
This is page 1
Printer: Opaque this

Polynomials and Combinatorial
Definitions of Languages

Kenneth W. Regan1

ABSTRACT Using polynomials to represent languages and Boolean func-
tions has opened up a new vein of mathematical insight into fundamental
problems of computational complexity theory. Many notable advances in
the past ten years have been obtained by working directly with these poly-
nomials. This chapter surveys important results and open problems in this
area, with special attention to low-level circuit classes and to the issues of
“strong” vs. “weak” representations raised by Barrington, Smolensky, and
others. Other combinatorial representations for languages besides polyno-
mials are worthy of attention, and a new example characterizing parity-of-
(ands-of)-threshold circuits is presented in the last section.

1 Introduction

Turing machines and complexity measures are great for defining classes of
languages, but many researchers are finding that they are not so hot for
analyzing these classes, especially for lower bounds. As formal tools they
mostly stand by themselves; they do not build on or easily link to the
great progression of mathematical concepts and tools. Turing machines are
unstructured; their work environment is a tabula rasa; their computational
process is not known to have anything like the overt properties and hooks
for analysis of other mathematical processes. Even chaos is structured.
These remarks apply to other general machine models, and in large part to
Boolean circuits.

Machine-independent characterizations of complexity classes seek to an-
swer these concerns. A prominent main line of research has been “captur-
ing” these classes by systems of first and second-order logic. The chap-
ter by Barrington and Immerman in this volume covers some of this,
and some recent successes in lower and upper bounds may be found in
[AF90, FSV93, Sch94]. Here we will survey a second line that seeks to
characterize languages and complexity notions directly in terms of mathe-
matical entities that have been studied for a long time.

1Department of Computer Science, State University of New York at Buffalo,
226 Bell Hall, Buffalo, NY 14260-2000 USA. E-mail: regan@cs.buffalo.edu. Sup-
ported in part by the National Science Foundation under grant CCR-9409104.

1. Polynomials and Combinatorial Definitions of Languages 2

Polynomials over various rings and fields have been the touchstone for
many notable advances over the past ten years. The main complexity notion
for polynomials is that of degree, which in turn is a chief actor in many areas
of mathematics, and the results covered here show how well it corresponds
to standard complexity measures for the languages and functions repre-
sented by the polynomials. Although they had been used as early as 1968
by Minsky and Papert [MP68] for lower bounds on perceptrons, polynomials
really erupted onto the map with papers by Razborov [Raz87], Smolensky2

[Smo87], and Toda [Tod89, Tod91]. The point is that in each case, the poly-
nomials not only captured the problems but also ushered in the algebraic
techniques that solved the problems. A posse of papers in the next few
years [All89, AH90, Sze90, Sze93, Yao90, BT91, BT94, Tar91, ABFR91,
ABFR94, BRS91a, BRS91b, BRS95, Bar92, BBR92, BBR94, NS92, NS94,
Pat92] codified the “polynomial method” and expanded its significance.

Although polynomials have deservedly gotten the most press and receive
most attention here, there are other combinatorial objects that can do
the same service of combining issues of complexity theory with areas of
mathematics where a great many more answers are known. Space allows us
only to be suggestive by introducing one notion with a more geometrical
flavor that takes past work on hyperplane separations and thresholds one
step further, and proving results relating it to low-level classes.

This survey covers much of the same ground as the excellent one by
Beigel [Bei93], but with a different set of emphases. First, we focus more
sharply on the issue of “strong” versus “weak” representations, and set up
a framework for assessing the effect of both the underlying ring or field and
the mode of representation on the class of languages defined. Second, we
try to bring probabilistic polynomials into this framework, continuing the
foundations laid by Tarui [Tar93], and show how tradeoffs in the theory of
error-correcting codes impact on these polynomials. Third, we emphasize
applications for the small classes inside NC1; this also connects the geomet-
rical notion in Section 8 to the whole. Some material is adapted from the
author’s joint papers [GKR+95] and [NRS95], and some material is new.

2 Polynomials

Multi-variable polynomials are perhaps the simplest familiar mathemati-
cal objects that are capable of representing languages. Let R be any set

2This author was greatly saddened by the news of Roman Smolensky’s passing.
This came a week after the first draft of this article was completed. I was not
able to convert this into a more in-depth study of Smolensky’s papers themselves,
but I hope that the coverage of results and attention given to the “problem of
representations,” which Smolensky highlighted in [Smo93], will do service to his
memory and spur interest in the goals toward which he was working.

1. Polynomials and Combinatorial Definitions of Languages 3

together with two operations +, ∗ : R × R → R. Then any arithmetical
formula in +, ∗ using variables u1, . . . , un (n ≥ 0) and elements of R de-
fines an n-variable polynomial p over R, written p ∈ R[u1, . . . , un]. If +
is associative and commutative, has an identity 0 ∈ R, and gives every
element an additive inverse—and if ∗ is associative and distributes on both
left and right over +, then R = (R,+, ∗) is a ring . If ∗ is also commutative
and has an identity 1 ∈ R, then R is a commutative ring with identity ,
and further if every non-0 element has a multiplicative inverse, then R is a
field . The complex numbers C, the real numbers R, the rational numbers
Q, and the integers modulo q (denoted by Zq) for prime q are fields, but
the integers Z, and Zm for composite m ≥ 2, are “merely” commutative
rings with identity. For any k ≥ 1 and prime q, the Galois field GF(qk)
is defined with R = (Zq)k using vector addition and a ∗ operation whose
definition does not concern us here; for more on all the above, see [Jac51].
Every finite field is isomorphic to some GF(qk). GF(q) is the same as Zq,
but for k≥2, GF(qk) should not be confused with Zqk , which is not a field.

One perhaps counter-intuitive import of current research is that the more
properties one adds to R, the weaker the power of polynomials over R to
represent languages. Indeed, the most recent fundamental work has been
on polynomials (and generalizations of polynomials) defined over struc-
tures weaker than rings—see [BT88, BST90, MPT91, Nis91, AJ93, MV94].
However, our reasons for emphasizing rings come out in Section 4. Unless
otherwise specified, languages are defined over the alphabet { 0, 1 }.

Definition 2.1. Given R = (R,+, ∗), let e0 and e1 be fixed elements of
R, and let S1 and S0 be nonempty disjoint subsets of R. A sequence of
polynomials { pn : n ≥ 1 }, with each pn ∈ R[u1, . . . , un], is said to represent
a language L with scheme (e1, e0, S1, S0) if for all n and x ∈ { 0, 1 }n,

x ∈ L =⇒ pn(x) ∈ S1,

x /∈ L =⇒ pn(x) ∈ S0.

Here pn(x) is defined by substituting, for each i (1 ≤ i ≤ n), e0 for ui if xi
(i.e., the ith bit of x) is a 0, and e1 for ui if xi is a 1.

This definition “promises” that for all x, pn(x) ∈ S0 ∪ S1. When S0 =
R\S1, no promise is needed, and every sequence { pn } represents a unique
language. Given e1 and e0, the negation of a Boolean variable ui is expressed
by (e1 + e0 − ui). By analogy with a term in a DNF Boolean formula, we
call a product of factors of the form ui or (e1 + e0 − ui) a schematic term.

The following “complexity measures” for polynomials spring to mind.

(1) Degree: degp(n) = the degree of pn.

(2) Size: Here there are three main notions:

(2a) Number of monomials: mp(n) = the number of monomials when
pn is “multiplied out” via the distributive law.

1. Polynomials and Combinatorial Definitions of Languages 4

(2b) Number of schematic terms: sp(n) = the minimum number of
schematic terms needed to write pn as a sum of schematic terms.

(2c) Formula size: Fp(n) = the minimum number of +, ∗ operands
in a formula for pn.

(3) Coefficient Size: Cp(n) = the maximum number of bits in a coefficient
of a monomial of pn.

The coefficient size comes into play for the infinite rings. Combining it
with the formula size, we have a measure of the number of bits required
to write pn down. Computing the other complexity measures besides the
degree, given any formula for pn, can present difficulties. Counting the
monomials and estimating coefficient size will be straightforward since our
given formulas will not have tricky cancellations, but minimum number-of-
schematic-terms and minimum formula size are NP-hard even in seemingly
favorable cases, such as where pn takes only polynomially many nonzero
values and all of them are given. (See the corresponding problems about
Boolean formulas, called MINIMUM EQUIVALENT EXPRESSION and
MINIMUM DISJUNCTIVE NORMAL FORM, in [GJ79].)

In order to focus on these complexity measures as properties of the lan-
guages or functions themselves, with regard to various rings, we first try to
minimize the dependence on representation scheme.

3 Representation Schemes and Language Classes

Nearly all the results in our references use one of the following six repre-
sentation schemes. Sign outputs are not applicable for the finite rings. The
names of (1) and (2) are adapted from Beigel’s survey [Bei93], while the
other four are based on nomenclature in [Bar92, Smo93, BBR94].

Definition 3.1. Chief representation schemes for R = (R,+, ∗):

(1) Standard input, sign output: e0 = 0, e1 = 1, S1 = { r ∈ R : r > 0 },
and S0 = { r ∈ R : r < 0 }.

(2) Fourier input, sign output: e0 = +1, e1 = −1, S1 and S0 as before.

(3) Strong representation: e0 = 0, e1 = 1, S1 = { 1 }, and S0 = { 0 }.

(4) Standard nonzero representation: e0 = 0, e1 = 1, and S1 = { r ∈ R :
r 6= 0 } (so zero stands for x /∈ L, everything else for acceptance).

(5) Weak representation: e0 = 0, e1 = 1, and S1 = { 0 } (equivalently,
S1 = { a }, for any fixed a ∈ R). This is complementary to (4).

(6) Truly weak representation: e0 = 0, e1 = 1, S1 is arbitrary and may
differ for different n, and S0 = R \ S1.

1. Polynomials and Combinatorial Definitions of Languages 5

With standard inputs as in (1), multiplication corresponds to logical
AND, while with Fourier inputs as in (2), multiplication carries out XOR.
Fourier inputs can also be used in place of standard inputs in (3)–(6). A
major point of both these input schemes is that x2 = x holds in the former,
x2 = 1 in the latter. Hence the only polynomials we need to consider are
multilinear , and the maximum degree involved is n.

The promise pn 6= 0 in (1) and (2) is not important—one can meet
it from the case S0 = R \ S1 by forming 2pn(x) − 1. It also makes no
difference if we let a negative sign stand for true, positive for false. Hence
(3) is the only one with a real promise condition, justifying Barrington’s
name “strong representation” for it. Taking a = 1 in (5) makes it clear
that all of the other output schemes are met by polynomials obeying (3).
Smolensky [Smo93] identifies (4) with Barrington’s (5), but we prefer to
think of (4) as loosely analogous to “NP,” (5) to “coNP,” and (3) to “P.”
Truly weak representation is equivalent to saying that we have polynomials
pn such that for all x, y ∈ { 0, 1 }n with x ∈ L and y /∈ L, pn(x) 6= pn(y).
Note that no distinction between L and its complement is made in this
condition.

Definition 3.2. Two representation schemes over a ring R are equivalent
if for every { pn } representing a language L using one scheme, there ex-
ist polynomials { qn } that represent L using the other scheme, such that
degq(n) = O(degp(n)), Fq(n) = O(Fp(n)), and Cq(n) = O(nCp(n)).

The condition on Cq(n) is just strong enough to preserve polynomial
coefficient size. Now we observe that all representation schemes over finite
fields are equivalent to (3), and we use the basic idea to reduce the other
cases as much as possible. We need the following technical provision, which
holds in many cases.

Definition 3.3. Given disjoint S1, S0 ⊆ R and disjoint T1, T0 ⊆ R, say
that (S1, S0) is polynomially mappable to (T1, T0) if there is a polynomial g
in one variable over R such that g(S1) ⊆ T1 and g(S0) ⊆ T0. Call (S1, S0)
and (T1, T0) inter-mappable if (T1, T0) is likewise mappable into (S1, S0).

Now suppose we want to convert a polynomial p over R with scheme
(a1, a0, S1, S0) into a polynomial q that represents the same language with
scheme (b1, b0, T1, T0), where we are given g mapping (S1, S0) into (T1, T0).
If b1 − b0 has an inverse in R, then we can use the linear formula

q(~x) = g(p(
(a1 − a0)~x+ a0b1 − a1b0

b1 − b0
)). (1.1)

To verify: if a variable xi of q is assigned b0, then the corresponding variable
of p gets the value ((a1− a0)b0 + a0b1− a1b0)/(b1− b0) = a0(b1− b0)/(b1−
b0) = a0, and similarly an assignment of b1 to an argument of q puts a1

into the corresponding argument for the evaluation of p. This leads to a
nice “robustness” theorem for fields, especially finite fields.

1. Polynomials and Combinatorial Definitions of Languages 6

Proposition 3.1 (a) Every two inter-mappable representation schemes
over a field are equivalent.

(b) All representation schemes over a finite field F are equivalent to
strong representation; i.e., to (3) above.

Proof. Part (a) follows by Equation (1.1) and gives deg(q) ≤ deg(g) deg(p).
The formula size of p(······) is at most 7 times the formula size of p itself, and
the composition into g gives at most another constant-factor overhead. For
part (b), let a scheme (e1, e0, S1, S0) and a polynomial p be given. It suf-
fices to find a univariate polynomial g such that g(r) = 1 for r ∈ S1 and
g(r) = 0 otherwise. That is done by

g(r) = 1− [
∏
s∈S1

(r − s)]‖F‖−1,

since every non-zero element raised to the power of ‖F‖ − 1 gives 1. Thus
we have

q(~x) = g(p((e1 − e0)~x+ e0)).

This yields a strong representation, and deg(q) ≤ (‖F‖ − 1)2 deg p. To go
from this to any other scheme (b1, b0, T1, T0), fix any a ∈ T0 and b ∈ T1,
and define

q′(~x) = (b− a)q(
x− b0
b1 − b0

) + a.

Now we observe that the construction in (a) using Equation (1.1) works
not only in fields, but also in many other cases. It works:

• When b1 − b0 has an inverse in R—for instance, in Zm when b1 − b0
is relatively prime to m.

• When the function g can be multiplied by arbitrary powers of b1− b0
and still map S into T and the complement of S into the comple-
ment of T . Multiplying by (b1 − b0)deg(p) cancels all denominators in
monomials of p(···

b1−b0).

Corollary 3.2 (a) For sign output, all representations for the inputs are
equivalent for polynomials over Z, as well as the fields Q and R. So
(1) is equivalent to (2).

(b) Fourier inputs are equivalent to standard ones for polynomials over
Zm when m is odd, in each of (3)–(6).

(c) When S0 and S1 are fixed for outputs, lower bounds on degree proved
for the standard input representation apply to all other input repre-
sentations.

1. Polynomials and Combinatorial Definitions of Languages 7

Proof. (a) If (b1 − b0) is positive, then S = {x ∈ Z : x > 0 } is preserved
under powers of (b1−b0), as is its complement. If (b1−b0) is negative, then
multiply by (b0 − b1) instead. The coefficient size stays within the bounds
allowed by Definition 3.2. Part (b) holds because 2 is relatively prime to m
when m is odd. For (c), any polynomials pn representing L with a scheme
(a1, a0, S) can be converted to (1, 0, S) because then b1 − b0 = 1.

Note that we left the term-counting and monomial-counting measures
out of the definition of equivalence. The above results do not preserve
the latter—they can blow up to exponentially many monomials. We do
not know what happens in general for schematic terms. However, Equa-
tion (1.1) does preserve the ability to wire Boolean inputs into small circuit
gadgets that give the corresponding values in the ring, so that wherever
“number of terms” is used in the following results, robustness does hold.
Several authors use “terms” as synonymous with monomials or leave the
meaning vague; we pin it down to “schematic terms” if need be. Call { pn }
sparse if the pn can be written with polynomially many schematic terms.

To describe various kinds of circuits and circuit classes, we adopt and
adapt the notations of Goldmann, H̊astad, and Razborov [GHR92] and
Maciel and Thérien [MT93, Mac95] as follows: A stratified circuit of depth
d has inputs labeled x1, . . . , xn together with their negations x̄1, . . . , x̄n,
and then has d levels. Gates at each level receive inputs from the previous
level (the inputs are level 0), and all gates at the same level have the same
type. The gate types we consider are:

• AND gates (A) and OR gates (O), of unbounded fan-in;

• “Small” AND gates (ANDsmall), defined to have fan-in (log n)O(1);

• Modk gates (Modk), standardly defined to output true iff the number
of true inputs is zero modulo k;

• Parity gates (P) or (Parity), which are the same as Mod2 gates;

• Large Threshold gates (LT), each of which has a threshold t and
integer weights wi associated to its 0-1 valued input lines ei, and
outputs true iff

∑
i wiei > t.

• Small Threshold gates (T) have t, wi = rO(1), where r is the fan-in.

• Majority gates (MAJ) have all wi = 1 and t = r/2. We also include
the negation of a MAJ gate under this heading.

• Midbit gates (Midbit): a Midbit gate of fan-in r returns the dlog2 reth
bit of the number m of true inputs, where m is in binary notation.

• General symmetric gates (SYM) are any gates whose output depends
only on the number of input lines that are true. This designation
includes all of the above except T and LT gates.

1. Polynomials and Combinatorial Definitions of Languages 8

The major classes defined by polynomial-size, constant-depth circuit fam-
ilies are AC0, where the circuits have unbounded fan-in AND, OR, and
NOT gates, ACC0, where they may also have Modk gates (with k fixed
for the family), and TC0, where they may instead have LT gates. Since an
LT gate can be simulated by a depth-two, n13-sized gadget of MAJ gates
[Hof96] (see also [GHR92]), TC0 can also be defined via T gates or MAJ
gates. Also for each k ≥ 1, NCk denotes the class of languages accepted by
bounded fan-in Boolean circuit families of polynomial size and O(logk n)
depth, and NC = ∪kNCk. We skirt issues of uniformity for these classes
(see the chapter by Barrington and Immerman in this volume), since uni-
formity goes to the background in what follows. The known inclusions are

AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ . . . ⊆ NC ⊆ P.

Only the first inclusion is known to be proper [FSS84], and even ACC0 6=
NP is unknown!

The stratified-circuit notation allows us to define more-refined classes
than the above. For example, MAJ ◦A stands for polynomial-sized circuits
consisting of a MAJ gate connected to one layer of AND gates at the inputs,
and LT ◦A for circuits that may have a large threshold gate at the output
instead. Both MAJ ◦ A and LT ◦ A denote proper subclasses of TC0 (see
[GHR92, Mac95]). Now we can relate the circuit classes to polynomials.

Theorem 3.3 (cf. [Bei93]) (a) Let L be represented by polynomials pn
over Z, Q, or R having polynomial formula and coefficient size, using
sign outputs. Then L ∈ NC2.

(b) If the pn are sparse, then L ∈ LT ◦A. Conversely, every language in
LT ◦A has sparse polynomials over Z and R, using standard inputs.

(c) If standard inputs are used and the coefficients of the sparse pn have
polynomial magnitude (that is, have O(log n) bits), then L ∈ MAJ◦A.
Conversely, every language in MAJ ◦ A has sparse polynomials over
Z with all (non-zero) coefficients equal to 1.

(d) If L is represented by pn over a finite ring R, and the pn have poly-
nomial formula size, then L ∈ NC1. Moreover, every L ∈ NC1 is rep-
resented by polynomials over GF(2) having polynomial formula size.

(e) In (d), if the pn are sparse, then L ∈ ACC0; also, L has SYM ◦
ANDsmall circuits of size 2polylog(n), where again, ANDsmall means
that the AND gates have polylog(n) fan-in.

Proof Sketch. The main point of (a) is the fact that polynomial-sized
arithmetical formulas can be effectively “rebalanced” into arithmetical for-
mulas of polynomial size and log depth (see [Spi71, Bre74, MP92]). Since
the inputs e0 and e1 are fixed for all pn, all intermediate values have poly-
nomially many bits, and since each arithmetical operation is in (Boolean)

1. Polynomials and Combinatorial Definitions of Languages 9

NC1, the whole is in NC2. In (b), the coefficient on each monomial becomes
a weight on a line into a threshold gate, with t = 1. For (c) one can dupli-
cate gates below the inputs and add dummy lines. The first part of (d) is
clear by the reasoning in (a), and the converse follows by standard “arith-
metizing” of Boolean formulas. The first part of (e) is immediate over Zm,
and coding tricks extend it to other finite rings. The second part is due to
Beigel and Tarui [BT91], and is bundled into Theorem 6.1 below.

Cases (c) and (e) correspond to “Theorem 2” in [Bei93]. In (e), if the
ring is Zm and weak representation (5) in Definition 3.1 is used with a = 0,
then the output gate becomes a Modk gate.

Curiously, these basic relationships with circuit classes say nothing by
themselves about the degree measure. Degree corresponds to the order of a
perceptron, as formalized and studied by Minsky and Papert [MP68]. The
equivalence of perceptrons to polynomials with bounded coefficients (and
with the number of monomials plus one equal to the size of the perceptron)
is shown by Beigel [Bei93] and treated further in [Bei94a]. One remark is
that an order-d perceptron of order d, size s, and weights of magnitude w
can be converted into an order-d perceptron of size 2ds and weight sw that
has no negated inputs and no duplicate AND gates (see [Bei94b, MP68]);
this corresponds to the obvious relationship between number of schematic
terms and number of monomials. We do not discuss perceptrons further
here. The impact of having low-degree polynomials comes out in other
simulations described below. In contrast to the lack of good lower bounds
for familiar machine-based complexity measures, the degree measure lends
itself to tight lower and upper bounds in a number of important cases.

4 Strong Versus Weak Representation

First, we note that to every Boolean function f(x1, . . . , xn) we can asso-
ciate a canonical polynomial σf , such that σf represents f over any ring
R under strong representation. For every assignment ~a = (a1, . . . , an) in
{ 0, 1 }n, let M~a(~x) =

∏
i(2aixi − xi − ai + 1). This is zero except when

~x = ~a, when it is 1. Then let σf be the sum of M~a over all ~a such that
f(~a) = true. As explained by Tarui [Tar91], because R is a ring and not
a weaker structure, the R-module Fn(R) of functions from { 0, 1 }n to R
behaves much like a 2n-dimensional vector space—even if R is not a field.
In particular, the 2n multilinear monomials form a basis for this space, so
every function in Fn(R) can be written uniquely as a linear combination
(with coefficients in R) of these monomials. (Since 0 and 1 commute with
every element of a ring, we do not even need R to be a commutative ring,
and the above features hold also for Fourier inputs.) Hence σf is the unique

1. Polynomials and Combinatorial Definitions of Languages 10

strong representation of f . If we know the degree and size measures of σf ,
that’s it—no strong representation can do better.

Now define Zf to be the set of polynomials that compute f (over a given
R) under the standard nonzero representation. Proposition 3.1(b) now says
that over a finite field F , all members of Zf have degree within a factor of
|F| − 1 of that of σf . Over Zm with m composite, however, there can be
drastic differences. Barrington [Bar92] gives this example with m = 6:

L = (0∗(10∗)6)∗.

L is weakly represented over Z6 by the degree-one polynomials pn(~x) =
x1 + . . .+ xn. However, the unique strong representations have degree n.

The differences emerge even for the basic AND and OR functions. With
standard inputs and sign output, the languages 1∗ and 0∗1(0+1)∗, standing
for arbitrary fan-in AND and OR respectively, are represented by linear
polynomials over Z and the other infinite rings; viz., OR by x1 + · · ·+ xn
and AND by x1 + · · ·+xn−(n−1). For Zm the known bounds are different.

Theorem 4.1 For polynomials over Zm, m ≥ 2:

(a) [Tar91, BST90] (Beigel [Bei93] adds “folklore”) Under strong rep-
resentation, AND and OR require degree n.

(b) [BBR94] Under the standard nonzero representation, AND still re-
quires degree n, but OR is representable in degree O(n1/k), where k
is the number of distinct prime factors of m. The best known lower
bound on degree for OR is Ω(log1/(k−1) n) [TB95].

(c) [Smo87, BST90, BBR94] If m is a prime power (so k = 1), OR
is representable in degree dn/m− 1e, and this is best possible.

(d) Under weak representation, (b) and (c) hold with the roles of AND
and OR reversed. In particular, there is no degree-preserving simula-
tion between the standard nonzero representation and its complement.

Proof. (a) We have σAND (u1, . . . , un) = u1 · · ·un and σOR = 1 − (1 −
u1) · · · (1 − un). Those are the unique strong representations, and each
has degree n. Now in (b), any standard representation p of AND maps
all of { 0, 1 }n \ 1n to 0. Hence the value p(1n) = a determines the whole
function—it is the monomial ax1 · · ·xn. Each of these has degree n, and by
the reasoning for σf above, there are no others. For the other part of (b),
see [Bei93] or [BBR94].

(c) For the upper bound, let d = dn/m− 1e, and use

g(u) = (u1 · · ·ud) + (ud+1 · · ·u2d) + . . .+ (u(m−2)d · · ·un).

Then g has m − 1 monomials, each of degree at most d, and g(~x) 6=
0 ⇐⇒ OR(x1, . . . , xn). AND under the complementary weak represen-
tation is treated dually. For the lower bound, note that the conversion to

1. Polynomials and Combinatorial Definitions of Languages 11

strong representation works since Zm is a field and multiplies the degree by
(m − 1). By (a), the degree here cannot be lower than d. Part (d) follows
from the definitions.

The polynomials constructed in [BBR94] to achieve the upper bound for
OR in (b) are symmetric, and a matching lower bound for symmetric poly-
nomials representing OR is proved in [BBR94]. We will see that the degree
picture for AND and OR improves considerably when we go to probabilistic
polynomials, even under strong representation. First we examine bounds
for some other functions and languages.

5 Known Upper and Lower Bounds on Degree

The following results are taken from Beigel’s survey [Bei93], where full
proofs may be found. By the robustness results and usages established in
the last section, we can be fairly brief in stating the hypotheses.

Theorem 5.1 ([MP68]) The parity language 0∗1(0∗10∗1)∗0∗ requires de-
gree n over Z, Q, and R.

Note that the parity function x1 + x2 + · · ·+ xn (mod 2) is a degree-one
polynomial over GF(2). Over Zm with m = 2k one can use kx1 + · · ·+kxn
to get a degree-one representation with S0 = { 0 } and S1 = { k }. The case
of odd m is different.

Theorem 5.2 ([Smo87]) Parity requires degree Ω(n1/2) over Zm for any
odd m ≥ 3.

Now, following [BBR94], define Modk(x1, . . . , xn) to be false if x1 + · · ·+
xn ≡ 0 (mod k), and true otherwise. Write δ(f,m) for the minimum degree
of a standard nonzero representation of f over Zm, and ∆(f,m) for that of
a “truly weak” representation. Recall that the minimum degree of f under
weak representation (i.e., with S1 = { 0 }) is the same as δ(¬f,m).

Theorem 5.3 (a) [Smo87] When m = p is prime and k is not a power
of p, δ(Modk, p) = Ω(n).

(b) [BBR94] If k has a prime divisor that is not a divisor of m, then
δ(Modk,m) = nΩ(1) and also δ(¬Modk,m) = nΩ(1).

(c) (see [BBR94]) If the set of prime divisors of k is contained in that
of m, then δ(Modk,m) = O(1) and δ(¬Modk(m)) = O(1).

(d) [Tsa93] If m is not a prime power, then δ(¬Modm,m) = Ω(n).

1. Polynomials and Combinatorial Definitions of Languages 12

(e) [Tsa93] If m is not a prime power, and k has a prime divisor that
does not divide m, then δ(Modk,m) and δ(¬Modk,m) are both Ω(n).

The results by Tsai [Tsa93] improved nΩ(1) bounds in [BBR94] in the case
where m is not square-free. Green [Gre95] improved the results of [BBR94,
Tsa93] further by showing that under standard nonzero representation,
for all k there is a constant Ck such that for all m that are relatively
prime to k, δ(Modk,m) ≥ Ckn. That is, the constant in “δ(Modk,m) =
Ω(n)” is independent of m so long as the modulus m is prime to k. This
holds even if Definition 3.1(4) is made weaker by requiring only that the
polynomial p is not identically zero but gives zero whenever x /∈ L (i.e., the
Boolean function concerned, here Modk, is false). However, none of these
bounds are known at all for the degrees ∆(Modk,m) under “truly weak”
representation. Tsai also proved the following theorem.

Theorem 5.4 ([Tsa93]) For any integer m ≥ 2:

(a) δ(MAJ ,m) ≥ n/2.

(b) δ(Midbit ,m) = Ω(n1/2).

Some functions that (unlike parity and Modk) do belong to uniform AC0

also require more than polylog degree over the infinite rings.

Theorem 5.5 ([MP68]) Over Z, Q, and R, the Boolean function f de-
fined by f(x0, . . . , x4m3−1) = (∀i ∈ [0 . . .m − 1])(∃j ∈ [0 . . . 4m2 − 1])xi+j
requires degree m. Hence with n = 4m3, the degree is Ω(n1/3).

For representation by polynomials over R, it is most common to use
S1 = {x ∈ R : |x − 1| ≤ 1/3 }, and define S0 similarly around 0. Then
OR and AND cannot be done with degree o(

√
n) (see [Bei93]), and Paturi

[Pat92] showed that the MAJ function requires degree Ω(n). Nisan and
Szegedy [NS94] showed that the degree of this representation is polyno-
mially related to that of strong representation. Namely, for every Boolean
function f , every polynomial representing f in this scheme has degree at
least c(deg(σf))1/8, where the constant c > 0 is independent of f . In fact,
they showed that both measures are polynomially related to the decision-
tree complexity of f . Similar techniques were used by Beigel [Bei94a] to
show that the language

L = (00 + 01 + 10 + 11)∗10∗

(called ODDMAXBIT in [Bei93]), which is represented over Z by the
degree-one polynomial

∑n
i=1(−2)ixn with linear-sized coefficients, cannot

be represented over Z or Q or R by low-degree polynomials with small
coefficients. The exact result is that it cannot be done in degree no(1) with
coefficient size no(1) (and 2n

o(1)
monomials). In particular, this language is

1. Polynomials and Combinatorial Definitions of Languages 13

not recognizable by perceptrons of polylog order, sub-exponential weight,
and quasipolynomial size (i.e., size 2polylog(n)).

Several of the lower bounds show that all polynomials of a given low
degree d(n) fail to represent a given Boolean function on a large portion of
inputs x ∈ { 0, 1 }n, such as a constant fraction of them. The next theorem
gives an example.

Theorem 5.6 ([ABFR94]) For all d, n, and m ≤ 2n, there exists a
degree-d polynomial p over Z whose sign represents Parity(x) for m-many
x ∈ { 0, 1 }n, iff m ≤

∑
0≤k<(n+d+1)/2(nk).

In particular, to compute parity correctly on 1/2 + ε of the inputs, for
fixed ε > 0, one needs degree Ω(

√
n). Now define Lk (k ≥ 2) to be the

language of strings x formed by catenating some number m of “blocks” of
the form 0ri10k−ri , such that

∑m
i=1 ri 6= 0 modulo k. Using polynomials

over C in an auxiliary role, Barrington and Straubing [BS94] obtained the
following theorem.

Theorem 5.7 ([BS94]) There exists δ depending on k such that polyno-
mials representing Lk (by sign over Z) on a 1 − δ proportion of inputs
require degree Ω(

√
n).

The most basic non-approximability results stem from the following
“folklore” lemma, versions of which may be found in [Bar92] and [Smo93].

Lemma 5.8 Every polynomial p(x1, . . . , xn) of degree at most d over a
field F is either constant, or takes value 0 on at least 2n−d(|F|−1) Boolean
(i.e., 0-1) arguments.

In consequence, a degree-d polynomial over Z2 must disagree with OR on
at least 2n−d − 1 arguments, and straightforward constructions show that
this bound is tight. Barrington [Bar92] proved a generalization.

Theorem 5.9 ([Bar92]) Let p have degree d and take at most r distinct
values in a field F . Then p has value 0 on at least 2n−d(r−1) 0-1 arguments.

For arbitrary ringsR in place of F , Barrington proved that the statement
of Theorem 5.9 holds if d = 1 or r = 2, and that the weaker Lemma 5.8
holds for all d in Zpk , for any prime p and all k [Bar92]. However, an
example credited to Applegate, Aspnes, and Rudich in [Bar92] shows that
the statement fails for R = Z6 with d = 3 and n = 27: Let

p(~x) = s3(~x) + 5s2(~x) + 3s1(~x),

where si stands for the mod-6 sum of all monomials of degree i. This
polynomial is a standard nonzero representation of OR in Z6, and meets
the prescribed bounds from Theorem 4.1(b). For a full explanation of the
failure, see [BBR94].

1. Polynomials and Combinatorial Definitions of Languages 14

Smolensky [Smo93] used Hilbert functions to prove several other non-
approximability results in fields of finite characteristic.

Theorem 5.10 ([Smo93]) Using asymptotic notation that depends only
on the characteristic c and not on the size of a field F , and using standard
non-zero representation:

(a) Every polynomial of degree o(n1/2) differs from MAJ on at least
2n−1 − o(2n) Boolean arguments.

(b) If c 6= 2, then every polynomial of degree o(n1/2) differs from Parity
on at least 2n−1 − o(2n) Boolean arguments.

(c) If q is prime and c 6= q, then every polynomial of degree o(n1/2) differs
from ¬Modq on at least (1/q)2n − o(2n) Boolean arguments.

6 Polynomials For Closure Properties

Polynomials have also been used to prove relationships among complexity
classes. Instead of n variables standing for bits in an input string, the poly-
nomials used here may have just one or two variables standing for numerical
quantities used in defining the classes. The first striking application of this
kind was given by Toda [Tod91] in proving that the polynomial hierarchy
is contained in P#P. He constructed single-variable polynomials Pd over Z
that have the following modulus-amplifying property for all integers k ≥ 1
and x ≥ 0:

x ≡ 0 (mod k) =⇒ Pd(x) ≡ 0 (mod kd), (1.2)
x ≡ −1 (mod k) =⇒ Pd(x) ≡ −1 (mod kd). (1.3)

Toda used P2(x) = 3x4 + 4x3 and inductively defined P2d(x) = P2(Pd(x))
for d ≥ 2, using only moduli a power of 2. Yao [Yao90] improved the
degree and showed that ACC0 circuits can be simulated by probabilis-
tic SYM◦AND circuits of quasipolynomial (i.e., 2polylog(n) size, where the
ANDs have polylog fan-in. Beigel and Tarui [BT91] made Yao’s circuits
deterministic without increasing their size, and constructed the following
polynomials Pd of optimal degree 2d− 1:

Pd(x) = 1− (1− x)d(
d−1∑
j=0

(d+j−1
j)xj). (1.4)

(These satisfy x ≡ +1 (mod k) =⇒ Pd(x) ≡ +1 (mod kd) in place of (1.3),
but it is easy to convert between these conditions, and this is the one we
use below.) Finally, Green, Köbler, and Torán [GKT92], following on from
observations about Toda’s theorem in [RS92], replaced the arbitrary SYM
gate in these results by a Midbit gate, and obtained the following theorem.

1. Polynomials and Combinatorial Definitions of Languages 15

Theorem 6.1 ([GKT92, GKR+95]) Every language in Midbit ◦ ACC0

has Midbit ◦ANDsmall circuits of quasipolynomial size.

Proof Sketch. Let L ∈ Midbit ◦ ACC0. The first idea is that all AND
and OR gates in the ACC0 part of the circuits defining L can be replaced
by probabilistic Modm ◦ANDsmall sub-circuits, where as before, ANDsmall

means one level of AND gates of polylog fan-in. Since only polylog-many
random bits are needed to do this (see the next section), this part can
be simulated by taking a sum of quasipolynomially-many deterministic
Modm◦ANDsmall circuits. By a lemma in [AH90, BT91], all the small ANDs
can be interchanged with Modm gates below them and pushed into one layer
of small ANDs at the inputs. Then the “pure ACC0” part of the circuits
between the Midbit-of-sum and the small ANDs can be written in stratified
form where each level uses Modk gates for some prime k [BT91]. It remains
to show that the Midbit gate can “swallow up” a sum of Modk circuits,
yielding a Midbit-of-small-ANDs. Pushing the small ANDs beyond the next
layer of Modk gates (generally a different k) toward the inputs (as before)
leaves a Midbit-of-sum-of-Modk again, and the process is repeated until all
the Modk gates are gone. We give the key lemma for the Midbit-of-sum-of-
Modk part in full since its proof shows the use of the Toda polynomials.

Lemma 6.2 Let k be prime and let { bn } be a family of functions such
that there exists a polynomial r where for each n, bn is of the form

bn(x1, ..., xn) =
w∑
i=1

ci(x1, ..., xn),

where each ci is a Modk ◦ ANDsmall circuit and w ≤ 2r(log n). Then for
any polynomial t there are polynomials p and q and a family of polynomials
{hn } of degree p(log n) such that for each n,

bn(x1, ..., xn) ≡ (hn(x1, ..., xn) div 2q(log n)) (mod 2t(log n)).

Proof. To simplify notation, let p, p′, q, r, s, and t denote p(log n), p′(log n),
q(log n), r(log n), s(log n), and t(log n), respectively. Each Modk◦ANDsmall

circuit ci outputs 1 if and only if a certain sum σi of the AND-gates is
nonzero mod k. Now each σi can be regarded as a polynomial in variables
(x1, . . . , xn) over Zk of degree equal to the fan-in of the small ANDs, and
since k is prime, we may arrange via Lemma 3.1 that σi(~x) is always 0 or
1 (mod k). Now using the “Toda polynomials” Pd in (1.4) above, it follows
that

bn(x) =
w∑
i=1

[
Pd(σi) mod kd

]
.

We choose d = p′(log n) where p′ is a polynomial such that kp
′
> 2r+t+2.

Then bn(x) ≤ 2r < kp
′
. Now the outer sum in the equation above for bn is

1. Polynomials and Combinatorial Definitions of Languages 16

less than kp
′
, so the “mod” can be moved outside; i.e.,

bn(x) ≡

[
w∑
i=1

Pp′(σi)

]
(mod kp

′
).

Writing fn(x) =
w∑
i=1

Pp′(σi), we have

fn(x) = an(x)kp
′
+ bn(x)

for some an(x). Note that for some polynomial s, fn(x) < 2s. Also note
that since σi is a polynomial of polylog degree, there is some polynomial p
such that fn is a polynomial of degree p(log n) in the variables x1, ..., xn.
Define the degree p(log n) polynomial hn as follows:

hn(x) = i(n)
⌈
2q/kp

′
⌉
fn(x) + 2qfn(x),

where i(n) ≡ −kp′ (mod 2t) and q is a polynomial such that q ≥ s+ t+ 2.
Then d2q/kp′efn(x) = an(x)2q + b′n(x), where b′n(x) < 2q−t−1. Hence

hn(x) ≡ 2qbn(x) + i(n)b′n(x) (mod 2q+t),

where i(n)b′n(x) < 2q−1. This completes the proof of Lemma 6.2 and the
sketch of Theorem 6.1.

The class MP (also called MidbitP) introduced in [RS92, GKR+95] was
motivated to find the sharpest upper bound for the polynomial hierarchy in
Toda’s theorem. A language L belongs to MP if there exists a polynomial-
time NTM N such that for all strings x, x ∈ L ⇐⇒ the middle bit of
the standard binary representation of #accN (x) is a “1.” Here #accN (x)
stands for the number of accepting computations of N on input x, while
GapN (x) (see [FFK91]) stands for #accN (x) minus the number of non-
accepting computations. A useful equivalent definition of MP is obtained
by combining observations in [GKR+95] and [FFL93]. Say that an integer r
is “top modulo 2k” if (r mod 2k) belongs to [2k−1 . . . 2k−1]. Then L ∈ MP
iff there exist N and a polynomial-time computable function g such that
for all x,

x ∈ L ⇐⇒ GapN (x) is top modulo 2g(x). (1.5)

This compares well with the standard definition of PP as the class of lan-
guages L such that for some N and all x,

x ∈ L ⇐⇒ GapN (x) > 0. (1.6)

Both PP and MP are closed under complements. The closure of PP
under intersection follows via (1.6) from the existence of an integer-valued
function h such that for all polynomial-time NTMs N1 and N2 and all x,

h(GapN1
(x),GapN2

(x), x) > 0 ⇐⇒ GapN1
(x) > 0 ∧ GapN2

(x) > 0,
(1.7)

1. Polynomials and Combinatorial Definitions of Languages 17

and such that there is a polynomial-time NTM N3 whose gap function
GapN3

(x) equals the left-hand side of (1.7). One would like to have a poly-
nomial A such that for all integers r and s, A(r, s) > 0 ⇐⇒ r > 0 ∧ s > 0,
but no such A exists [MP68]. However, we only need this to hold for those r
and s that can possibly arise as values of GapN1

(x) and GapN2
(x). For some

k depending only on N1 and N2, these must be in the range [−2m . . . 2m],
where m = |x|k. The following polynomials Am fitting this bill were found
by Beigel, Reingold, and Spielman [BRS91a, BRS95], and were based on
one-variable rational functions (i.e., quotients of two polynomials) that
compute sign(x) on similar ranges found by Newman [New64].

Am(r, s) :=
1
4

(Pm(r) + Pm(−r))(Pm(s) + Pm(−s))

−Pm(r)(Pm(s) + Pm(−s))− Pm(s)(Pm(r) + Pm(−r)),

=
1
4

(3Pm(r)− Pm(−r))(3Pm(s)− Pm(−s)) − 4Pm(r)Pm(s)

where

Pm(r) = (r − 1)
m∏
i=1

(r − 2i)2.

For more details, see [BRS95]. Unlike the Toda polynomials, the coefficients
of Am do not belong to Z. However, all values on integral arguments belong
to Z, so we call Am integer-valued , and the degree of Am is polynomial in m.
As shown in [BRS95], this suffices for constructing the required polynomial-
time NTM N3. Fortnow and Reingold extended this construction to show
that PP is closed under polynomial-time truth-table reductions [FR91].
Ogihara [Ogi95] has recently extended these polynomials to show that the
log-space analogue PL of PP is self-low, i.e., that PLPL = PL.

Now let us turn attention to the problem of whether MP is closed under
intersection. This time, what we want is a polynomial bound on degree in
the following statement.

In terms of k, what is the minimum degree of an integer-valued
polynomial p(x, y) such that for some polynomial t and all x
and y, p(x, y) is top modulo 2t(k) ⇐⇒ both x and y are top
modulo 2k?

Note that pmay have rational coefficients so long as it is integer-valued. The
simplest polynomial we know that satisfies this congruence relation (with
t(k) = k) is p(x, y) =

(
x

2k−1

)(
y

2k−1

)
2k−1, which has degree 2k. M. Coster and

A. Odlyzko [personal communication, 3/91] found solutions with degree
O(φk), where φ is the golden ratio 1.618 . . ., and with coefficients likewise
appreciably smaller than the above. If such p can be found with degree
polynomial in k, then p can be written as a polynomial-sized sum of small

1. Polynomials and Combinatorial Definitions of Languages 18

binomial coefficients in x and y, which can then be used in building the
polynomial-time NTM needed to show MP closed under intersection.

A related question is: What is the minimum degree required to achieve,
with all quantities defined modulo m,

p(x, y) = 0 ⇐⇒ (x = 0 ∧ y = 0)?

With integer coefficients, this is possible iff m is square-free—and then p
can have degree 2. For the case m = 2k (and rational coefficients), D.A.M.
Barrington [personal communication, 11/95] gives an argument that makes
an Ω(

√
m) = Ω(2k/2) lower bound on degree highly plausible, for both this

and the “top mod 2k” problem with t(k) = k. The main idea is that there
is a unique way to write p(x, y) in the form

∑
i,j ai,j

(
x
i

)(
y
j

)
with integral

ai,j . A well-known fact is that
(

2k

i

)
is divisible by 2k/ord2(i), where ord2(i)

stands for the largest power of 2 dividing i. With x = y = m/2, all the
terms with both ord2(i) and ord2(j) at most

√
m/2 are divisible by m. Thus

in particular, all terms with 1 ≤ i, j ≤
√
m/2 disappear in the congruence

mod m. The only low-degree terms that can squeak through this analysis
are those with i = 0 or j = 0, and these give us single-variable polynomials
(with zero constant term) q(x) and r(y) such that p(m/2,m/2) is congruent
to p(0, 0) + q(m/2) + r(m/2) modulo m. If the q and r terms can be made
to “go away,” we have the desired contradiction.

Note that this would not contradict the above upper bound since it
amounts to Ω(1.414 . . .k). The tantalizing aspect, however, is that even this
argument has no effect when t(k) ≥ 2k. It may yet be possible to build two-
variable “modulus-shifting” polynomials to meet the above requirement
for closure of MP under intersection, and a direct and efficient-enough
construction might collapse some counting classes between PP⊕P and PPP,
as discussed at the end of Section 3 of [GKR+95].

7 Probabilistic Polynomials

A probabilistic polynomial in n variables over a ring R is formally defined,
following Tarui [Tar93], as a mapping σ from a sample space U to the set
R[x1, . . . , xn] of polynomials in variables x1, . . . , xn with coefficients in R.
The degree of σ is defined to be the maximum, over all j ∈ U , of the degree
of the polynomial σj . We write Prj∈U [. . .] to indicate sampling according
to the uniform distribution on U .

Definition 7.1. A probabilistic polynomial σ represents a language L
within error δ, using scheme (e1, e0, S1, S0), if for all n and x ∈ { 0, 1 }n,

x ∈ L =⇒ Prj∈U [σj(x) ∈ S1] ≥ 1− δ,
x /∈ L =⇒ Prj∈U [σj(x) ∈ S0] ≥ 1− δ.

1. Polynomials and Combinatorial Definitions of Languages 19

Here we will use the standard (1, 0) input representation, and consider
both strong and weak representation for outputs. We will also consider cases
whereR is the field GF(2k) and k may increase with n, so that the overhead
in Proposition 3.1 becomes a factor. However, we will then convert from
weak representations over GF(2k) to representations over GF(2), where
strong and weak are the same. Over GF(2), schematic terms are products
of xi and (1 − xi), and we simply call them “terms.” The following two
results are well-known.

Proposition 7.1 (see [Tar93]) Let σ be a probabilistic polynomial in n
variables over Zm (with standard nonzero representation) that has degree
d and sample space { 0, 1 }r, and such that for each j, σj is written with
at most c terms. Then there is an equivalent Modm ◦ AND circuit C with
n “actual inputs” and r “random inputs,” such that the AND layer has at
most c2r gates, each of fan-in at most d+ r.

Proof. Each possible value of j can be regarded as a binary string of length
r. For each j and each term in σj involving variables xi1 , . . . , xid , assign an
AND gate with d+ r wires to the inputs. The first d wires go to the actual
inputs or their complements that appear in the term, and the other r wires
go to the random inputs or their complements, each according to whether
the corresponding bit of j is 1 or 0. Then this AND gate evaluates to 1
iff the values of the random inputs are precisely j, and the corresponding
clause in σj contributes 1. The Modm of all the AND gates for this j is the
same as the value of σj(x) modulo m. All AND gates for other values of
j output zero, so connecting everything to a single Modm gate yields the
correct values for all j and x.

The circuits in turn can be regarded as polynomials over Zm that have
n “actual arguments” and r “random arguments.” This shows the essential
equivalence between Tarui’s convenient formalism using distributions and
the older notion of a single polynomial with “probabilistic arguments.”

For the case m = 2, there is a deterministic simulation that is more
efficient than Theorem 6.1 given above.

Proposition 7.2 ([All89, AH90]) If the probabilistic polynomial σ rep-
resents f over GF(2) with success probability > 1/2, then the probabilistic
circuit C simulating σ in Proposition 7.1 can be converted to a determin-
istic depth-three MAJ ◦MAJ ◦ AND circuit C ′ that has c2r AND gates,
each of fan-in d, and c22r MAJ gates in the second layer.

Proof. This follows from the simulation of a MAJ of u-many Parity gates,
where each Parity has fan-in at most m (an even number), by a depth-2
circuit comprised of um+ 1 MAJ gates [All89, AH90].

1. Polynomials and Combinatorial Definitions of Languages 20

H̊astad and Goldmann [HG91] proved that any depth-3 circuit of this
kind (even with the MAJORITY gates replaced by arbitrary unweighted
threshold gates) that computes the GF(2) polynomial

∑n
i=1

∏d
j=1 xij must

have size at least 2Ω(n/(d+1)4d+1), which translates to 2n
Ω(1)

if d ≤ (1/3) log n.
Razborov and Wigderson [RW93] showed that any such circuit that com-
putes the GF(2) polynomial

∑n
i=1

∏logn
j=1

∑n
k=1 xijk must have nΩ(log n) size,

regardless of the bottom fan-in d. This still leaves open the possibility of
achieving polynomial size in the depth-3 construction for functions in (uni-
form) AC0, or for achieving polynomial size with a higher constant depth
(cf. [HHK91]).

Now we look concretely at polynomials for OR. First note that under
the sign output representation, OR is trivially represented over Z by the
degree-one polynomial

∑n
i=1 xi. Under strong representation, however, the

degree jumps all the way to n, over Zm as well as Z. For probabilistic
polynomials, however, strong representation is much less costly.

Theorem 7.3 ([ABFR94]) OR is strongly represented over Z within er-
ror ε by probabilistic polynomials of degree O(log(1/ε) log n).

Proof. We vary somewhat from the proof in [ABFR94]: Let ` = dlog2 ne.
For each k, 0 ≤ k ≤ `, let Rk ⊆ { 1, . . . , n } be randomly selected by
independently placing i ∈ Rk with probability 1/2k. This gives us for each k
a randomly-selected polynomial ρk(x1, . . . , xn) =

∑
i∈Rk xi. Finally define

σ(x1, . . . , xn) = 1−
∏̀
k=0

(1− ρk(x1, . . . , xn)). (1.8)

Now when all xi are 0, with probability 1 this polynomial gives 0. When
the set S of xi that are 1 is nonempty, an easy analysis of the two values of
k that straddle log2 |S| shows that with probability at least 1/4, some ρk
takes value 1, so the product is zero, so σ takes value 1. Finally, to amplify
the 1/4 to 1 − ε, replace the product in (1.8) by a product of dlog2(4/ε)e
independent copies of

∏
k(1− ρk(x1, . . . , xn)).

This uses O(n log(1/ε)) random bits. As is well known, one only needs
the random variables defining the sets Rk to be pairwise-independent, and
a standard universal hashing construction needs only O(log n) random bits
for the success probability 1/4, hence O(log n log(1/ε)) random bits overall.
This construction works for probabilistic strong representation over Zm as
well as Z.

The question we ask is: Can one do better in the degree and random-
bits measures? We show that the answer is yes for polynomials over any
finite field, including Zp with p prime, by a construction involving error-
correcting codes. Such codes were used by Tarui [Tar93] in non-constructive

1. Polynomials and Combinatorial Definitions of Languages 21

arguments about probabilistic polynomials, and by Naor and Naor [NN93]
in other contexts. Here we emphasize the way probabilistic polynomials are
constructed from the codes. For sake of comparison, we first show how the
basic “parity trick” of Naor and Naor [NN93] can be applied to eliminate
the product over k in (1.8): Using `+ 1 more random bits b0, . . . , b`, define

σ(x1, . . . , xn) =
∑̀
k=0

bkρk(x1, . . . , xn)) (mod 2).

Then σ(~0) = 0 with probability one. For all arguments ~x 6= 0, think of some
ρk that gives value 1. The bit bk alters the overall sum by 1 depending on
its value. Hence with probability at least 1/8, σ(~x) = 1 (mod 2). Thus
we have a degree-one probabilistic polynomial achieving constant success
probability for OR. This amplifies by repeated trials to degree O(log(1/ε))
for success probability 1 − ε, using O(log n) log(1/ε) random bits. Hence
this saves an O(log n) factor on degree compared to Theorem 7.3, although
we have strong representation over Z2 instead of over Z.

Open Problem 1. Can ∨ be strongly represented within error ε over Z
by probabilistic polynomials of degree log(1/ε) · o(log n)?

This relates to whether the randomized reduction from SAT to Unique SAT
by Valiant and Vazirani [VV86] can be made as efficient as the reduction
to Parity SAT as optimized in [NRS95] (see also [NN93, Gup93]).

The construction via error-correcting codes that we present next achieves
slightly better constants in the bounds compared to the above. The success
probability for degree-one representation over Z2 is improved from 1/8 to
1/2− η, where η has a minimal effect on the other bounds. The number of
random bits beats the bound of 2 log n needed for pairwise independence,
i.e., needed to construct a family of universal2 hash functions from n bits
to n bits.

7.1 Error-Correcting Codes

In this subsection, let Σ be an alphabet whose cardinality is a prime power
q = pk. The Hamming distance dH(x, y) of two strings x, y ∈ Σ∗ of equal
length is defined to be the number of positions in which x and y differ.
For any N, d ≥ 1, an (N, d) code over Σ is a set C ⊆ ΣN such that for all
distinct x, y ∈ C, dH(x, y) ≥ d. Elements of C are called codewords. We
identify Σ with the finite field F = GF(pk), and then ΣN can be regarded
as a vector space of dimension N over F .

Definition 7.2. A linear code over F with parameters [N,K, d] is an
(N, d) code C that forms a vector subspace of ΣN of dimension K over
F . Two other important parameters are the rate R = K/N , and the den-
sity δ = d/N .

1. Polynomials and Combinatorial Definitions of Languages 22

The use of [. . .] to distinguish linear codes is standard in coding theory.
Where intent is clear we write [N,K, δ] in place of [N,K, d]. Given any
K-dimensional vector subspace C ⊆ ΣN , denote by dC the maximum d
such that C is an [N,K, d] code, and write δC = dC/N . Thus dC equals
min{ dH(x, y) : x, y ∈ C, x 6= y }, and so is called the minimum distance of
the code C. The weight wt(x) of a string x ∈ ΣN is the number of nonzero
entries, which is the same as dH(x, 0). A well-known fact is that in a linear
code C, the minimum distance is equal to the minimum weight of a non-
zero codeword. This is because for all x, y ∈ C, x− y is also in C. Thus the
density δC gives the minimum proportion of non-0 entries in any non-zero
codeword. Where intent is clear we write just d and δ for dC and δC .

Definition 7.3. A generator matrix G for an [N,K, d] code C is a K×N
matrix over F whose rows G(i, ·), 1 ≤ i ≤ K, form a basis for C.

Now we indicate how we intend to make N and K scale with our input
lengths n.

Definition 7.4. Let [Cn]∞n=1 be a sequence of [Nn,Kn, dn] codes over F .
Then the Cn are said to be small codes if Nn = nO(1), and large codes if
they are not small and Nn = 2n

O(1)
.

For probabilistic polynomials we use small codes, with Kn = n:

Proposition 7.4 Let G generate an [N,n, δ] code over F . Then the prob-
abilistic polynomial σ with sample space the columns of G, defined by

σj(x1, . . . , xn) =
n∑
i=1

G(i, j)xi, (1.9)

represents OR(x1, . . . , xn) over F with success probability at least δ.

Proof. If all xi are 0, then for all j, σj(x1, . . . , xn) = 0, so this probabilistic
polynomial gives one-sided error. Now let S = { i : xi = 1 } be nonempty.
To S there corresponds the unique codeword wS =

∑n
i=1G(i, ·). Since

wS is nonzero, with probability at least δ over j sampled uniformly from
{ 1, . . . , N }, wS(j) 6= 0. And wS(j) = σj(x1, . . . , xn).

Note that σ has the columns of G as its sample space and is linear. Also,
1 − σ represents NOR, σ(1 − x1, . . . , 1 − xn) represents NAND, and 1 −
σ(1− x1, . . . , 1− xn) represents AND. These probabilistic polynomials are
also linear with constant success probability. The number r of random bits
used is dlog2Ne. Expressed in terms of the rate R = K/N , with K = n,
r = logn + log(1/R). Thus if the rate is constant, r = logn + O(1), while
if N is polynomial in K, r = O(log n). This motivates the next definition,
part (a) of which is standard in coding theory.

1. Polynomials and Combinatorial Definitions of Languages 23

Definition 7.5. (a) A sequence [Cn]∞n=1 of codes over F is asymptot-
ically good if there are constants R, δ > 0 such that (∀∞n)Rn ≥
R ∧ δn ≥ δ.

(b) The sequence is almost-good if δ > 0 exists giving (∀∞n)δn ≥ δ, and
the lengths Nn are polynomial in Kn.

The emphasis in Proposition 7.4 is on the density, rate, and the com-
plexity of computing individual entries G(i, j). This stands apart from the
main application of coding theory, which is to take a plaintext message w of
length K, encode w into the codeword x = wG, transmit x over a channel
that may alter it to x′, and have the receiver decode x′ to recover w. So
long as dH(x, x′) < d/2, the “nearest codeword” decoding algorithm given
x′ will find x and then w. The higher one can make δ and R, the more
erroneous symbols one can correct and the less the transmission overhead.
In recent breakthrough work, Spielman [Spi95] constructed asymptotically
good codes with Kn = Nn = O(n) that give encoding and decoding in
linear time. However, we do not know whether the computation of entries
of his Gn(i, j) can be done in (uniform) AC0. The codes used by Sudan
[Sud92] to streamline the “PCP” results of [ALM+92] are almost-good, and
put G(i, j) into AC0 when used as small codes. They suffice for the next
result.

Theorem 7.5 There are AC0-uniform linear probabilistic polynomials that
represent OR over GF(2) with constant success probability using O(log n)
random bits.

Proof. We scale down the main theorem in section 3 of [NRS95] from
“large codes” to “small codes” with K = n as follows: Let h = dlog2Ke,
` = dlog2 he, and m = dh/`e. That is, we identify { 1, ...,K } with (a subset
of) { 0, 1 }h for the row labels, and break each i ∈ { 0, 1 }h into m strings
i1 · · · im, where each has length `. Here we may suppose that the last one,
im, is padded out to length ` with 0s. The first idea is that each such i corre-
sponds to a monomial in m formal variables z1, . . . , zm, namely zi11 · · · zimm ,
where now i1, . . . , im are regarded as numbers between 0 and h − 1. Note
that all such monomials are distinct and have total degree D less than mh.

Now let η > 0 be arbitrary, let s = dlog2(mh/η)e, and let F be the finite
field GF(2s). The column space of our matrix G over GF(2) is given by

J = { (a1, . . . , am, v) : a1, . . . , am, v ∈ F },

which is in 1-1 correspondence with strings j of length (m+ 1)s. Then for
all rows i and columns j = (a1, . . . , am, v) we define:

G(i, j) = (ai11 · · · aimm) • v, (1.10)

where the powers and products are over F , but • stands for the dot-product
of two binary strings, which brings the final result down into GF(2). Since

1. Polynomials and Combinatorial Definitions of Languages 24

the field elements in (1.10) are binary strings of length only 2 loglog n+O(1),
and m < log n, precomputed tables yield uniform AC0 circuits (and we
suspect the whole is in DLOGTIME as treated in [BIS90]). The number of
random bits to generate j is (m+ 1)s ' ms =

h

log h
log(

h2

η log h
) = 2h− h loglog h

log h
+

h

log h
log(1/η) < 2 logn.

Hence the codes are almost-good, with length N a tad below n2.
We claim that G generates a code of the required dimension and density.

Since the distinct monomials are linearly independent in F [z1, . . . , zm], they
generate a space of dimension K over F . For the density we use the key
lemma from the aforementioned “PCP” papers, often ascribed to Schwartz
[Sch80] but anticipated by Zippel [Zip79]: For every two distinct polyno-
mials p and q of total degree at most D over a field F , and every I ⊆ F ,

|{~a ∈ Fm : p(~a) = q(~a) }| ≤ D|I|m−1.

With I = F , it follows that every nonzero polynomial p in our space takes
on at least |F|m−D|F|m−1 nonzero values. Dividing by |F|m says that the
proportion of nonzero values is at least 1 − D/|F| = 1 −mh/2s = 1 − η.
Now consider the codeword wp corresponding to p, and. consider a nonzero
value p(a1, . . . , am) = u. This corresponds to a range of 2s-many columns
indexed by (a1, . . . , am, v) over all v ∈ F . Since u 6= 0, exactly half of those
v give u•v = 1. Hence the density of the codeword wp is at least (1−η)/2,
and this fulfills the claim made about the code. (Technically, G is the
“concatenation” of the code over F with the so-called binary “Hadamard
code” defined by the dot-product function over GF(2).)

Finally, Proposition 7.4 gives us the desired linear probabilistic polyno-
mials, for AND, NOR, NAND as well as OR, with constant one-sided error
arbitrarily close to 1/2, and with polynomial sample-space size.

We do not know of a sequence of good small codes that is AC0-uniform.
B.-Z. Shen [She93] shows how to construct asymptotically good binary
codes by an algebraic technique that (in an analogous situation) chops
many columns out of J without reducing the density of the code, but we
do not know how uniform the “chops” are.

In the case of large codes with K = 2n, the computation of G(i, j) in
(1.10) involves field elements of size O(log n). Since both the sequences
(a1, . . . , am) and (i1, . . . , im) can be read left-to-right, the entire computa-
tion can be done in one-way log-space. Thus NL random-logspace reduces
to ⊕L, and this immediately implies Wigderson’s theorem that NL/poly ⊆
⊕L/poly [Wig94]. We would like to know whether this computation can be
done in TC0.

1. Polynomials and Combinatorial Definitions of Languages 25

Matters become more complex when the error tolerance ε is not constant
but shrinks rapidly with n. A example application is simulating AC0 circuits
of depth b and size nc within a target error e. We may suppose that each
gate is a NAND gate of fan-in at most n. The idea is to substitute “the
same” probabilistic polynomial σ of degree d and error εn for each gate.
Composing these polynomials then yields a single probabilistic polynomial
τ of degree db in the input variables x1, . . . , xn of the circuit that computes
it with error at most εnnc. This works even though the “errors at each
gate” are not independent; note that τ has the same sample space as σ.
Thus we wish to arrange εn ≤ e/nc.

We could do O(log(1/εn)) independent trials in this example, thus mak-
ing d ' c log n and using r(n) = O(log n log(1/εn)) = O(log2 n) random
bits. Plugging this in to the construction in Theorem 7.5 improves the orig-
inal degree bounds of Beigel, Reingold, and Spielman [BRS91a, BRS95],
and stays slightly ahead of the result of Gupta [Gup93], but still falls well
short of the optimal bounds shown to be achievable by the non-constructive
argument of Tarui [Tar93].

However , there is a very interesting possibility of achieving better bounds
in a uniform manner by using larger fields F . It is known that whenever
δ < 1−1/|F|, sequences of good codes over F with δn ≥ δ exist. If we have
1/2k ≤ ε = 1− δ, then the argument of Proposition 7.4 immediately gives
us a linear probabilistic polynomial τ over GF(2k) that computes OR using
r(n) = log n + O(1) random bits. The following then gives an alternative
way to obtain a small-degree σ over GF(2) for OR. Let ork be the unique
polynomial that represents (deterministically!) k-bit OR over GF(2).

Proposition 7.6 Let G be an n×N generator matrix for a code of density
δ over GF(2k), and let G′ be the straightforward way of regarding G as an
n× kN matrix over GF(2). Then the probabilistic polynomial σ defined by

σj(x1, . . . , xn) = ork

(
n∑
i=1

G′(i, kj − k + 1)xi, . . . ,
n∑
i=1

G′(i, kj)xi

)
(1.11)

represents OR(x1, . . . , xn) over GF(2) with error at most δ, and has degree
k and sample space { 1, . . . , N }.

Note that σ has the same sample space as τ . There is a way to regard G as
a kn × kN matrix G′′ over GF(2), but the difference between G′ and G′′

seems not to matter much.
Now we want to ask: What happens to “good” codes over GF(2k) when

k scales upward with n? What must at least happen to the “+O(1)” in
r(n) above is shown by a coding-theory bound called the Singleton bound :
in an [N,K, d] code (over any field), K + d ≤ N + 1. Written another way
with ε = 1− d/N , the bound becomes N ≥ (K − 1)/ε, and putting K = n,
this says that the number of random bits used must satisfy

r(n) ≥ log2(n− 1) + log2(1/ε).

1. Polynomials and Combinatorial Definitions of Languages 26

This is much better than the r(n) = log(n) log(1/ε) from repeated trials.
There are codes that meet this bound—such codes are called maximum dis-
tance separable (MDS). The question now becomes: Can we construct MDS
(or nearly MDS) codes of high density over GF(2k)? This and the question
of how the densities δk and rates Rk for good codes in Definition 7.5 may
scale with k lead into deep areas of coding theory, for which [MS77] is a
standard reference. The issues here about working with larger fields of the
same characteristic (here, GF(2k) versus GF(2)) seem connected to similar
issues in Smolensky’s paper [Smo93] (see Theorem 5.10 cited above). We
believe that there is room in the theory of error-correcting codes for new
discoveries that will add to our knowledge about complexity classes.

8 Other Combinatorial Structures

If we blur the distinction between a language L and its complement ∼L, we
can regard L as a “two-coloring” of Σ∗. We seek connections to a powerful
body of mathematics that is bound up with generalizations of a familiar
theorem about two-colorings of the plane:

Any map formed by simple closed curves and infinite straight
lines in the plane can be colored with two colors, so long as
all intersections are “general”—meaning that for every pair of
curves or lines, the intersections (if any) between them form a
collection of isolated crossing points.

Versions of this theorem extend to higher dimensions. To use them, we
need to identify Σ∗ with a subset of real space. We decide to take Σ = { 0, 1 }
and identify Σn with the vertices of the unit cube in Rn, for each n.

The generalization of “infinite straight line” to Rn is a hyperplane, mean-
ing an affine translation of an (n − 1)-dimensional subspace of Rn. Every
hyperplane is defined by an equation of the form

∑n
i=1 xiwi = t. The

(upper) open half space associated to the hyperplane consists of points
~x satisfying

∑n
i=1 xiwi > t. Note that this inequality defines a thresh-

old gate. A polytope is an intersection of open half-spaces that defines a
bounded nonempty region of space, together with its surface consisting of
those points belonging to the hyperplanes that are added in forming the
topological closure of this region. (This wording makes all polytopes “full-
dimensional.”) Every polytope is convex. Familiar examples of polytopes in
R3 are the tetrahedron, cube, octahedron, and prism, but not a cylinder,
cone, or sphere.

For simplicity, we will not work with the theories of algebraic curves and
algebraic topology that provide full generalizations of simple closed curves
in the plane, but will confine attention to polytopes. Say a collection of
polytopes is in “general position” if no polytope has a hyperplane that

1. Polynomials and Combinatorial Definitions of Languages 27

goes through a vertex of the unit n-cube, and no two polytopes share a
hyperplane nor any lower-dimensional facet. (See [MP68] for more on this.)
Then we have an analogue of the above two-coloring theorem:

Every finite collection of polytopes in general position defines
a two-coloring of Rn, and every vertex of the unit n-cube has
a well-defined color.

Definition 8.1. A language L belongs to PALT if there are polynomial-
sized collections Pn of polytopes in general position, with each member of
Pn defined by polynomially-many half-spaces, such that for all n, all points
in L=n have one color, and all points in ∼L=n have the other color.

By definition, PALT is closed under complements. If we want to distin-
guish “the language of {Pn }” from its complement, we may exploit the
fact that the partition of Rn by Pn has only one infinite region, and define
L(Pn) by those points on the unit cube that have the same color as this
region. We can always complement L by adding one polytope that encloses
the unit cube.

Now we can characterize this idea in terms of the circuit classes defined
at the end of Section 3.

Proposition 8.1 A language L belongs to PALT iff L is recognized by
polynomial-sized Parity ◦AND ◦ LT circuits.

Proof. Let L in PALT, and let Pn define L=n. Each polytope is definable
by an AND of LT gates. By a standard lemma in [MP68], each LT gate can
be replaced by an LT gate that gives the same outputs on the vertices of
the unit cube in Rn, such that the weights and threshold for the latter gate
all have O(n log n) bits. Hence the circuits obtained by attaching a single
parity gate to all the AND-of-LTs are polynomial-size P ◦ A ◦ LT circuits.
Now we claim that two vertices x and y of the unit cube have different colors
iff the number of polytopes P ∈ Pn such that exactly one of x, y belongs
to the interior of P is odd. This claim implies that the P ◦ A ◦ LT circuit
computes the same language as the coloring. To verify the claim, consider
the straight line segment ` from x to y. Now all intersection points of ` with
the surfaces of polytopes are isolated, for if ` were to lie along the surface
of a polytope, then some hyperplane involved would go through x and y,
in violation of general positioning. Two different polytopes may intersect `
at a given point, but each intersection, counting this kind of multiplicity,
represents a color change. Hence the total number of intersections, counting
multiplicities, is odd. Since a polytope that has both or neither of x, y in
its interior contributes 0 or 2 to this total, the claim is proved.

Going the other way, given a P ◦ A ◦ LT circuit, each AND gate defines
an intersection of open half spaces. By adding some LT gates that output
true for all assignments in { 0, 1 }n, we can make this intersection into an

1. Polynomials and Combinatorial Definitions of Languages 28

equivalent polytope. The lemma from [MP68] can also be used to tweak
the polytopes into general position without changing any values on the unit
cube.

Thus PALT is a small-depth, polynomial-size circuit class. It seems to
lie “just above” the polynomial-size circuit classes for which strong lower
bounds are currently known, such as those treated in [HG91, GHR92,
MT93, Mac95]. All of the latter classes are contained in polynomial-size
TC0 depth-3. Much attention has focused on the problem of whether NC1 =
TC0

3. We find it just conceivable that NC1 might equal PALT. Since PALT ⊆
TC0

4 by the obvious simulation of AND gates by MAJ gates and the known
simulation of Parity by two levels of MAJ [CSV84], this would imply
NC1 = TC0

4. However, we do not know whether PALT ⊆ TC0
3. The best

depth simulation we know was furnished by Alexis Maciel and refined in
personal communications with Maciel and Mikael Goldmann.

Theorem 8.2 For any m > 0, Modm ◦ AND ◦ LT has quasipolynomial-
sized circuits consisting of a Midbit gate connected to one layer of MAJ
gates at the inputs. In particular, PALT ⊆ qTC0

3, where the “q” indicates
quasipolynomial size.

Proof. As shown in [CSV84], by using iterated addition to simulate the
weights in an LT gate, LT ⊆ AC0 ◦MAJ . Thus

Modm ◦AND ◦ LT ⊆ Modm ◦AC0 ◦MAJ .

Now by Theorem 6.1, Modm ◦AC0 ⊆ q(Midbit ◦ANDsmall), where all AND
gates in the corresponding level are small , i.e., have polylog fan-in. Now
each MAJ gate involved has fan-in at most r = nO(1). We want to sim-
ulate each small-AND of MAJ by a single SYM gate of quasipolynomial
fan-in. Theorem 3.6 of [Mac95], which is a slight extension of the relevant
special case of results in [Bei94b] and [HHK91], does this by brute-force
coding of all (r + 1)polylog(n) possible vectors of sums of the input bits
to the polylog(n)-many MAJ gates, with a different integer for each vec-
tor. The coding produces a function of these integers, which becomes a
symmetric function of npolylog(n)-many input lines. The codings used in
[Bei94b, Mac95] do not produce a threshold function of these integers, so
they do not yield a single MAJ gate. However, because all of the MAJ
and small-AND gates above can be normalized to have the same fan-in via
“dummy inputs,” the number k of values on which each new SYM gate
outputs true can be the same for all SYM gates in the circuit. Thus

Modm ◦AND ◦ LT ⊆ q(Midbit ◦ SYM).

By a lemma of Hájnal et al. [HMP+87], every symmetric 0-1 valued function
h in m “own” variables can be written as

h(z1, . . . , zm) = g(M1(z1, . . . , zm), . . . ,M2k(z1, . . . , zm)),

1. Polynomials and Combinatorial Definitions of Languages 29

where (1) i1 < i2 < . . . < ik are the k values of z1 + · · · + zm on which h
outputs 1, (2) for each j, 1 ≤ j ≤ k, M2j(z1, . . . , zm) = 1 ⇐⇒ z1 + · · ·+
zm ≥ ij and M2j−1(z1, . . . , zm) = 1 ⇐⇒ z1 + · · · + zm ≤ ij , and (3) g is
the linear 2k-variable integer polynomial g(r1, . . . , r2k) = r1 + · · ·+ r2k−k.
Each of the Mj functions is computable by a single MAJ gate using extra
“dummy” inputs (and using the fact that negated inputs are available),
so we can abbreviate this as h = g ◦MAJ . So the whole circuit is now a
quasipolynomial-size Midbit ◦ g ◦MAJ .

Now finally we claim that since g is linear , the Midbit ◦ g portion of
the circuit can be replaced by a single Midbit gate. This is because the
original single Midbit gate M outputs the middle bit of the binary sum of
its inputs, and each input line g(r1, . . . , r2k) is itself a sum, minus k. Hence
we can gather all the inputs to all g’s into a “positive section” of inputs to
a new gate M ′, and all of the “−k”s into a “negative section,” so that the
new M ′ outputs the middle bit of the gap between the number of inputs
in its positive section that are on and the number of inputs in its negative
section, all of which are on. Here we are helped for ease of verification by
the fact that we have made k the same for each of the quasipolynomially-
many inputs g1, . . . , gq to the original M , so that the new M ′ outputs the
middle bit of  q∑

i=1

2k∑
j=1

rj,i

− qk.
Analogous to the way that the class MidbitP is robust under changing the
definition to the middle bit of a GapP function, this M ′ can be trans-
formed into a Midbit gate (with all its input lines treated “positively”).
This leaves us with a quasipolynomial-size Midbit ◦MAJ circuit. Finally,
applying the same lemma from [HMP+87] to the symmetric gate M ′ pro-
duces a quasipolynomial-size circuit of the form g′ ◦MAJ ◦MAJ , which is
clearly in qTC0

3.

PALT seems to be worthy of further research. Some open questions: Is
it contained in polynomial-size TC0 depth-3? Does it contain (uniform)
AC0? We note that given collections P1 defining L1 and P2 defining L2,
one can construct a collection P3 defining L1 ∩ L2 by taking all pairwise
intersections of polytopes in P1 and P2. However, the size blowup in the
collections by this method is too great to answer these questions. The real
technical matter of interest seems to be what kind of projections can be
done from Rn to Rm with m < n.

A simpler class PLT can be defined in terms of two-colorings obtained
from collections of hyperplanes alone. Similar to Proposition 8.1, these
are equivalent to polynomial-size Parity ◦ LT circuits, which are a proper
subclass of TC0 depth-3. The class of languages defined by a single hyper-
plane in Rn (for each n) is called LT 1 by Agrawal and Arvind [AA95], who

1. Polynomials and Combinatorial Definitions of Languages 30

show that if NP polynomial-time bounded truth-table reduces to LT 1, then
NP = P. Clearly PALT polynomial-time truth-table reduces to LT 1, but
this reduction is neither bounded nor conjunctive nor disjunctive, so even
the stronger results in [AA95] seem not to apply, and we do not know how
PALT relates to P and NP. A truth-table reduction to LT 1 is essentially
the same as a polynomial-size linear decision tree, as studied by Björner,
Lovász, and Yao [BLY92]. The exponential size lower bounds in [BLY92]
and [Yao94] are for decision problems about arbitrary points in Rn, how-
ever, and we do not know whether they carry over to problems restricted
to points on vertices of the unit cube. Still, there seems to be much promise
that geometrical methods of the kind used in [AA95, BLY92, Yao94] can
be brought to bear on Boolean complexity via this route.

Acknowledgments

Alexis Maciel furnished the initial version of Theorem 8.2, during the 1995
Montreal-McGill Workshop on Computational Complexity in Barbados,
March 1995. I also thank Maciel and Mikael Goldmann for subsequent
discussion of this theorem and PALT in general. Richard Beigel provided
me an updated draft of his survey [Bei93]. David Mix Barrington gave
me helpful discussions and clarifications of much of the material, and the
anonymous referee did the same. Barrington and Andrew Odlyzko (the
latter for Mattijas Coster) sent interesting personal communications on
the open problems in Section 6. Finally, I thank Eric Allender for bringing
some useful results and matters to my attention.

9 References
[AA95] M. Agrawal and V. Arvind. Reductions of self-reducible sets to depth-

1 weighted threshold circuit classes, and sparse sets. In Proc. 10th
Annual IEEE Conference on Structure in Complexity Theory, pages
264–276, 1995.

[ABFR91] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power
of voting polynomials. In Proc. 33rd Annual IEEE Symposium on
Foundations of Computer Science, pages 402–409, 1991.

[ABFR94] J. Aspnes, R. Beigel, M. Furst, and S. Rudich. The expressive power
of voting polynomials. Combinatorica, 14:1–14, 1994.

[AF90] M. Ajtai and R. Fagin. Reachability is harder for directed than for
undirected finite graphs. J. Symb. Logic, 55:113–150, 1990.

[AH90] E. Allender and U. Hertrampf. On the power of uniform families of
constant-depth circuits. In Proc. 15th International Symposium on
Mathematical Foundations of Computer Science, volume 452 of Lect.
Notes in Comp. Sci., pages 158–164. Springer Verlag, 1990.

[AJ93] E. Allender and J. Jiao. Depth reduction for noncommutative arith-
metic circuits (extended abstract). In Proc. 25th Annual ACM Sym-
posium on the Theory of Computing, pages 515–522, 1993.

1. Polynomials and Combinatorial Definitions of Languages 31

[All89] E. Allender. A note on the power of threshold circuits. In Proc.
30th Annual IEEE Symposium on Foundations of Computer Science,
pages 580–584, 1989.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and hardness of approximation problems. In Proc. 33rd
Annual IEEE Symposium on Foundations of Computer Science, pages
14–23, 1992.

[Bar92] D. Mix Barrington. Some problems involving Razborov-Smolensky
polynomials. In M. Paterson, editor, Boolean Function Complex-
ity, volume 169 of LMS Lecture Note Series, pages 109–128. London
Math. Soc., 1992. Proceedings of an LMS Symposium in Durham,
July 1990.

[BBR92] D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean
functions as polynomials modulo composite numbers. In Proc. 24th
Annual ACM Symposium on the Theory of Computing, pages 455–
461, 1992.

[BBR94] D. Mix Barrington, R. Beigel, and S. Rudich. Representing Boolean
functions as polynomials modulo composite numbers. Computational
Complexity, 4:367–382, 1994.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proc. 8th
Annual IEEE Conference on Structure in Complexity Theory, pages
82–95, 1993. Revised version, 1995.

[Bei94a] R. Beigel. Perceptrons, PP, and the polynomial hierarchy. Compu-
tational Complexity, 4:339–349, 1994.

[Bei94b] R. Beigel. When do extra majority gates help? polylog(n) majority
gates are equivalent to one. Computational Complexity, 4:314–324,
1994.

[BIS90] D. Mix Barrington, N. Immerman, and H. Straubing. On uniformity
within NC1. J. Comp. Sys. Sci., 41:274–306, 1990.

[BLY92] A. Björner, L. Lovász, and A. Yao. Linear decision trees: volume
estimates and topological bounds. In Proc. 24th Annual ACM Sym-
posium on the Theory of Computing, pages 170–177, 1992.

[Bre74] R. Brent. The parallel evaluation of general arithmetic expressions.
J. Assn. Comp. Mach., 21:201–206, 1974.

[BRS91a] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back.
In Proc. 6th Annual IEEE Conference on Structure in Complexity
Theory, pages 286–291, 1991.

[BRS91b] R. Beigel, N. Reingold, and D. Spielman. PP is closed under inter-
section. In Proc. 23rd Annual ACM Symposium on the Theory of
Computing, pages 1–9, 1991.

[BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under inter-
section. J. Comp. Sys. Sci., 50:191–202, 1995.

[BS94] D. Mix Barrington and H. Straubing. Complex polynomials and cir-
cuit lower bounds for modular counting. Computational Complexity,
4:325–338, 1994.

1. Polynomials and Combinatorial Definitions of Languages 32

[BST90] D. Mix Barrington, H. Straubing, and D. Thérien. Non-uniform au-
tomata over groups. Inform. and Comp., 89:109–132, 1990.

[BT88] D. Mix Barrington and D. Thérien. Finite monoids and the fine
structure of NC1. J. Assn. Comp. Mach., 35:941–952, 1988.

[BT91] R. Beigel and J. Tarui. On ACC. In Proc. 32nd Annual IEEE Sym-
posium on Foundations of Computer Science, pages 783–792, 1991.

[BT94] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–
366, 1994.

[CSV84] A. Chandra, L. Stockmeyer, and U. Vishkin. Constant-depth re-
ducibility. SIAM J. Comput., 13:423–439, 1984.

[FFK91] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
In Proc. 6th Annual IEEE Conference on Structure in Complexity
Theory, pages 30–42, 1991.

[FFL93] S. Fenner, L. Fortnow, and L. Li. Gap-definability as a closure prop-
erty. In Proc. 10th Annual Symposium on Theoretical Aspects of
Computer Science, volume 665 of Lect. Notes in Comp. Sci., pages
484–493. Springer Verlag, 1993.

[FR91] L. Fortnow and N. Reingold. PP is closed under truth-table reduc-
tions. In Proc. 6th Annual IEEE Conference on Structure in Com-
plexity Theory, pages 13–15, 1991.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-
time hierarchy. Math. Sys. Thy., 17:13–27, 1984.

[FSV93] R. Fagin, L. Stockmeyer, and M. Vardi. On monadic NP vs. monadic
co-NP. In Proc. 8th Annual IEEE Conference on Structure in Com-
plexity Theory, pages 19–30, 1993.

[GHR92] M. Goldmann, J. H̊astad, and A. Razborov. Majority gates vs. gen-
eral weighted threshold gates. Computational Complexity, 2:277–300,
1992.

[GJ79] M. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

[GKR+95] F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán. The
power of the middle bit of a #P function. J. Comp. Sys. Sci., 50:456–
467, 1995.

[GKT92] F. Green, J. Köbler, and J. Torán. The power of the middle bit.
In Proc. 7th Annual IEEE Conference on Structure in Complexity
Theory, pages 111–117, 1992.

[Gre95] F. Green. Lower bounds for depth-three circuits with equals and
mod-gates. In Proc. 12th Annual Symposium on Theoretical As-
pects of Computer Science, volume 900 of Lect. Notes in Comp. Sci.
Springer Verlag, 1995.

[Gup93] S. Gupta. On isolating an odd number of elements and its appli-
cations to complexity theory. Technical Report OSU-CISRC-6/93-
TR24, Dept. of Comp. Sci., Ohio State University, 1993.

1. Polynomials and Combinatorial Definitions of Languages 33

[HG91] J. H̊astad and M. Goldmann. On the power of small-depth threshold
circuits. Computational Complexity, 1:113–129, 1991.

[HHK91] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold
circuits and multiplication in depth 4. In Proc. 8th International
Conference on Fundamentals of Computation Theory, pages 230–239,
1991.

[HMP+87] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Thresh-
old circuits of bounded depth. In Proc. 28th Annual IEEE Symposium
on Foundations of Computer Science, pages 99–110, 1987.

[Hof96] T. Hofmeister. A note on the simulation of exponential threshold
weights. In Proc. 2nd International Computing and Combinatorics
Conference (COCOON’96), volume 1090 of Lect. Notes in Comp.
Sci., pages 136–141. Springer Verlag, 1996.

[Jac51] N. Jacobson. Lectures in Abstract Algebra, Vols. 1–3. Van Nostrand,
1951.

[Mac95] A. Maciel. Threshold Circuits of Small Majority-Depth. PhD thesis,
McGill University, School of Computer Science, 1995.

[MP68] M. Minsky and S. Papert. Perceptrons. MIT Press, 1968. Revised
and expanded in 1988.

[MP92] D. Muller and F. Preparata. Parallel restructuring and evaluation of
expressions. J. Comp. Sys. Sci., 44:43–62, 1992.

[MPT91] P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata-
theoretic viewpoint. Computational Complexity, 1:330–359, 1991.

[MS77] F. MacWilliams and N. Sloane. The Theory of Error-Correcting
Codes. North-Holland, Amsterdam, 1977.

[MT93] A. Maciel and D. Thérien. Threshold circuits for iterated mutli-
plication: using AC0 for free. In Proc. 10th Annual Symposium on
Theoretical Aspects of Computer Science, volume 665 of Lect. Notes
in Comp. Sci., pages 545–554. Springer Verlag, 1993.

[MV94] M. Mahajan and V. Vinay. Non-commutative computation, depth
reduction, and skew circuits. In Proc. 14th Annual Conference on
Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 880 of Lect. Notes in Comp. Sci. Springer Verlag, 1994.

[New64] D. Newman. Rational approximation to |x|. Michigan Mathematical
Journal, 11:11–14, 1964.

[Nis91] N. Nisan. Lower bounds for non-commutative computation: extended
abstract. In Proc. 23rd Annual ACM Symposium on the Theory of
Computing, pages 410–418, 1991.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: efficient con-
structions and applications. SIAM J. Comput., 22:838–856, 1993.

[NRS95] A. Naik, K. Regan, and D. Sivakumar. On quasilinear time complex-
ity theory. Theor. Comp. Sci., 148:325–349, 1995.

1. Polynomials and Combinatorial Definitions of Languages 34

[NS92] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. In Proc. 24th Annual ACM Symposium on the Theory
of Computing, pages 462–467, 1992.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real
polynomials. Computational Complexity, 4:301–313, 1994.

[Ogi95] M. Ogihara. The PL hierarchy collapses. Technical Report UR CS
TR 587, Department of Computer Science, University of Rochester,
June 1995.

[Pat92] R. Paturi. On the degree of polynomials that approximate symmetric
Boolean functions. In Proc. 24th Annual ACM Symposium on the
Theory of Computing, pages 468–474, 1992.

[Raz87] A. Razborov. Lower bounds for the size of circuits of bounded depth
with basis {∧,⊕}. Mathematical Notes, (formerly of the Academy of
Natural Sciences of the USSR), 41:333–338, 1987.

[RS92] K. Regan and T. Schwentick. On the power of one bit of a #p func-
tion. In Proc. 4th Annual Italian Conference on Theoretical Com-
puter Science, pages 317–329. World Scientific, Singapore, 1992.

[RW93] A. Razborov and A. Wigderson. nΩ(logn) lower bounds on the size of
depth-3 threshold circuits with AND gates at the bottom. Inf. Proc.
Lett., 45:303–307, 1993.

[Sch80] J.T. Schwartz. Fast probabilistic algorithms for polynomial identities.
J. Assn. Comp. Mach., 27:701–717, 1980.

[Sch94] T. Schwentick. Graph connectivity and monadic NP. In Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science, pages
614–622, 1994.

[She93] B.-Z. Shen. A Justesen construction of binary concatenated codes
than asymptotically meet the Zyablov bound for low rate. IEEE
Transactions on Information Theory, 39(1):239–242, January 1993.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for
Boolean circuit complexity. In Proc. 19th Annual ACM Symposium
on the Theory of Computing, pages 77–82, 1987.

[Smo93] R. Smolensky. On representations by low-degree polynomials. In
Proc. 34th Annual IEEE Symposium on Foundations of Computer
Science, pages 130–138, 1993.

[Spi71] M. Spira. On time-hardware complexity tradeoffs for Boolean func-
tions. In Proceedings of the Fourth International Symposium on Sys-
tems Sciences, pages 525–527, North Hollywood, California, 1971.
Western Periodicals.

[Spi95] D. Spielman. Linear-time encodable and decodable error-correcting
codes. In Proc. 27th Annual ACM Symposium on the Theory of Com-
puting, pages 388–397, 1995.

[Sud92] M. Sudan. Efficient checking of polynomials and proofs and the hard-
ness of approximation problems. PhD thesis, University of California,
Berkeley, 1992.

1. Polynomials and Combinatorial Definitions of Languages 35

[Sze90] M. Szegedy. Functions with bounded symmetric communication com-
plexity and circuits with mod m gates. In Proc. 22nd Annual ACM
Symposium on the Theory of Computing, pages 278–286, 1990.

[Sze93] M. Szegedy. Functions with bounded symmetric communication com-
plexity, programs over commutative monoids, and ACC. J. Comp.
Sys. Sci., 47:405–423, 1993.

[Tar91] J. Tarui. Randomized polynomials, threshold circuits, and the poly-
nomial hierarchy. In Proc. 8th Annual Symposium on Theoretical
Aspects of Computer Science, volume 480 of Lect. Notes in Comp.
Sci., pages 238–250. Springer Verlag, 1991.

[Tar93] J. Tarui. Probabilistic polynomials, AC0 functions, and the
polynomial-time hierarchy. Theor. Comp. Sci., 113:167–183, 1993.

[TB95] G. Tardos and D. Mix Barrington. A lower bound on the mod 6
degree of the OR function. In Proceedings of the Third Israel Sym-
posium on the Theory of Computing and Systems (ISTCS’95), Tel
Aviv, Israel, pages 52–56. IEEE Computer Society Press, 1995.

[Tod89] S. Toda. On the computational power of PP and ⊕P. In Proc. 30th
Annual IEEE Symposium on Foundations of Computer Science, pages
514–519, 1989.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J.
Comput., 20:865–877, 1991.

[Tsa93] S.-C. Tsai. Lower bounds on representing Boolean functions as poly-
nomials in Zm. In Proc. 8th Annual IEEE Conference on Structure
in Complexity Theory, pages 96–101, 1993.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theor. Comp. Sci., 47:85–93, 1986.

[Wig94] A. Wigderson. NL/poly ⊆ ⊕L/poly . In Proc. 9th Annual IEEE
Conference on Structure in Complexity Theory, pages 59–62, 1994.

[Yao90] A. Yao. On ACC and threshold circuits. In Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science, pages 619–
627, 1990.

[Yao94] A. Yao. Decision tree complexity and Betti numbers. In Proc. 26th
Annual ACM Symposium on the Theory of Computing, pages 615–
624, 1994.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Ed-
ward W. Ng, editor, Proceedings of the International Symposium on
Symbolic and Algebraic Manipulation (EUROSAM ’79), volume 72
of Lect. Notes in Comp. Sci., pages 216–226, Marseilles, June 1979.
Springer Verlag.

This is page 36
Printer: Opaque this

Index

Agrawal, M., 29
Arvind, V., 29
Aspnes, J., 13

Barrington, D.A.M., 10, 13, 18
Beigel, R., 2, 9, 10, 12, 14, 17, 25
BjΥF orner, A., 30

Circuit, 7–9
class, see Circuit class
depth, 7
level, 7
stratified, 7

Circuit class, 7–9
AC0, 7
ACC0, 7, 15
and polynomials, 8
NC1, 7, 28
PALT, 27–30
PLT, 29
TC0, 7, 28

Circuit gate
AND, 7
LT, 7, 28–29
majority, 7, 19, 28–29
Midbit, 7, 15, 28–29
Modk, 7, 28–29
OR, 7
parity, 7, 19
small, 7, 8, 15
symmetric, 7, 28–29
threshold, 7

Code
error-correcting, see Error-correcting

code
Complexity class

MP, 16–18
PP, 16–17

Coster, M., 17

Decision tree
linear, 30

Error-correcting code, 20–26
almost good, 23
asymptotically good, 23
codeword, 21
density, 21
generator matrix, 22
large codes, 22
linear code, 21
MDS, 26
minimum distance, 22
rate, 21
small codes, 22

Field, 3
Galois field GF(2k), 3

Fortnow, L., 17

Gate, see Circuit gate
Goldmann, M., 7, 20, 28
Green, F., 12, 14
Gupta, S., 25

Half space, 26
Hamming distance, 21
Hamming weight, 22
H̊astad, J., 7, 20
Hofmeister, T., 8
Hyperplane, 26–27, 29–30

KΥF obler, J., 14

Lovász, L., 30

Maciel, A., 7, 28

Index 37

Majority function, 12
Majority gate, see Circuit gate
Midbit function, 12
Minsky, M., 2, 9
Modk function, 11
Modulus amplification, see Toda

polynomial, 14

Naor, J., 21
Naor, M., 21
Newman, D., 17
Nisan, N., 12

Odlyzko, A., 17
Ogihara, M., 17

Papert, S., 2, 9
Parity function, 11, 13
Parity gate, see Circuit gate
Paturi, R., 12
Perceptron, 2, 9

order of, 9
Polynomial, 2–4

and circuit classes, 8
coefficient size of, 4, 8
degree bounds, 11–14
degree of, 2, 3, 9
formula size of, 4, 8
number of monomials in, 3
number of terms in, 4
probabilistic, 2, 18–26
representation scheme, see Rep-

resentation scheme
schematic term, 7
size of, 3
sparse, 7, 8
term, 7, 19
Toda, see Toda polynomial

Polytope, 26–29
general position, 26
surface, 26

Probabilistic polynomial, see Poly-
nomial

Razborov, A., 2, 7, 20

Reingold, N., 17, 25
Representation scheme, 3–7

equivalence, 5–7
Fourier, 4
mapping between schemes, 5
standard nonzero, 4, 11–12
standard sign, 4
strong, 4
strong vs. weak, 9–11
truly weak, 4–5, 11–12
weak, 4

Ring, 3
Rudich, S., 13

Schwartz, J., 24
Shen, B.-Z., 24
Smolensky, R., 2, 5, 14, 26
Spielman, D., 17, 23, 25
Straubing, H., 13
Sudan, M., 23
Symmetric gate, see Circuit gate
Szegedy, M., 12

Tarui, J., 2, 9, 14, 18, 20, 25
Thérien, D., 7
Threshold gate, see Circuit gate
Toda polynomial, 14–17
Toda, S., 2, 14
Torán, J., 14
Tsai, S.-C., 12

Valiant, L., 21
Vazirani, V., 21

Wigderson, A., 20, 24

Yao, A., 14, 30

Zippel, R., 24

