 + χB(x)2p(n)+m + b(x, 0m)

where n = |x| + m and b(x, 0m) < 2p(n). Consider the function f ′(x, 0m) = f(g(x), 0m)
which is of the form

f ′(x, 0m) = a(g(x), 0m)2p(n)+2m+1 + χA(x)2p(n)+m + b(g(x), 0m)

where n = |g(x)|+m and b(g(x), 0m) < 2p(n). Let q be a polynomial such that q(|x|+m) ≥
p(|g(x)| + m). Then the #P function f ′′(x, 0m) = f ′(x, 0m) · 2q(|x|+m)−p(|g(x)|+m) and the
polynomial q form an AmpMP representation for A.

Since AmpMP contains P and is closed under many-one reductions it follows that
the bounded truth-table closure of AmpMP coincides with the Boolean closure of
AmpMP [KöScWa 87]. This completes the proof because by (a) and (b) AmpMP is closed
under Boolean operations. 2

It is an open problem whether AmpMP is closed under conjunctive reductions. As
we will see this problem is related to the lowness properties of the class. The concept of
lowness in the context of computational complexity theory was first introduced by Schöning
[Sch 83] and was first studied in counting classes by Torán [Tor 88]. A class A is low for a
relativizable complexity class C if the sets in A, when used as an oracle for C, do not help,
i.e., CA = C.

We would like to prove that AmpMP is low for the class MP. This would happen if
AmpMP were closed under conjunctive polynomial time reducibility. We can prove however
a series of lowness results which are based on the following theorem.

Theorem 4.3 Let k be a constant. For every function f ∈ #PAmpMP[k] there are a func-
tion g ∈ #P and a polynomial p such that for every x ∈ Σ∗ and m > 0,

f(x) ≡ bg(x, 0m)/2p(|x|+m)c (mod 2m).

Proof. Since AmpMP is closed under bounded truth table reductions there is a language
A ∈ AmpMP and a polynomial q such that

f(x) =
∑

y∈Σq(|x|)

χA(x, y)

Because of A ∈ AmpMP there are a polynomial r and a #P function h such that for every
x ∈ Σ∗ and m > 0, h(x, y, 0m) is of the form

h(x, y, 0m) = a(x, y, 0m)2r(n)+2m+1 + χA(x, y)2r(n)+m + b(x, y, 0m)

10

where n = |x| + m and b(x, y, 0m) < 2r(n). Now the proof of the theorem is com-
pleted by choosing the polynomial p(n) ≥ r(n) + q(|x|) + m and defining g(x, 0m) =∑
y∈Σq(|x|) h(x, y, 0m+q(|x|))2p(n)−r(n)−q(|x|)−m. 2

Note that Theorem 4.3 even allows us to isolate the binary representation of f(x) inside
the binary representation of some #P function h(x, 0m) by m 0’s to the left and to the
right, i.e., h(x, 0m) is of the form

ar(n) . . . a0 0 . . . 0︸ ︷︷ ︸
m times

bin(f(x)) 0 . . . 0︸ ︷︷ ︸
m times

bp(n)−1 . . . b0

where n = |x| + m, p, r are polynomials, b0, . . . , bp(n)−1, a0, . . . , ar(n) ∈ {0, 1}, and
bin(f(x)) ∈ Σt(|x|) is the binary representation of f(x) (possibly with leading 0’s) for
some polynomial t. To see this, first define f ′(x, 0m) = f(x) · 2m and apply Theorem 4.3
to get a function h(x, 0m) such that f ′(x, 0m) ≡ bh(x, 0m)/2p(|x|+m)c (mod 2t(|x|)+2m).

Now we are ready to state our first “lowness” result.

Corollary 4.4

1.
⋃
k>1 MPAmpMP[k] = MP

2.
⋃
k>1 AmpMPAmpMP[k] = AmpMP

Proof. By Theorem 4.3 it follows that for every function f ∈ #PAmpMP[k] there exist
a function g ∈ #P and a polynomial t such that the binary representation of f(x) is
reproduced inside the binary representation of g(x, 0t(|x|)). The rest is clear. 2

Corollary 4.5 Let C be a subclass of AmpMP. If C is closed under conjunctive and
disjunctive reducibilities then C is low for MP and for AmpMP.

Proof. This is a direct consequence of Corollary 4.4 since if C is closed under conjunctive
and disjunctive reducibilities then it is easy to see that MPC = MPC[2] and AmpMPC =
AmpMPC[2]. 2

Corollary 4.6 If C=P ⊆ AmpMP then CH = MP.

Proof. Assume that C=P ⊆ AmpMP. Since the class C=P is closed under disjunctive and
conjunctive reductions ([Tor 88],[Gr 91],[BeChOg 91]) it follows by Corollary 4.5 that C=P
is low for MP. Now the collapse of the counting hierarchy follows easily using the equality
MPMP = MPC=P [Tor 88]. 2

11

We show now that several important complexity classes are included in AmpMP. It
will follow from the next result proved by Toda [Tod 89] that ⊕P is contained in AmpMP
(even in the subclass of AmpMP where p(n) = 0).

Theorem 4.7 [Tod 89] For every language A ∈ ⊕P there exists a #P function h such
that h(x, 0m) ≡ χA(x) (mod 2m).

Corollary 4.8 ⊕P is contained in AmpMP and therefore ⊕P is low for MP and AmpMP.

Proof. Let A be in ⊕P. By Theorem 4.7 there is a function h ∈ #P such that h(x, 0m) ≡
χA(x) (mod 2m+1). Then also the function f(x, 0m) = h(x, 0m) · 2m is in #P, witnessing
A ∈ AmpMP. The lowness follows by Corollary 4.5 since ⊕P is closed under Turing
reductions [PaZa 83]. 2

The next corollary states that for every function f in #P⊕P there is a function g ∈ #P
such that f(x) and g(x, 0m) agree in the last m bits.

Corollary 4.9 For every function f in #P⊕P there exists a function g in #P such that

g(x, 0m) ≡ f(x) (mod 2m).

Proof. Let f be in #P⊕P. Since ⊕P is closed under Turing reductions [PaZa 83] there
exist a language A in ⊕P and a polynomial q such that

f(x) =
∑

y∈Σq(|x|)

χA(x, y)

By Theorem 4.7 there is a function h ∈ #P such that h(x, y, 0m) ≡ χA(x, y) (mod 2m).
Now the corollary follows defining g(x, 0m) =

∑
y∈Σq(|x|) h(x, y, 0m). 2

As a consequence of the next theorem we will get the containment of BPP in AmpMP
(even in the subclass of AmpMP where a(x, 0m) = 0).

Theorem 4.10 For every language L ∈ BPP there exist a polynomial t and a function
h ∈ #P such that

χL(x) · 2m = bh(x, 0m)/2t(n)−mc

where n = |x|+m.

Proof. Let L be in BPP. By the probability amplification lemma for BPP, there exists a
function h ∈ #P and a polynomial t such that

x ∈ L ⇒ h(x, 0m) ≥ 2t(n) − 2t(n)−m−2,

x 6∈ L ⇒ h(x, 0m) ≤ 2t(n)−m−2,

12

and therefore h fulfills the following inequalities,

χL(x, 0m)2t(n) − 2t(n)−m−2 ≤ h(x, 0m) ≤ χL(x, 0m)2t(n) + 2t(n)−m−2

Because #P is closed under addition, the proof can be completed by defining h(x, 0m) =
h(x, 0m) + 2t(n)−m−2 since h fulfills the inequalities

χL(x, 0m)2t(n) ≤ h(x, 0m) ≤ χL(x, 0m)2t(n) + 2t(n)−m−1

2

Corollary 4.11 BPP is contained in AmpMP and therefore is low for MP and AmpMP.

Proof. The containment of BPP in AmpMP follows immediately from Theorem 4.10, and
the lowness follows by Corollary 4.5 since BPP is closed under Turing reductions. 2

The next corollary states that for every function f ∈ #PBPP and every polynomial p
there is a function g ∈ #P such that f(x) and g(x) agree in the leftmost p(|x|) many bits
where the leftmost bit of a binary number is the most significant bit which is 1.

Corollary 4.12 For every function f ∈ #PBPP there exist a polynomial r and a function
g ∈ #P such that

f(x) = bg(x)/2r(|x|)c

Proof. Let f be in #PBPP. Since BPP is closed under Turing reductions there exist a
language L in BPP and a polynomial q such that

f(x) =
∑

y∈Σq(|x|)

χL(x, y)

By Theorem 4.10 there is a #P function h and a polynomial t such that

χL(x, y) · 2m = bh(x, y, 0m)/2t(|x|+m)−mc

Defining the #P function g as

g(x) =
∑

y∈Σq(|x|)

h(x, y, 0q(|x|))

it follows that
bg(x)/2t(|x|+q(|x|))c = f(x)

which completes the proof if we choose r(n) = t(n+ q(n)). 2

13

Corollary 4.13 BPP⊕P and the polynomial hierarchy PH are low for both MP and
AmpMP.

Proof. Since BPP⊕P is closed under Turing reductions, it suffices by Corollary 4.5 to
show that it is contained in AmpMP. This follows by relativizing Corollary 4.11 to ⊕P
and observing AmpMP⊕P ⊆ AmpMP by Corollary 4.8. The lowness of PH follows since
PH ⊆ BPP⊕P. 2

Using relativized versions of Theorems 4.12 and 4.9, we get the following theorem which
is stronger than what we would get by Theorem 4.3 because the polynomial p only depends
on |x| and not on m.

Theorem 4.14 For every function f in #PBPP⊕P
there are a function g ∈ #P and a

polynomial p such that

f(x) ≡ bg(x, 0m)/2p(|x|)c (mod 2m).

Proof. Let f be in #PBPP⊕P
. Since Corollary 4.12 relativizes, there exists a polynomial

p and a function h ∈ #P⊕P such that

f(x) = bh(x)/2p(|x|)c

By Theorem 4.9, there exists a function g ∈ #P such that

g(x, 0m) ≡ h(x) (mod 2m+p(|x|)),

and therefore
bg(x, 0m)/2p(|x|)c ≡ f(x) (mod 2m).

2

5 Lowness of Mod Classes for the Class MP

In this section we show that for any k, ModkP is included in AmpMP, thereby proving
that ModkP is low for MP and AmpMP.

The key to this result is the following lemma, which says that the “amplification” of a
#P-function in k-adic representation can, in some sense, be saved in dyadic representation.

Lemma 5.1 Let r, q be polynomials.
If f ∈ #P is of the form f(x) = a(x)kr(|x|) + b(x), where

b(x) <
kr(|x|)

2q(|x|)+2
,

14

then there exist a function h in #P and a polynomial p such that

h(x) = a′(x)2p(|x|)+q(|x|) + b(x)2p(|x|) + c(x),

where c(x) < 2p(|x|) and a′(x) is a multiple of a(x).

Proof. Since f is in #P there exists a polynomial s such that f(x) < 2s(|x|) for all x. We
first prove the following claim.

Claim. There exist a polynomial p and a function g in #P such that

g(x) = a(x)2p(|x|) + b′(x) and b′(x) < 2p(|x|)−q(|x|)−1.

Proof of Claim. Define

g(x) = f(x)

⌈
2p(|x|)

kr(|x|)

⌉
.

Then it follows that

a(x)2p(|x|) ≤ g(x) = (a(x)kr(|x|) + b(x))

⌈
2p(|x|)

kr(|x|)

⌉

< a(x)2p(|x|) + b(x)
2p(|x|)

kr(|x|)
+ a(x)kr(|x|) + b(x).

< a(x)2p(|x|) + 2p(|x|)−q(|x|)−2 + a(x)kr(|x|) + b(x).

< a(x)2p(|x|) + 2p(|x|)−q(|x|)−1.

The last inequality can be achieved by choosing p > t+ s+ 2. 2

To complete the proof of Lemma 5.1 we define

h(x) = f(x)2p(|x|) + g(x)i(|x|),

where
i(n) ≡ −kr(n) (mod 2q(n)) and i(n) < 2q(n).

Then it follows that

h(x) = a(x)kr(|x|)2p(|x|) + b(x)2p(|x|) + a(x)2p(|x|)i(|x|) + b′(x)i(|x|)

= 2p(|x|)a(x)(kr(|x|) + i(|x|)) + b(x)2p(|x|) + b′(x)i(|x|),

where
kr(n) + i(n) ≡ 0 (mod 2q(n))

15

and
b′(x)i(|x|) < 2p(|x|)−1.

2

Theorem 5.2 For every prime k, ModkP is included in AmpMP

Proof. Let A be a set in ModkP and let r be a polynomial such that kr(m) > 22m+3.
Adapting results from Toda [Tod 89] and Beigel, Gill and Hertrampf [BeGiHe 90] we can
assume that there is a function c in #P such that

c(x, 0m) ≡ χA(x) (mod km)

Now let f(x, 0m) = c(x, 0r(m)) · 2m+1. Then we have

f(x, 0m) = a(x, 0m)2m+1kr(m) + χA(x)2m+1

where χA(x)2m+1 < kr(m)/2m+2, so we can apply Lemma 5.1 to obtain a polynomial p and
a function h in #P such that

h(x, 0m) = a′(x, 0m)2m+1+p(n) + χA(x)2m+1+p(n) + c(x, 0m)

where c(x, 0m) < 2p(n). Remembering that a′(x, 0m) is a multiple of 2m+1 we get an
AmpMP characterization for A. 2

Because Theorem 5.2 relativizes, we can state the following corollary.

Corollary 5.3 For any k, ModkP is low for MP and AmpMP.

Proof. First observe that for prime k, ModkP is closed under Turing reductions
[BeGiHe 90] and therefore is low for MP and AmpMP by Corollary 4.5 and Theorem 5.2. In
the case that k is composite it follows by the representation theorem of Hertrampf [He 90]
that if k = pe1q for a prime number p and gcd(p, q) = 1, then

ModkP ⊆ ModpPModqP.

Since the above lowness proof for the prime case relativizes the lowness of ModkP follows
iterating this argument for all the prime factors of k. 2

Corollary 5.3 together with Theorem 4.3 immediately imply the main result of this
section.

16

Corollary 5.4 For any k and every function f in #PModkP there are a function g ∈ #P
and a polynomial p such that

f(x) ≡ bg(x, 0m)/2p(|x|+m)c (mod 2m).

The result stated in Corollary 5.4 works also for the class ModPH, a generalization of
the polynomial time hierarchy that contains also ModP classes. ModPH can be considered
as the polynomial time analogue to the circuit class ACC.

Definition 5.5 ModPH is the smallest family of languages containing the class P and
satisfying that for any set A in ModPH the classes NPA, co-NPA and ModkPA (for any
positive integer k) also are contained in ModPH.

Corollary 5.6 ModPH is contained in AmpMP and therefore is low for MP and AmpMP.

Corollary 5.7 For all functions f in #PModPH there exist a polynomial t and a function
h in #P such that

bh(x, 0m)/2t(|x|+m)c ≡ f(x) (mod 2m).

6 A New Upper Bound for ACC

The methods of the preceding section relativize. It is thus not surprising that there are
analogous circuit results. In this section we prove them directly.

Our main result in this section is that there is one particular symmetric function which,
together with AND gates of small fan-in, can capture all of ACC: namely, the symmetric
function which outputs the middle bit of the sum of the inputs.

Definition 6.1 A MidBit gate over w inputs x1, ..., xw is a gate which outputs the value
of the blog(w)/2cth bit in the binary representation of the number

∑w
i=1 xi.

A Modk gate over w inputs x1, ..., xw is defined to output 1 if
∑w
i=1 xi 6≡ 0 (mod k)

and 0 otherwise.
In our simulations circuits consisting of a particular gate over small AND gates arise

frequently, so we introduce the following notation.

Definition 6.2 Let G be a Boolean gate. A family of circuits {Cn} is called a family of
G+ circuits if there is a polynomial p such that for each n, Cn consists of a gate of type G
at the root whose inputs are at most 2p(log(n)) AND gates each of size at most p(log(n)). A
family of Boolean functions {fn} is computable by a family of G+ circuits {Cn} if for each
n, fn(x1, ..., xn) = Cn(x1, ..., xn).

17

Note that we will always speak of families of MidBit+ or Mod+
k circuits. Even when

we refer to a MidBit+ or Mod+
k circuit individually, it should be understood that what is

meant is a member of a particular family of such circuits.
The following theorem gives the circuit analogue of Corollary 5.4. We find that for any

family of functions which can be expressed as sums of Mod+
k circuits, there is a family of

low-degree polynomials whose middle bits agree with the bits of the original functions.

Theorem 6.3 Let k be prime and let {bn} be a family of functions such that there exists
a polynomial r where for each n, bn is of the form

bn(x1, ..., xn) =
w∑
i=1

ci(x1, ..., xn),

where each ci is a Mod+
k circuit and w ≤ r(log(n)). Then for any polynomial t there are

polynomials p and q and a family of polynomials {hn} of degree p(log(n)) such that for
each n,

bn(x1, ..., xn) ≡ bhn(x1, ..., xn)/2q(log(n))c (mod 2t(log(n))

Proof. Similar to the proof of Theorem 5.2. To simplify notation, unless explicitly stated,
p, p′, q, r, s, and t denote p(log(n)), p′(log(n)),q(log(n)), r(log(n)), s(log(n)), and t(log(n)),
respectively. Also denote any function g of x1, ..., xn as g(x). We have that each Mod+

k

circuit ci outputs 1 if and only if a certain sum σi of AND-gates is nonzero mod k. (From
an observation of Beigel, Gill and Hertrampf [BeGiHe 90], without loss of generality σi

is always 0 or 1 (mod k), by Fermat’s little theorem.) Note that we can think of each
σi as a polynomial in {x1, ..., xn} of polylog degree. We make use of polynomials Qd
originally written down by Toda [Tod 89], and improved by Beigel and Tarui [BeTa 91].
The polynomial Qd is of degree 2d− 1 and has the property that if X 6≡ 0 (mod k) then
Qd(X) ≡ 1 (mod kd), and if X ≡ 0 (mod k) then Qd(X) ≡ 0 (mod kd). Thus

bn(x) =
w∑
i=1

[
Qd(σi) mod kd

]
We choose d = p′(log(n)) where p′ is a polynomial such that kp

′
> 2r+t+2. Then bn(x) ≤

2r < kp
′
. Now the outer sum in the equation above for bn is less than kp

′
, so the “mod”

can be moved outside:

bn(x) ≡
[
w∑
i=1

Qp(σi)

]
(mod kp

′
)

We write

fn(x) =
w∑
i=1

Qp′(σi)

Then
fn(x) = an(x)kp

′
+ bn(x)

18

for some an(x). Note that for some polynomial s, fn(x) < 2s. Also note that since σi is a
polynomial of polylog degree, there is some polynomial p such that fn is a polynomial of
degree p(log(n)) in the variables x1, ..., xn. Define the degree p(log(n)) polynomial hn as
follows:

hn(x) = i(n)
⌈
2q/kp

′⌉
fn(x) + 2qfn(x),

where i(n) ≡ −kp′ (mod 2t), following the proof of Lemma 5.1 . Thus we find that
d2q/kp′efn(x) = an(x)2q + b′n(x) where b′n(x) < 2q−t−1. Hence

hn(x) ≡ 2qbn(x) + i(n)b′n(x) (mod 2q+t)

where i(n)b′n(x) < 2q−1. This completes the proof. 2

Corollary 6.4 Let k be prime and {Cn} be a family of circuits where for each n, Cn
consists of a MidBit gate over 2polylog Mod+

k circuits. Then {Cn} is computable by a family
of MidBit+ circuits.

Proof. Each Cn is the MidBit of a sum bn of Mod+
k circuits. Using the previous theorem

and adopting the notations of the proof, we can find a family of polylog-degree polynomials
{hn} obeying

hn(x) ≡ 2qbn(x) + cn(x) (mod 2q+t) (∗)

for some cn(x) < 2q−1. Choose t > r. We can express hn (mod 2q+t) as a sum of non-
negative terms with coefficients < 2q+t−1. This can further be rewritten as a sum h′n(x) of
AND gates by replacing terms with coefficients > 1 by a sum of identical terms with unit
coefficients. Reducing the right hand side of eq. (*) mod 2q+t, we obtain 2q(bn(x) mod 2t)+
cn(x). Now the output bit of Cn is in position br/2c of bn(x) and is therefore in position
q+ br/2c of h′n(x). We can multiply the sum by repeated addition so that this is precisely
the middle bit. 2

We now turn our attention to MidBit gates at the root and pure ACC subcircuits
[Yao 90] (families of constant-depth polynomial size circuits which consist only of Modm
gates for some natural number m).

Theorem 6.5 Let {Cn} be a family of depth-d circuits consisting of a MidBit gate at
the root and Modm gates at remaining levels. Then {Cn} is computable by a family of
MidBit+-circuits.

Proof. Beigel and Tarui [BeTa 91] have shown that a Modm gate can be simulated
by a “stratified” circuit of Modk1 ,Modk2 , ...,Modkl gates where k1, k2, ..., kl are the prime
divisors of m, on levels 1, 2, ..., l, respectively, and polylog fan-in AND gates on the lowest

19

level. They also showed that a polylog-size AND of Modk gates (for k prime) can be
switched with the Modk’s to produce a Mod+

k circuit. Using these facts, Corollary 6.4
and an inductive argument as in the proof of Lemma 6 in [BeTa 91], each layer of Modki
gates can be “absorbed” in the MidBit gate, and the resulting polylog fan-in AND gates
“pushed” down to the leaves. The resulting circuit is a MidBit+ circuit. 2

The following main theorem uses a combination of the above results, techniques of
Valiant and Vazirani [ValVaz 86], Toda [Tod 89], Allender [Al 89], and Allender and Her-
trampf [AlHe 90], and the technique by which we showed that BPP is low for MP. It says
that circuits consisting of a MidBit gate over ACC subcircuits can be simulated by MidBit+

circuits. The proof is similiar to those given in Theorems 1 and 2 of [BeTa 91].

Theorem 6.6 Let {Cn} be a family of depth-d circuits of size 2polylog(n) consisting of a
MidBit gate at the root and Modm, AND, OR, and NOT gates at remaining levels. Then
{Cn} is computable by a family of MidBit+-circuits.

Proof. Let Cn = 1 iff the blog(s)/2cth bit of S is 1, where S =
∑s
i=1 ci, with each

subcircuit ci consisting of AND, OR, NOT, and Modm gates, and without loss of gen-
erality, s = 2q(log(n)) where q is a polynomial. The AND and OR gates in each ci can
be replaced by probabilistic Mod+

m circuits with polylogarithmically many random bits,
using the techniques of [ValVaz 86], [Al 89], and [AlHe 90]. By pushing the AND-gates
to the leaves, as in the preceding theorem, ci can be simulated by a probabilistic circuit
c′i comprised of Modm gates and AND gates of polylog fan-in at the lowest level, so that
Pr(c′i 6= ci) ≤ 2−q(log(n))−2. It is possible to simulate ci with such a c′i using t(log(n)) bits
where t is a polynomial such that t > q + 2. Let c′′i denote the sum of c′i over all possible
settings of the random bits of c′i, and let S′ :=

∑s
i=1(c′′i + 2t(log(n))−q(log(n))−2). One can

show that S′ = 2t(log(n))S + r where r < 2t(log(n)). The output of the desired MidBit+

circuit is the bit in position blog(s)/2c+ t(log(n)) of S′. 2

Acknowledgements
We wish to thank V. Arvind, Jim Royer and Richard Beigel for helpful discussions.

References

[Al 89] E. Allender, A note on the power of threshold circuits. In Proceedings of the 30th
Symposium on Foundations of Computer Science 1989, 580-584.

[AlHe 90] E. Allender, U. Hertrampf, On the power of uniform families of constant
depth threshold circuits. In Proceedings 15th Symposium on Mathematical Foundations
Computer Science, Lecture Notes in Computer Science 452 (1990), 158-164.

20

[AHOW 91] E. Allender, L. Hemachandra, M. Ogiwara, and O. Watanabe, Re-
lating equivalence and reducibility to sparse sets. In Proceeding 6th Structure in Com-
plexity Theory Conference, 1991, 220-237.

[BaDiGa 87] J.L. Balcázar, J. D́ıaz, J. Gabarró, Structural Complexity I. Springer,
1987.

[Ba 89] D. Barrington, Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. In J. Comput. Syst. Sci., 38 (1989), 150-164.

[BeChOg 91] R. Beigel, R. Chang, and M. Ogiwara, A relationship between dif-
ference hierarchies and relativized polynomial hierarchies. To appear in Mathematical
Systems Theory.

[BeGiHe 90] R. Beigel, J. Gill, U. Hertrampf, Counting classes: Thresholds, parity,
mods, and fewness. In Proceedings 7th Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science 415 (1990), 49-57.

[BeReSp 91] R. Beigel, N. Reingold and D. Spielman, PP is closed under intersec-
tion. In Proceedings of the 23rd ACM Symposium on the Theory of Computation 1991,
1-11.

[BeTa 91] R. Beigel, J. Tarui, On ACC. In Proceedings of the 32nd Symposium on
Foundations of Computer Science 1991, 783-792.

[CaHe 89] J. Cai, L. Hemachandra, Enumerative Counting is Hard. In Information and
Computation 92(1) (1989), 34-44.

[FoRe 91] L. Fortnow and N. Reingold, PP is closed under truth-table reductions.
Proceedings of the 6th Annual Conference on Structure in Complexity Theory 1991,
13-15.

[Gi 77] J. Gill, Computational complexity of probabilistic Turing machines. In SIAM
Journal on Computing 6 (1977), 675-695.

[GoPa 86] L. Goldschlager, I. Parberry, On the construction of parallel computers
from various bases of Boolean functions. In Theoretical Computer Science 21 (1986),
43-58.

[Gr 91] F. Green, On the power of deterministic reductions to C=P. To appear in Math-
ematical Systems Theory.

[He 90] U. Hertrampf, Relations among MOD-classes. In Theoretical Computer Science
74 (1990), 325-328.

21

[KöScToTo 89] J. Köbler, U. Schöning, J. Torán and S. Toda, Turing Machines
with few accepting computations and low sets for PP. In Proceedings of the 4th Structure
in Complexity Theory Conference 1989, 208-216.

[KöScWa 87] J. Köbler, U. Schöning, K. W. Wagner. The difference and truth-table
hierarchies of NP. In Theoretical Informatics and Applications, 21(4):419-435, 1987.

[PaZa 83] C. Papadimitriou, S. Zachos, Two remarks on the power of counting. In 6th
GI Conference on Theoretical Computer Science, Lecture Notes in Computer Science
145 (1983) 269-276.

[Sch 83] U. Schöning, A low and a high hierarchy within NP. In Journal of Computer
and System Sciences 27 (1983) 14-28.

[Schö 86] U. Schöning. Complexity and Structure. Springer-Verlag Lecture Notes in Com-
puter Science 211, 1986.

[Tod 89] S. Toda, On the computational power of PP and ⊕P. In Proceedings of the 30th
Symposium on Foundations of Computer Science 1989, 514-519.

[TodWa 91] S. Toda and O. Watanabe, Polynomial time 1-Turing reducibility from
#PH to #P. To appear in Theoretical Computer Science.

[Tor 88] J. Torán, An Oracle Characterization of the Counting Hierarchy, Proceedings of
the 3rd Annual Conference on Structure in Complexity Theory 1988, 213-223.

[Va 79] L.G. Valiant, The complexity of computing the permanent. In Theoretical Com-
puter Science 8 (1979), 189-201.

[ValVaz 86] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions.
In Theoretical Computer Science 47 (1986) 85-93.

[Wa 86] K. Wagner, The complexity of combinatorial problems with succint input rep-
resentation. In Acta Informatica 23 (1986) 325-356.

[Yao 90] A. Yao, On ACC and threshold circuits. In Proceedings of the 31st Symposium
on Foundations of Computer Science 1990, 619-627.

[Za 82] S. Zachos, Robustness of probabilistic computational complexity classes under
definitional perturbations. In Information and Control 54 (1982), 143-154.

22

