
Algebraic and Logical Emulations of Quantum Circuits

Kenneth Regan1, Amlan Chakrabarti2, and Chaowen Guan1

1 University at Buffalo (SUNY)
2 University of Calcutta

Abstract. Quantum circuits exhibit several features of large-scale distributed systems. They have
a concise design formalism but behavior that is challenging to represent let alone predict. Issues
of scalability—both in the yet-to-be-engineered quantum hardware and in classical simulators—are
paramount. They require sparse representations for efficient modeling. Whereas simulators represent
both the system’s current state and its operations directly, emulators manipulate the images of sys-
tem states under a mapping to a different formalism. We describe three such formalisms for quantum
circuits. The first two extend the polynomial construction of Dawson et al. [1] to (i) work for any set
of quantum gates obeying a certain “balance” condition and (ii) produce a single polynomial over any
sufficiently structured field or ring. The third appears novel and employs only simple Boolean formulas,
optionally limited to a form we call “parity-of-AND” equations. Especially the third can combine with
off-the-shelf state-of-the-art third-party software, namely model counters and #SAT solvers, that we
show capable of vast improvements in the emulation time in natural instances. We have programmed
all three constructions to proof-of-concept level and report some preliminary tests and applications.
These include algebraic analysis of special quantum circuits and the possibility of a new classical attack
on the factoring problem. Preliminary comparisons are made with the libquantum simulator[2–4].

1 A Brief But Full QC Introduction

A quantum circuit is a compact representation of a computational system. It consists of some number m
of qubits represented by lines resembling a musical staff, and some number s of gates arrayed like musical
notes and chords. Here is an example created using the popular visual simulator [5]:

Fig. 1. A five-qubit quantum circuit that computes a Fourier transform on the first four qubits.

The circuit C operates on m = 5 qubits. The input is the binary string x = 10010. The first n = 4 qubits
see most of the action and hold the nominal input x0 = 1001 of length n = 4, while the fifth qubit is an
ancilla initialized to 0 whose purpose here is to hold the nominal output bit. The circuit has thirteen gates.
Six of them have a single control represented by a black dot; they activate if and only if the control receives
a 1 signal. The last gate has two controls and a target represented by the parity symbol ⊕ rather than a
labeled box. Called a Toffoli gate, it will set the output bit if and only if both controls receive a 1 signal.
The two gates before it merely swap the qubits 2 and 3 and 1 and 4, respectively. They have no effect on

the output and are included here only to say that the first twelve gates combine to compute the quantum
Fourier transform QFT4. This is just the ordinary discrete Fourier transform F16 on 24 = 16 coordinates.

The actual output C(x) of the circuit is a quantum state Z that belongs to the complex vector space C32.
Nine of its entries in the standard basis are shown in Figure 1; seven more were cropped from the screenshot.
Sixteen of the components are absent, meaning Z has 0 in the corresponding coordinates. Despite the diversity
of the nine complex entries ZL shown, each has magnitude |ZL|2 = 0.0625. In general, |ZL|2 represents the
probability that a measurement—of all qubits—will yield the binary string z ∈ { 0, 1 }5 corresponding to
the coordinate L under the standard ordered enumeration of { 0, 1 }5. Here we are interested in those z
whose final entry z5 is a 1. Two of them are shown; two others (11101 and 11111) are possible and also have
probability 1

16 each, making a total of 1
4 probability for getting z5 = 1. Owing to the “cylindrical” nature of

the set B of strings ending in 1, a measurement of just the fifth qubit yields 1 with probability 1
4 .

Where does the probability come from? The physical answer is that it is an indelible aspect of nature
as expressed by quantum mechanics. For our purposes the computational answer is that it comes from the
four gates labeled H, for Hadamard gate. Each supplies one bit of nondeterminism, giving four bits in all,
which govern the sixteen possible outcomes of this particular example. It is a mistake to think that the
probabilities must be equally spread out and must be multiples of 1/2h where h is the number of Hadamard
gates. Appending just one more Hadamard gate at the right end of the third qubit line creates nonzero
probabilities as low as 0.0183058 . . . and as high as 0.106694 . . . , each appearing for four outcomes of 24
nonzero possibilities. This happens because the component values follow wave equations that can amplify
some values while reducing or zeroing the amplitude of others via interference. Indeed, the goal of quantum
computing is to marshal most of the amplitude onto a small set of desired outcomes, so that measurements—
that is to say, quantum sampling—will reveal one of them with high probability.

All of this indicates the burgeoning complexity of quantum systems. Our original circuit has 5 qubits,
4 nondeterministic gates, and 9 other gates, yet there are 25 = 32 components of the vectors representing
states, 32 basic inputs and outputs, and 24 = 16 branchings to consider. Adding the fifth Hadamard gate
creates a new fork in every path through the system, giving 32 branchings. The whole circuit C defines a
32× 32 matrix UC in which the I-th row encodes the quantum state ΦI resulting from computation on the
standard basis vector x = eI . The matrix is unitary, meaning that UC multiplied by its conjugate transpose
U∗C gives the 32× 32 identity matrix. Indeed, UC is the product of thirteen simpler matrices U` representing
the respective gates (` = 1, . . . , s with s = 13). Here each gate engages only a subset of the qubits of arity
r < m, so that U` decomposes into its 2r × 2r unitary gate matrix and the identity action (represented by
the 2× 2 identity matrix I) on the other m− r lines. Here are some single-qubit gate matrices:

H =
1√
2

[
1 1
1 −1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0
0 eiπ/4

]
, R8 =

[
1 0
0 eiπ/8

]
.

The phase gate S is also called R2 and the twist gate T is also called R4. Multiplying a quantum state by
a unit scalar changes none of the magnitudes so the unconditional global phase shift by the scalar has no
effect on outcomes. The conditional phase shift on a 1 signal embodied by the lower-right entry of all these
matrices does matter, and unconditionally effects a rotation of the qubit line through its own 2× 2 space.

Adding controls is one way to extend effects to other qubits. The gate X, which is also called the NOT
gate for the negation it effects on the classical bit corresponding to the qubit line, yields the controlled forms
CX (aka. CNOT) and CCX (aka. Tof for the Toffoli gate) at left and right:

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CS =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 , Tof =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

.

2

Note that the NAND of u, v equals Tof(u, v, 1) so the Toffoli gate alone can efficiently code any classical
computation. The controlled versions of the Z, T, and R8 gates, as also employed in our example circuit, are
defined similarly. Here is a simple circuit using one Hadamard gate and the standard symbol for CNOT:

x1 H
y
• z1

x2
v

z2

Here x1, x2 and z1, z2 are variables that stand for the input and output viewed as binary strings, while y
and v are internal variables following the scheme laid out in section 3 below. On input a = 00, which is
represented by the vector (1, 0, 0, 0) in C4, the final quantum state Z is 1√

2
(1, 0, 0, 1). The outcomes b = 00

and b = 11 are possible with probability 1
2 each, but the outcomes 01 and 10 are impossible. So the two

qubits are constrained to give the same binary value. When a quantum state Z cannot be written as a tensor
product of two other vectors—as implied here by the lack of probabilistic independence of the output bits
b1 and b2—it is entangled.

The matrix of the Swap gate is the special 4 × 4 permutation matrix that fixes coordinates 1 and 4
corresponding to the strings 00 and 11 but sends 2 to 3 and 3 to 2 so that 01 switches with 10. We have now
completed the description of the circuit C in Figure 1. Two quirks of the notation must be noted:

– If the qubits engaged by Uj are not contiguous, then we may not get Uj as a literal tensor product of its
gate matrix and identity matrices, but we can write Uj = P−1U ′jP where U ′j is such a product and P
induces a permutation of the qubit lines in the manner of the swap matrix above.

– We read the circuits left-to-right but matrices are composed and applied to column vectors right-to-left.

Above we have ignored the swapping in the former point by writing the matrices with control lines first.
The second point looks ignorable because all our matrices happen to be symmetric, but when the gate Y is
included this is no longer so. The single-qubit gates X,Y,Z (plus I for completeness) are called Pauli gates,
while adding H, S, and CZ creates a basis for the set of Clifford gates, which also include CNOT but not Tof,
CS, T, or R8. Adding any one of the latter four gates creates a gate set that is universal in that any quantum
circuit C can have its states Φ = C(a) approximated to arbitrary precision with comparable efficiency by a
circuit C ′ using only gates from the set. Indeed, the set consisting of just H and Tof is universal in a weaker
sense that encodes the real and complex parts of Φ separately and approximates the probabilities of the
basic outcomes. Two minimal universal sets that keep r ≤ 2 are {H,CS } and {H,T,CNOT }.

To complete our description of quantum computation, we note that to compute a mapping f from inputs
x ∈ { 0, 1 }n to outcomes z0 ∈ { 0, 1 }q it is conventional to use m = n+m0 + q qubits with the latter m0 + q
initialized to 0 and produce outcomes of the form x·0m0 ·y. This can be effected by using only the initial n
qubits plus m0 more qubits for “scratch space” for the main computation, then using q CNOT gates to copy
out desired results into the last q qubits—in like manner to how the fifth qubit was employed in our example.
Finally one can restore the first n + m0 qubits to their initial state by repeating the conjugate transposes
of the gates of the main computation in reverse order. The extra cost of the “copy” and “uncompute” steps
after the main computation stays within a linear factor in terms of the visible hardware—that is, the count
m + s of qubits and gates (presuming bounded arity r of any one gate). The convention works even if f is
not one-to-one.

We can implement traditional definitions of computing functions f : { 0, 1 }n → { 0, 1 }q and deciding
membership in languages L with high probability of success or correctness. Say f is (quantum) efficiently
computable if there is a polynomial p(n) such that for all ε > 0 and all n we can build a circuit Cn,ε of
size m + s ≤ p(n + log(1/ε)) such that for all inputs x, the measurement gives x0m0f(x) with probability
at least 1 − ε. Applying this criterion to the 0-1 valued characteristic functions of L defines the quantum
complexity class BQP standing for “Bounded-error Quantum Polynomial time.” Functions and even multi-
valued mappings f are also said to belong to BQP with the understanding that computing f(x) 7→ z is
equivalent to deciding Lf = {(x, y) : some legal value z has y as an initial substring}. But the primary utility
may come from the quantum ability to sample the joint distribution of (x, z) where z is a legal value of f
and see what the induced distribution on x may highlight.

3

2 A System View: Simulation and Emulation

What is the “true” complexity of the system we have described? We can first ask about its effective size:

(a) Is it the simple count m+ s of qubits and gates, perhaps multiplied by some function of r?
(b) Or is it the dimension 2m of the ambient space, and/or the size 2h of the branching paths?
(c) Or is the “real size” something in-between?

Two ideas of “in-between” are whether the layout size m× s of the grid should be counted and whether
entanglements render its effective cross-section as more than the number m of qubits. The former still leaves
the size polynomial in n while it seems hard to argue the latter higher than the number of possible binary
entanglements, which is O(m2). Moreover, there is a dearth of natural mathematical functions between

polynomial (or quasi-polynomial: n(logn)
O(1))) and exponential (2n

Ω(1)

).
The polynomial versus exponential divide is burnished by Shor’s algorithm [6] for factoring n-bit integers

M . Its quantum circuits Cn sit inside a non-quantum program loop that samples integers a < M , runs
C(a,M), measures all qubits of the resulting state Z, and tries to infer a factor of M from the outcome b.
The circuits Cn are relatively simple; they use the gates in Figure 1 plus one call to the quantum Fourier
transform on n qubits, and are known to have size no worse than slightly above O(n2). Classical algorithms,
however, are conjectured to require time 2n

c

with c not much smaller than 1/3 (see [7]) on many instances
M . The security of RSA and many other cryptographic protocols depends on this hardness assumption or
a similar one for the discrete logarithm problem, which is also solved by Shor’s algorithm. If one subscribes
both to the classical hardness of factoring and to our circuit modeling correctly metering quantum mechanics
as a true theory of nature, the upshot is:

Nature can compute efficiently in ways that symbolic operations are far from emulating.

This is stronger than concluding that classical physical systems cannot approximate the quantum sampling
C(a,M) 7→ b as above. It says that no human system of notation for describing quantum circuits can
execute their calculations with comparable efficiency—nor any reasonable efficiency. Somewhere we must
face an exponential blowup. To riff on the enigmatic final words in Latin of Umberto Eco’s novel The Name
of the Rose, all the QC notations we can hold are “bare names” that miss the pristine mechanism through
which the quantum “rose” abides unsullied by notation.

Of course, this is a challenge for the description of computational systems. Formal analysis tools for
computing systems are legion but this system—after we needed only a few pages to specify its components
fully and indicate how signals are processed—spits fire saying it can’t be done. There are two levels of
demands we can make on the description, one stronger and the other weaker:

(a) At any time t, it should describe with high fidelity the state of the system at time t.
(b) On any input, it should reproduce with high fidelity the final state of the system.

We identify these capabilities with the distinction made by Häner at al. [8] between (a) a simulator and (b)
an emulator of quantum circuits. As described in section 2 of their papers, simulators to date have directly
manipulated the gate matrices under sparse representations and using hardware systems dedicated to such
matrix operations. We read the essence as being that the simulators can on request deliver a “census” of
active system elements and their microstates as they stand after multiplying j of the matrices, for any j from
0 to s. As such, they need to grapple with the exponential blowup at the first stages where it is in force.
Emulators are freed from having to comply with such requests, and in particular are entitled to ignore the
synchrony imposed by j and the m× s grid view of the circuit. Their prime goal is to postpone the blowup
as long as possible and perhaps—in enough important cases—to avoid it.

In this paper we present three formalisms for describing quantum circuits that begin with the capability
of simulation but promote non-quantum, non-physical manipulations that may yield faster emulation. The
first two represent circuits C by single polynomials PC and QC over various finite fields or rings, the third by

4

simple quantifier-free Boolean formulas φC . In their brute-force rendition they can perform simulation, and
we show that the Boolean one is competent on simple hardware. The former two may connect to existing
software packages that perform algebraic manipulations such as equation solving and reduction using Gröbner
bases, such as Singular [9, 10]. The latter immediately connects to existing model counters and #SAT solvers
such as sharpSAT [11] and Cachet [12–14]. Both PC and φC have size O(m + s). The blowup is entirely
handed off to the algebraic system or solution counter.

The first express conversion to (sets of) polynomials was by Dawson et al. [1] and programmed by Gerdt
and Severyanov [15]. It applied only to the universal set {H,CNOT,Tof } of gates with ±1 entries, except for
remarks in [1] about “mixed mode (mod-2/mod-8) arithmetic.” Bacon, van Dam, and Russell [16] tailored a
construction to (singly and doubly) controlled phase-changing gates modulo various values of K, like those
for K = 4, 8, 16 in the last section’s example, plus the Fourier transform FK . All of these constructions
constitute proofs that BQP polynomial-time reduces to the complexity class #P of functions and its decision
analogue PP [17]. Fortnow and Rogers [18] improved this to place BQP inside a “low” subclass of PP called
AWPP and characterized by one evaluation of the difference f(x)−g(x) of two functions f, g ∈ #P that obey a
further restriction. We claim to give the first “global” presentation of polynomial constructions PC , including
a trick to produce polynomials QC of bounded degree at the cost of using more variables. Our translation
into Boolean formulas φC appears to be entirely new as we discuss later. But to be sure, the constructions are
elementary enough that they could have been done soon after these papers or even the seminal gate papers
[19, 20]. Perhaps motives are stronger now amid greater development of algebraic system-analysis tools, the
increasing success of heuristic SAT and #SAT solvers, and ramped-up efforts at high-performance emulation
of quantum systems represented recently by [8, 21, 22].

Our formalisms employ the path concept promoted by Richard Feynman, whose papers [23, 24] are often
jointly credited with Deutsch [25, 26] as originating quantum computing. Each path contributes a unit amount
to a term in the matrix product UsUs−1 · · ·U2U1 applied to an input vector x when everything is multiplied
out. It begins in some row I, 0 ≤ I ≤ 2m − 1, of the column vector x and enters column I of U1. It may
exit U1 at any row J for which U1[J, I] 6= 0 and then enters column J of U2. Finally, it exits Us at some row
L, which we call the final location of the path. The matrices of most elementary gates satisfy the following
condition:

Definition 1. A quantum gate matrix is balanced if all nonzero entries have the same magnitude.

If r` is the magnitude for each gate `, then the final path value is a unit complex scalar eiθ divided by
R = r1 ·r2 · · · rs which is independent of the path. The θ is the phase of the path. We can identify a path’s
current phase and location at any stage j upon exiting Uj . Tracking this explicitly for all j and all paths would
constitute what we have called a simulation. The freedom of emulation we desire will come from (i) treating
paths individually without the idea of “stage j,” (ii) combining and transforming their representations into
the small objects PC and φC , and hopefully (iii) further algebraic and formal manipulations that may
break the association with gates and matrices but gather the final locations and phases into outcomes more
efficiently than by census.

The contributions of the present paper are:

– Main theorems showing how to convert quantum circuits C—using all common gate sets—into polyno-
mials PC , QC and Boolean formulas φC that produce amplitudes 〈b|C |a〉 for every basic input a and
output b.

– Further theorems building polynomials PC ,QC and formulas ΦC that compute probabilities, foster partial
measurements, and enable an exact emulation of quantum sampling.

– Examples of algebraic and logical calculations, including a new proof of the Gottesman-Knill theorem
that draws an especially fine line between BQP and P.

– Very preliminary experiments showing that on reasonable cases up to several dozen qubits and nonde-
terministic gates, #SAT solvers not only soundly beat intelligent brute force but scale much better as
the problem size increases.

5

3 The Common Architecture

The two main structural parameters are the number m of qubits and the minimum phase denominator K,
which is the minimum K such that all matrix entries reiθ have θ an integer multiple of 2π/K. We assume K
is a power of 2, K = 2k. The architecture maintains the phase J ∈ { 0, . . . ,K − 1 } and location in { 0, 1 }m
of any one path. The following elements are common to the descriptions by polynomials and by formulas:

– All variables range over 0 and 1 only. (Theorem 4 will allow values in Z4.)
– The input a1 · · · am ∈ { 0, 1 }m designates the one initial location for all paths.
– Variables X = x1, . . . , xm are placeholder variables assigned a1, . . . , am when an input a ∈ { 0, 1 }m is

given.
– Variables Z = z1, . . . , zm can be fully or partially substituted by targets bi for i ∈ I ⊆ { 1, . . . ,m }, in

order to define desired and undesired final locations.
– The value(s) of the polynomial or formula represent only a path’s phase, not its location.
– The current location of a path is embodies by line designators u1, . . . , um which are not variables but

rather references to already-existing variables. Initially they refer to x1, . . . , xm, respectively.
– Upon finishing the circuit, algebraic terms or logical equations are added to force z1, . . . , zm to be equal

to the variables designated by u1, . . . , um upon finishing the circuit. They may also be substituted by
some or all target values b1, . . . , bm prefatory to executing measurements.

– Free variables Y = y1, . . . , yh represent nondeterministic bits (from Hadamard and some other gates) and
are the main variables over which solutions are counted. When a designator ui refers to a free variable
yj it denotes a fork in the path tied to line i but affecting every location.

– Forced variables V = v1, . . . , vs, . . . are placed on qubit lines i and become the new ui when placed.
Their values are forced—else the path being built is zeroed out or cancels itself out or fails a satisfaction
filter.

– Extra variables Υ in terms Υ` may be used to enforce constraints by making failure fork the path into
the whole range of phases—equally weighted—so that its net contribution is zero.

– The polynomial’s value may—or may not—be maintained in phase variables W` = { (wj)` } at any
juncture `, with 1 ≤ j ≤ k in binary. These variables are also forced, and the designations “V ” and “W”
will be flexible in context.

We will also consider liberalizing u1, . . . , um to refer to arbitrary subterms, not just variables (or their
negations). In the simple Hadamard plus CNOT example in section 1 we could replace the forced variable
v by its algebraic value 2x2y − x2 − y or its Boolean value x2 ⊕ y instead of creating a polynomial term
or Boolean clause to constrain v to have that value. Our general theorem, however, uses only fresh single
variables y as the internal annotations on qubit lines. Absorbing this architecture may be enough to treat
section 5 as self-justifying and skip over the full proof of the general theorem in the next section.

4 General Simulation

To state the main theorem, we call a ring R adequate for a quantum circuit C of min-phase denominator K
if there is a 1-to-1 mapping h from the K-th roots of unity into R such that, letting ω = e2πi/K , we have
h(ωI+J) = h(ωI)h(ωJ) for all I, J ≤ K. Since the range of h cannot include zero, R must have at least
K + 1 elements. In this multiplicative case, zero will annihilate terms that would denote impossible paths.
Our theorem will also include a 1-to-1 function h′ such that h′(ωI+J) = h′(ωI)+h′(ωJ) in a different ring R′
while translating C into a polynomial QC over R′. For simplicity we will fix R′ = ZK , the integers modulo
K, and fix h′(ωI) = I as the mapping. Now zero is in the range: 0 = h′(1). We will use the additivity to make
impossible paths yield a net-zero effect by having them cause a corresponding constraint expression γ to
have value 1 rather than 0. In the Boolean case we will have k variables W` = (w0, . . . , wk−1) that represent
the values 0, . . . ,K − 1 in binary notation, while an impossible path will correspond to a truth assignment
that is immediately unsatisfying—that will satisfy none of the formulas φJ = φC [W` = J] expressing that

6

the final value is J . The “indicators” u1, . . . , um are not actual variables but rather references to variables
in X ∪ Y ∪ V .

Finally, given a polynomial p in h variables, let #binsols(p) denote the number of zeros of the polynomial
in { 0, 1 }h. If some variables in p are substituted by constants, we note that in square brackets and may
subscript the non-substituted variables for emphasis. We similarly use #sat(φ) for the number of satisfying
assignments to a formula φ. The counting runs over { 0, 1 }q where q is the number of non-substituted
variables. If q = 0, then { 0, 1 }q still has one member, so the count of solutions will be 1 or 0 according to
whether the resulting constant p is zero or φ is reduced to the constant > (true) function. Although “V ”
will be unused in the proof for PC and QC , we keep it in the theorem statement to cover usage in the next
section.

Theorem 1. There is an efficient uniform procedure that transforms any balanced m-qubit quantum circuit
C of min-phase K = 2k with s gates of maximum arity r into constants R,R′, polynomials PC over an
adequate ring and QC over ZK , and a Boolean formula φC—all with variables from V,W,X, Y, Υ, Z as in
section 3—such that for all a, b ∈ { 0, 1 }m:

〈b|C |a〉 =
1

R

K−1∑
J=0

ωJ#binsolsV,Y (PC [X = a, Z = b]− h(ωJ)) (1)

=
1

R′

K−1∑
J=0

ωJ#binsolsV,Y,Υ (QC [X = a, Z = b]− J) (2)

=
1

R

K−1∑
J=0

ωJ#satV,Y (φC [X = a, Z = b,W = J]). (3)

The objects PC , QC , φC all have formulas of size O(22rmsk) and can be written down in time Õ(m+ 22rsk),
where the Õ means to ignore logarithmic factors coming from the variable labels.

Proof. We first describe the construction of PC , then indicate the adjustments needed to produce QC and
φC . On input a, let UsUs−1 · · ·U2U1a be the matrix computation. We will first treat each U` as a general
2m × 2m matrix engaging all m qubits, then show how things simplify for arity r. We maintain a running
polynomial P` in stages ` = 0, 1, 2, . . . , s. This will give PC = PsEC where

EC =

m∏
i=1

(1 + 2uizi − ui − zi),

using whatever variables (or alternatively subterms) are designated by u1, . . . , um at the end. On 0-1 argu-
ments, EC gives 1 if ui = zi for all i and 0 otherwise. We can also put PC,` = P`EC for any ` using the
variables the ui refer to on completing stage `.

Initially, P0 = 1, R = 1, and the indicators u1, . . . , um refer to the variables x1, . . . , xm, which themselves
will be substituted by the binary arguments a1, . . . , am. If s = 0, i.e., if C has no gates, then we will have
ui = xi = ai and zi = bi for all i, yielding 1 if b = a and 0 otherwise. Since we have 〈b| I |a〉 = 1 when
b = a and 0 otherwise, (1)–(3) hold by the convention on counting over empty domains before the theorem
statement.

As we add gates in stages ` = 1 to s, we will maintain the invariant that paths from a to some current
location L giving current phase J are in 1-to-1 correspondence with solutions to PC [X = a, Z = L]−h(ωJ) =
0. Suppose this is true for stage `− 1 (as initially when ` = 1) and consider the matrix U`. Each path enters
in some column L and exits in some row I. Using the m-bit binary code for each L, define the indicator term

tL =
∏

j:Lj=0

(1− uj)
∏

j:Lj=1

uj .

7

Then tL = 1 if the current entering location given by (u1, . . . , um) equals L and tL = 0 otherwise. Let g
stand for the current number of Y -variables allocated so far (g = m(`− 1) before we simplify), allocate new
variables yg+1, . . . , yg+m, and for each possible I define

tI =
∏

j:Ij=0

(1− yg+j)
∏

j:Ij=1

yg+j .

For each I, L we either have U`[I, L] = 0 or we have U`[I, L] = rωd for some d, where r is independent of
I, L by the balance condition. Multiply R by r and define P` to be P`−1 multiplied by the term

p` =
∑

I,L:U`[I,L]=rωd 6=0

tItLh(ωd).

Finally, re-assign u1, . . . , um to refer to the newly-created variables yg+1, . . . , yg+m. This completes stage `.
We claim that this preserves the invariant. The main point is that each 0-1 assignment to the variables

previously designated by u1, . . . , um and thew new variables yg+1, . . . , yg+m makes exactly one product
tItL nonzero. So it corresponds to the path segment that enters at L and exits at I. If U`[I, L] = 0 then
any extension of that assignment will make PC have value 0, so it cannot be a solution to any equation
PC − h(ωJ) = 0. Else, the segment advances the phase of any path it extends by d. Hence for paths that are
in location I and have current phase J after U` we know:

– There is some L and d such that the path came into U` by column L and p` = tItLh(ωd). On entry it
had phase ωJ−d with the exponent wrapped mod K.

– By the inductive invariant, there is a unique assignment to the variables appearing in PC,`−1[X = a, Z =
L] that gives value h(ωJ−d). Those are all variables in PC,` except yg+1, . . . , yg+m.

– Setting yg+1, . . . , yg+m = I generates a solution to PC,`[X = a, Z = I]− h(ωJ) = 0.

Now we need to show that every solution uniquely defines a path:

– Given a solution to PC,`[X = a, Z = I]−h(ωJ) = 0, that solution must give some value L to the variables
that were designated by u1, . . . , um entering stage `.

– We have p` 6= 0 since the assignment is a solution.
– No assignment can give the sum in p` more than one nonzero summand, so p` evaluates to h(ωd) where
U`[I, L] = rωd, taking d and r from above.

– Hence the assignment induces a solution to PC,`−1[X = a, Z = L]− h(ωJ−d) = 0.
– By the induction invariant, the assignment induces a unique path from a to location L entering U` and

with phase ωJ−d. (There may be other paths that converge in that location with the same phase, but
they are induced by other assignments.)

– Forming PC,` from P` involved equating yg+1, . . . , yg+m to the respective variables z1, . . . , zm, which were
substituted by I in the equation, so the solution correctly induces the unique extension of the path into
column L of U` and out row I.

This establishes the needed invariant after stage ` and completes the induction. So (1) holds. Before
optimizing the polynomials P` obtained, we adapt this construction and proof to QC , φC and the analogous
inductively defined Q`, φ`, which are this time based on Q0 = 0 and φ0 = >.

In forming and evaluating QC we are taking logarithms base ω so that products become sums. We can use
the same indicator subterms tL, tI as above, except that the matrix gives an additive d not a multiplicative
h(ωd). Note that if U [I, L] = 1 we will get an additive 0. The issue is what to do with the cases U [I, L] = 0—
what to use in place of the logarithm of 0? The answer is to allocate k variables υ0, ..., υk−1, put Υ =
υ0 + 2υ1 + · · · 2k−1υk−1, and define

q` =
∑

d,I,L:U`[I,L]=r`ωd 6=0

tItL ·d +
∑

I,L:U`[I,L]=0

tItL ·Υ.

8

And now instead of multiplying R by 1/r` we multiply it by something also involving k. The reason is that a
path entering U` in column L and exiting in row I now induces 2k assignments rather than just one, counting
all those to υ0, ..., υk−1. If U`[I, L] 6= 0 the latter assignments are irrelevant because Υ is multiplied by 0 but
the variables υ0, ..., υk−1 are still present in the formula. (Unless, that is, U` is a matrix like QFTm which has
no zero entries—in which case we do nothing more.) If U`[I, L] = 0 then the corresponding assignment c to
the other variables multiplies Υ by 1. Now we can associate to c the K assignments to υ0, ..., υk−1, producing
K assignments cJ in all, 0 ≤ J < K. Each of these assignments gives a different final phase value J ′. When
we sum over those assignments, they augment each of the solution counts multiplying ωJ

′
in (2), giving a

net-zero contribution to the whole sum equated to 〈b|C |a〉.
When using this trick multiple times one needs to use distinct suites Υ` of variables. The reason is that if the

number nc of violated constraints, each contributing +1, becomes a positive multiple of K, the contribution
from

∑K−1
J′=0 ω

ncJ
′

in (2) is no longer zero but K. The number Nc of constraints will be at most s+m and

so the bump in formula size will be O(sk + mk). We also need to multiply R by
√
KNc , but otherwise we

can ignore all assignments inducing illegal paths while repeating the above correctness analysis.
We need to use the same trick to handle the final equations with the output variables zj . Define

E′C =

m∑
i=1

(ui + zi − 2uizi)Υ,

and finally,

QC = E′C +

s∑
`=1

q`.

Note that whereas the degree of PC is linear in s, the degree of QC depends only on the maximum arity
r—not even on k.

To define a Boolean formula φC we do not need this “Υ trick” but instead introduce suites W` =
(w0,`, . . . , wk−1,`) to track the phase at each stage `. In place of the “indicator terms” tI , tL we use sub-
formulas defined as follows: For any column value L ∈ { 0, 1 }m, uL denotes the unique conjunction of signed
literals ±ui (over i = 1 to m) whose value is 1 on L and 0 for all L′ 6= L. For instance, if L = 01101 then
uL = (ū1 ∧ u2 ∧ u3 ∧ ū4 ∧ u5). We denote row conjuncts yI similarly using the newly allocated variables
yg+1, . . . , yg+m defined as before. Entering stage ` of the circuit, we consider all possible phases J`−1 coded
by the variables W`−1 = (w0,`−1, . . . , wk−1,`−1). For all pairs I, L we add clauses as follows:

– If U`[I, L] = 0 then we add ¬(uL ∧ yI), which becomes a clause of 2m disjoined literals.
– If U`[I, L] = r`ω

d then we add for j = 0 to k − 1 the clauses

(uL ∧ yI)→ (wj,` = wj,`−1 ⊕ Fd(W`−1)),

where Fd is the fixed finite function true on all c such that c+ d causes a flip in bit j.

Note that Fd can be a function of the variables w0,`−1, . . . , wj,`−1 alone. We can alternately consider that
over j = 0 to k − 1 alone we have added the single clauses

wj,` = wj,`−1 ⊕ F ′(u1, . . . , um, y1, . . . , ym, w0, . . . , wj),

where F ′ takes into account all the phases d that arise in the matrix entries U`[I, J] as specified by the values
L for u1, . . . , um and I for yg+1, . . . , yg+m. Economizing F ′ will occupy much attention later, but for this
proof we reason about Fd for all the uL and vI .

Finally we note that yg+1, . . . , yg+m become “u1, . . . , um” for the next stage if there is one, else we conjoin
the clauses ∧mi=1(yg+i = zi) (or just substitute z1, . . . , zm directly). The last act is to add the clauses ∧jw̄j,0
and declare “W” in the theorem statement to refer to the terminal wj,s phase variables. Then V in the
theorem statement ranges over wj,` for 1 ≤ ` ≤ s−1 and Y ranges over variables yg+i,` introduced as “yg+i”
in the corresponding stages `. (We will say more below.) This finishes the construction of φC .

9

To see that it is correct, first consider any path P from a to b whose phase changes by J . First we substitute
x = a and z = b and Ws = J . In the base case s = 0 with empty circuit, P can only be a path from a to
b = a with J = 0. Then we have Ws = W0 and substituting J gives > if b = a and J = 0, ⊥ otherwise. For
s ≥ 1, to P there is a unique assignment of row and column values

a = L1, I1 = L2, . . . , Is−1 = Ls, Is = b

to literals designated “ui” and “yg+i” at each stage `. For all (I, L) 6= (I`, L`), all clauses (uI ∧ vL)→ (. . .)
are vacuously satisfied. This leaves the clause

(uL` ∧ yI`)→ (wj,` = wj,`−1 ⊕ Fd(W`−1)),

where d is the phase of the nonzero entry U`[I, L]. By induction, the values of W`−1 in the assignment
either have the phase J`−1 of the path entering that stage or the assignment is already determined to be
unsatisfying. These determine the value Fd(W`−1) and hence collectively over j these clauses determine that
W` must have the correct value J`−1+d modulo K, else they are not satisfied. Since the values of the variables
in W` are forced, we have a unique continuation of a satisfying assignment. In the last stage, the current phase
value must become J . Hence we have mapped P to one satisfying assignment of φC [X = a, Z = b,W = J]
(with W0 already zeroed).

Going the other way, suppose c is any satisfying assignment to φC (again with W0 = 0). We argue that
c maps uniquely to a path Pc. We get a = L1 from the values assigned to X, then the values L2, . . . , Ls of
the other column entries, and finally the exit row Is which gives a b. The values of phases along the path
are likewise determined by the assignment and must be correct. Hence the assignment yields a unique path.
The path must be legal: at any stage the left-hand side of one clause of the form (uJ ∧ yI) → (· · ·) holds
so its consequent must be made true. Thus the correspondence of counting paths and counting satisfying
assignments is parsimonious for each phase value L, so the equation (3) follows.

It remains to reduce the objects PC , QC , and φC down to the stated size, without changing the numbers
of solutions or of satisfying assignments. For PC , consider any qubit line i that is not involved in gate `, so
that U` acts as the identity on i. The product terms in p` involving line i divide into four groups with uiyg+i,
(1−ui)(1− yg+1), zui(1− yg+1), and (1−ui)yg+i, respectively. Because U` acts as the identity on line i, the
latter two groups occur only for entries U`[I, L] that are 0, so they vanish. Since having ui = 0 while yg+1 = 1
or vice-versa zeroes out the former two groups as well, any 0-1 solution to PC [X = a, Z = b]−h(ωJ) = 0 must
have yg+i = ui. Hence without changing the number of binary solutions, we may for each such i substitute
yg+i = ui, delete the terms for the vanishing groups, and make the factors on the surviving groups just ui
and (1− yg+i), respectively. Doing so cuts the size of p` down by a factor of 2m−r. But since p` is a sum of
22r terms, each a product of 2r-many factors, this is not yet good enough.

Again focusing on qubit line i, the remaining terms have the forms yg+iH1 and (1−ui)H2. Because U` acts
as the identity on qubit i, every entry U [I, L] where Ii = Li = 1 equals the entry U [I ′, L′] where I ′i = L′i = 0
with the other bits the same as in I and L. Hence terms in H1 pair off with equal terms in H2. We claim
that we can replace the remaining terms in p` by just H1 (= H2). Doing this does not add any new solutions,
because if a solution makes ui = 1 then the original p` got the same contribution from H1 as it gets now
(with H2 being zeroed), and similarly for ui = 0. Nor does doing this remove any solutions—nor does it
remove all dependence on ui because line i may be involved in U`+1. It does allow us to avoid introducing
the new variable yg+i, so entering stage `+ 1, ui refers to the same variable as previously (and g counts only
the new variables added). Applying this second process cuts the number of terms in p` down by another
factor of (at least) 2m−r, and also cuts the degrees of terms down from m to r. The polynomial P obtained
by doing this for all stages thus has size O(m+ sk22r) as claimed.

Similar remarks apply to QC with possible occurrences of Υ` absorbed into the overall size factor k for
coefficients in 0 . . .K − 1. For φC , the size reduction boils down to saying that whenever I and I ′ vis-à-vis
L and L′ agree on the r qubit lines touched by the gate, their clauses can be identified, leaving at most 22r

distinct clauses of size O(k) added at stage `. The rest of the size estimation is similar. Also in each case,
the objects can be computed in time linear in their size in one “pass” that introduces the terms or clauses
for each gate one-by-one. ut

10

We will re-prove this theorem for all the gates covered in section 1. This will show more cases in which it
is unnecessary to put a new variable yg+i even for lines i involved in the gate. It will also increase the role
of “V ” via further cases in which a new variable is forced to have a certain argument value in any solution
or satisfying assignment. Then it will be named vf+i instead where f counts the forced line variables. The
dedicated constructions will reveal structural properties of these gates and some particular points of elegance.

5 Simulation of Common Gates

Most of the gates have min-phase K = 2, 4, or 8. Indeed, K = 2 suffices for a universal set able to approximate
probabilities and K = 4 for a set (namely H and CS) able to approximate all complex amplitudes. Adequacy
of the target ring for PC entails −1 6= 1, so 1 + 1 6= 0, so 2 exists, though 2 = −1 is possible. Accordingly we
write −1 in place of h(−1) but write h(i) in place of i and so on. For QC , however, we prefer to write K/2
rather than specify 1 when K = 2 or 2 when K = 4, etc. In defining φC we avoid the double-subscripting
in the phase variables W` = {wj,` } by letting p` distinguish the top of the circle from the bottom, q` the
first and third quadrants, and r` the odd eighths from the even eighths. For instance, when K = 8 and J
is the phase after stage `, p` = 0 means J ∈ { 0, 1, 2, 3 }, q` = 0 means J ∈ { 0, 1, 4, 5 }, and r` = 0 means
J ∈ { 0, 2, 4, 6 }.

Initializing P = 1, Q = 0, and φ = >, we describe running changes as gates are appended one-by-one
in stages ` = 1, 2, 3, . . . When we use ` as a subscript on a variable or term T` = t0 + 2t1 + · · · 2k−1tk−1
multiplying a constraint for Q, it means “the next available index in that category”—thought we could make
it literally agree with the stage number by inserting dummies.

– Hadamard gate H = 1√
2

[
1 1
1 −1

]
on line i: Allocate a new top-phase variable p`, allocate a new free

variable yg on line i, and change the objects as follows:

P ∗= (1− 2uiyg)

Q += (uiygK/2)

φ ∧= (p` = p`−1 ⊕ (ui ∧ yg)).

Finally, multiply R by
√

2 and set ui = yg.

The remaining elementary gates are either deterministic or are expressible using Hadamard and determin-
istic gates. We now regard g as keeping a running count of all free variables up to h total. A deterministic
change of location in qubit i (as opposed to phase) is reflected by a variable we denote by vf rather than
yg being placed “on” line i so that ui denotes it after the stage. This comes with a constraint of the form
vf = E where E is 0-1 valued. Multiplying P by (1 + 2Evf − vf −E) kills paths that violate the constraint
and preserves ones that obey it (with no phase change). Adding T`(vf + E − 2Evf) has a similar effect for
Q. Two alternatives are worth noting:

– We can add (vf = E) as a separate equation. Indeed, we can also keep the final (zi = ui) equations
separate. Then instead of one large PC we have a system of small equations and a smaller P ′C , with only
P ′C − h(ωJ) changing for different phases J .

– We can avoid introducing vf and make ui subsequently refer to E rather than a variable. It is OK for ui
to refer to arbitrary 0-1 valued subterms. The complexity of subsequent terms, including later expressions
E′, can be compounded, however.

For φ we can conjoin (vf = E) as a Boolean term, or alternatively introduce nothing and revise ui to refer
to E. Again this is OK above for H and below for all the other gates but can cause terms “on” the qubit
lines to mushroom.

It is of course possible that the phase may change as well. Then we multiply PC by other functions of vf
and E that either kill the path or implement the phase change. Gates with diagonal matrices can change

11

the phase but do not change the location and so do not allocate a vf or change ui in any case. Now we see
the details for particular gates:

– Pauli gate X =

[
0 1
1 0

]
on qubit line i: Allocate a new line variable vf on line i and implement the equation

vf = 1− ui by:

P ∗= (ui + vf − 2uivf)

Q += Υ`(1− ui − vf + 2uivf)

φ ∧= (vf = ¬ui).

There is no change to other variables or to R. Finally, update ui = vf . The alternative is to substitute
whatever subterm ui referred to into 1− ui and let the “new ui” refer to that.

– CNOT =

[
I 0
0 X

]
with control on line i and target on line j: Allocate new vf on line j and implement the

equation vf = ui ⊕ uj , numerically vf = ui + uj − 2uiuj , by:

P ∗= (1− ui − uj − vf + 2uiuj + 2uivf + 2ujvf − 4uiujvf)

Q += Υ` · (2uiujvf − 2uiuj − 2uivf − 2ujvf + ui + uj + vf)

φ ∧= (vf = uj ⊕ ui).

Finally, update uj to refer to vf . Alternatives: revise uj to refer to ui + uj − 2uiuj with no change to P
or to Q, and in the case of φ, call ui ⊕ uj the new uj .

– Toffoli gate Tof =

[
I 0
0 CNOT

]
with controls on i, j and target on k: Allocate new vf on line k and

implement the equation vf = uk ⊕ (ui ∧ uj), numerically vf = uiuj + uk − 2uiujuk, by:

P ∗= (1− uiuj − uk − vf + 2uiujuk + 2uiujvf + 2ukvf − 4uiujukvf)

Q += Υ` · (2uiujukvf − 2uiujuk − 2uiujvf − 2ukvf + uiuj + uk + vf)

φ ∧= (vf = uk ⊕ (ui ∧ uj)).

Finally, update uk to refer to vf . Alternatives: revise uk to refer to uiuj + uk − 2uiujuk with no change
to P or to Q, and in the case of φ, call uiuj ⊕ uk the new uk.

The Swap gate on qubits i, j can be implemented simply by interchanging ui and uj woth no growth in
formulas. The Fredkin gate on i, j, k is the i-controlled swap of j, k and needs new forced variables vj , vk on
the latter two lines with terms expressing vj = (ui ∨ uj) ∧ (ūi ∨ uk) and similarly for vk.

Although Hadamard and Toffoli are radically different gates—with radically different changes to P and
to Q—the updates to φ have the same form. In general we call a Boolean formula of the form

p′ = p⊕ (∧ji=1ui) (4)

a parity of AND equation, or pae for short, of order j. It is elegant that H and Tof are both entirely coded
by one pae of order 2, with the most overt difference being that the one for H introduces a free variable
yg whereas the one for Tof does not. The pae form is natural for carry propagation and adding controls as
shown in what follows.

– Pauli gate Z =

[
1 0
0 −1

]
on qubit line i: Allocate new top-phase variable p` and do the following with no

other change:

P ∗= (1− 2ui)

Q += (K/2)ui

φ ∧= (p` = p`−1 ⊕ ui).

12

– Pauli gate Y =

[
0 −i
i 0

]
on qubit line i: Allocate vf on line i, and for φ, allocate new top and quarter-phase

variables p` and q`. Since this matrix is not symmetric, it is important to remember that the columns
are (1− ui) and ui whereas the rows are (1− vf) and vf . Accordingly:

P ∗= h(i)(1− 2ui)(ui + vf − 2uivf)

Q += (K/4)− (K/2)ui + Υ`(1 + 2uivf − ui − vf)

φ ∧= (vf = ¬ui) ∧ (q` = ¬q`−1) ∧ (p` = p`−1 ⊕ ui ⊕ q`−1).

The last conjunct for φ is not a pae, but since Y = iXZ, we can instead compose the actions for Z and
X and i. The scalar multiplication by i is optional, but it seems helpful to say we are tracking phases of
paths exactly especially when we use conjugation in the next section. To update φ for multiplication by
i, make q`+1 = ¬q` and p`+1 = p`⊕ q`. For the conjugate multiplication by −i the latter is p`+1 = p`⊕ q̄`
instead. The matrix Y is self-adjoint, i.e., Y∗ = Y, so we do not need to give conjugate forms. But for
the gates that follow, we will indicate the conjugate forms P ∗, Q∗, φ∗, which are likewise initialized to 1,
0, and >, respectively.

– Phase gate S =

[
1 0
0 i

]
: Allocate new p`, q` and do:

P ∗= (1− ui + h(i)ui) P ∗ ∗= (1− ui + h(−i)ui)
Q += (K/4)ui Q∗ += (3K/4)ui
φ ∧= (q` = q`−1 ⊕ ui) φ∗ ∧= (q` = q`−1 ⊕ ui)

∧(p` = p`−1 ⊕ (ui ∧ q`−1)) ∧(p` = p`−1 ⊕ (ui ∧ q̄`−1)).

– T =

[
1 0
0 ωK/8

]
: Allocate all new p`, q`, r` with equations:

P ∗= (1− ui + h(ωK/8)ui) P ∗ ∗= (1− ui + h(ω7K/8)ui)
Q += (K/8)ui Q∗ += (7K/8)ui
φ ∧= (r` = r`−1 ⊕ ui) φ∗ ∧= (r` = r`−1 ⊕ ui)

∧(q` = q`−1 ⊕ (r`−1 ∧ ui)) ∧(q` = q`−1 ⊕ (r̄`−1 ∧ ui))
∧(p` = p`−1 ⊕ (q`−1 ∧ r`−1 ∧ ui)) ∧(p` = p`−1 ⊕ (q̄`−1 ∧ r̄`−1 ∧ ui)).

The controlled gate CS forms a universal set with H that also approximates complex amplitudes. So does
T when added to H and either CNOT or CZ. Now we show the progression of controlled phase gates, which
leave R unchanged and allocate no variables except phase variables for φ:

– CZ =

[
I 0
0 Z

]
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 with source i and target j:

P ∗= (1− 2uiuj)

Q += (K/2)uiuj

φ ∧= (p` = p`−1 ⊕ (ui ∧ uj)).

Note that all three forms are symmetrical in ui and uj , expressing the fact that with CZ it does not
matter which line is considered the control. As with the gates before S, the conjugate forms change the
same way so they are not shown.

13

– CS =

[
I 0
0 S

]
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 with source i and target j:

P ∗= (1− uiuj + h(i)uiuj) P ∗ ∗= (1− uiuj + h(−i)uiuj)
Q += (K/4)uiuj Q∗ += (3K/4)uiuj
φ ∧= (q` = q`−1 ⊕ (ui ∧ uj)) φ∗ ∧= (q` = q`−1 ⊕ (ui ∧ uj))

∧(p` = p`−1 ⊕ (q`−1 ∧ ui ∧ uj)) ∧(p` = p`−1 ⊕ (q̄`−1 ∧ ui ∧ uj)).

– CT =

[
I 0
0 T

]
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ωK/8

 with source i and target j:

P ∗= (1− uiuj + h(ωK/8)uiuj) P ∗ ∗= (1− uiuj + h(ω7K/8)uiuj)
Q += (K/8)uiuj Q∗ += (7K/8)uiuj
φ ∧= (r` = r`−1 ⊕ (ui ∧ uj)) φ∗ ∧= (r` = r`−1 ⊕ (ui ∧ uj))

∧(q` = q`−1 ⊕ (r`−1 ∧ ui ∧ uj)) ∧(q` = q`−1 ⊕ (r̄`−1 ∧ ui ∧ uj))
∧(p` = p`−1 ⊕ (r`−1 ∧ q`−1 ∧ ui ∧ uj)) ∧(p` = p`−1 ⊕ (r̄`−1 ∧ q̄`−1 ∧ ui ∧ uj)).

The controlled R8 in the circuit in section 1 has K/16 in place of K/8 for P and Q and updates another
phase variable s` for φ, so that the pae for p` has order 5. By using more variables to denote carries
and sharing intermediate results we can code arbitrary (controlled) rotations RK using O(K) rather than
quadratically many occurrences of variables in pae’s of orders 3 and 4. The next gates break the pae form
when coded directly but can be written as compositions of gates or otherwise similarly broken down into
small pae’s.

– Y1/2 = 1+i
2

[
1 −1
1 1

]
= ωK/8√

2

[
1 −1
1 1

]
: Introduce one nondeterministic variable yg, plus p`, q`, r` to update

φ. We keep the scalar multiplication by ωK/8 but must remember to conjugate it:

P ∗= h(ωK/8)(2uiyg − 2ui + 1) P ∗ ∗= h(ω7K/8)(2uiyg − 2ui + 1)
Q += (K/8) + (K/2)ui(1− yg) Q∗ += (7K/8) + (K/2)ui(1− yg)
φ ∧= (r` = ¬r`−1) φ∗ ∧= (r` = ¬r`−1)

∧(q` = q`−1 ⊕ r`−1 ⊕ (ui ∧ ȳg)) ∧(q` = q`−1 ⊕ r̄`−1 ⊕ (ui ∧ ȳg))
∧(p` = p`−1 ⊕ ρ) ∧(p` = p`−1 ⊕ ρ∗),

where ρ = (r`−1 = q`−1) ∧ (r`−1 ⊕ (ui ∧ (ȳg))) and ρ∗ = (r`−1 = q`−1) ∧ (r̄`−1 ⊕ (ui ∧ (ȳg))). Finally,
multiply R by

√
2, and note that yg becomes the new ui.

– Rx(π/2) = 1√
2

[
1 −i
−i 1

]
= ω−K/8·V on line i: Allocate a new nondeterministic variable yg, and for φ, new

phase variables p` and q`. Multiply R by
√

2 and do:

P ∗= (1 + (h(−i)− 1)(ui + yg − 2uiyg)) P
∗ ∗= (1 + (h(i)− 1)(ui + yg − 2uiyg))

Q += (3K/4)(ui + yg)− (K/2)uiyg Q∗ += (K/4)(ui + yg)− (K/2)uiyg
φ ∧= (q` = q`−1 ⊕ ui ⊕ yg) φ∗ ∧= (q` = q`−1 ⊕ ui ⊕ yg)

∧(p` = p`−1 ⊕ (q̄`−1 ∧ (ui ⊕ yg))) ∧(p` = p`−1 ⊕ (q`−1 ∧ (ui ⊕ yg))).

The equation Y1/2 = HZ · ωK/8, where again the scalar multiplication can be ignored, gives an efficient
alternative. The conjugate is ZH · ω7K/8. The gate V = ωK/8Rx(π/2) satisfies V2 = X and hence is also
called X1/2 or

√
NOT. The identity V = HSH plus (optionally) multiplying by the scalar ω−K/8 = e7πi/4 thus

14

allows coding Rx(π/2) by pae’s, on pain of introducing one more nondeterministic variable. The conjugate
matrix Rx(−π/2), which has positive-signed entries i on the off-diagonals, can be handled similarly. If these
identities are used, then all free variables are assigned when placing Hadamard gates.

The sequence of equations, as gates are placed in left-to-right order (with matrices composed in right-to-left
order), obeys the following invariant:

Lemma 1. For any 0-1 assignment c = (c1, c2, . . . , ch) to the free variables, input a = a1 · · · am to the
variables xi, and initialization of the phase variables (to zero phase, say), the product of terms in PC , sum
of terms in QC , and conjunction of equational clauses in φC , can be evaluated in order with all right-hand
side values defined in the initialization or in previous steps. ut

This enables an “intelligent backtrack” routine that, when incrementing c ∈ { 0, 1 }h to the next c′ in
standard order, need only roll back to the first term or pae containing yg, where c and c′ agree in the first
g− 1 bits. Roughly speaking, this saves a factor of one-half the number h of free variables when carrying out
the brute-force iteration through c to tabulate the results of each path. For QC the variables in Υ count as
free, but if there are fewer than K uses of Υ` they can all be identified, so that the extra branching is only
K and R′ = R

√
K.

The invariant is particularly notable with our Boolean logic emulation. It means that for every gate, the
equations typified by p = q⊕ (u∧ v) for every gate are interpreting the ‘=’ as assignment, not just equality.
Only the equations setting the output variables zi to specified target values bi (after the zi have been filled
by the equations zi = ui) have a constraining effect. We have found references using Boolean formulas to
specify and SAT-solvers to test equivalence of portions of quantum circuits [27, 28] but not for conducting
emulation. The significance of the invariant for a SAT solver or #SAT counter involves how resolvents of
clauses (or rather their negated terms) are propagated. To give an intuitive example, consider a Boolean
formula φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn expressing the multiplication relation x · y = z for the numbers
x, y, z encoded by the variables in binary. If only z is given then we have the factoring problem in the form
known to be tough for SAT solvers. In our case, however, the x will be given by the values of incoming line
references ui. The y may come from nondeterministic variables. Any setting of those variables will produce
z by propagation. In any event, we are not in the situation where only z is given. Thus although the same
Boolean relation φ is being used, the manner in which it is approached makes a big difference for solvers—as
we demonstrate partially in section 8. Before that we show how our logic emulation binds this Boolean
relation up with the Fourier transform.

6 Quantum Fourier Transform, Measurements, and Sampling

The quantum Fourier transform QFTn on n qubits is represented (in the standard basis) by the ordinary
N ×N discrete Fourier matrix FN where N = 2n. It has entries

FN [I, J] = ωI·J ,

where ω = e−2πi/N . If the incoming phase is c then the new phase is c′ = c+ I ·J modulo N . Hence the only
equations we need to add are

W` = W`−1 + I ·J (mod N). (5)

We can emulate QFTn via the general recursion implied by the example in section 1. This uses Θ(n2) gates—in
particular, Θ(n2) cases of CR2k for k ≥ n/2, each of which uses Θ(n) variables once we apply the optimization
by representing carries discussed in the last section regarding R8. This gives no better than O(n3) as a size
guarantee. We can further observe in Figure 1 that partial results from carries can be shared among the
formulas for the adjacent CR2k gates, which promises O(n2). However, (5) has Boolean circuit complexity
O(n log n log log n) by the celebrated result of Schönhage and Strassen [29]. The asymptotically-small circuits
include gates for each output bit of W` using the 3n input gates for W`−1, I, and J . Each Boolean gate
can be directly converted into one pae of order 3 or 4. Hence the size blowup should be only Õ(n), i.e.,

15

quasi-linear. However, the advantage is asymptotic and is only known to take precedence when n > 10, 000
or so, and the question of how best to emulate QFTn for relevant ranges of the number of qubits seems still
open (compare [30–33]).

Shor’s algorithm [6] applies QFT in conjunction with sampling. To factor a given n-bit integer M , it starts
by choosing Q = 2` where ` = 2n+ 1, so that M2 < Q < 2M2, and a random a < M which we may presume
is relatively prime to M (else gcd(a,M) gives a factor at once). The quantum circuit C used by its inner
loop starts with Hadamard gates on the first ` of 2` qubit lines. It then places a deterministic circuit C0

that maps any binary-encoded number x < Q to fa(x) = ax (mod M). More precisely, C0 maps x · 0` to the
concatenation x · y where y = fa(x) as an `-bit number. The combination with the Hadamard gates creates
the functional superposition

Φ =
1√
Q

∑
x

|xfa(x)〉 .

The quantum circuit then applies QFT` to the first ` lines and measures them to get an output b < Q. With
substantial probability, b reveals a period r such that fa(x) = fa(x + r) for all x and r in turn reveals a
factor.

Thus far we have organized our software system to give the amplitude and probability of specific outcomes
b but not to generate b from the set of possible outcomes. In order to emulate algorithms like Shor’s, we
want to sample according to the distribution

DC,a(b) = Pr[C(a) = b] = |〈b|C |a〉|2.

Also let DC,a(B), for any set B ⊂ { 0, 1 }m, be the sum of |〈b|C |a〉|2 over all b ∈ B. We will reduce quantum
sampling to the uniform generation problem on the set S of 0-1 roots of polynomials P,Q or of satisfying
assignments to a formula φ. First we review the classical reduction from counting to uniform generation. It
starts with one call to #sat to compute the cardinality of S.

– Using one call to #sat , compute |S0| = |{x ∈ S : x1 = 0 }|, so |{x ∈ S : x1 = 1 }| = |S| − |S0|.
– Set x1 = 0 with probability |S0|/|S| and x1 = 1 otherwise.
– Substitute the value of x1 into φ and recurse on x2 and so on.

The k-th iteration deals with sets of outcomes sharing a common prefix x1x2 . . . xk. Given any ordered
subset I = { i1, i2, . . . , ik } of the line indices 1, . . . ,m and string β ∈ { 0, 1 }|I|, define the cylinder BI,β to
be the set of strings b ∈ { 0, 1 }m such that bi1bi2 · · · bik = β. If I is omitted then it is the subset 1, . . . , |w|.

A naive attempt to emulate the above process beginning with B0 would substitute z1 = 0 but leave
the variables z2, . . . , zm open in the first formula φ0. Applying the counting in (1)–(3) to the phase-shifted
formulas derived from φ0 would fail, however, because it would attempt to cancel counts of solutions with
different final locations b2, . . . , bm whose waves do not interfere. The fix is to maintain the probabilities
directly rather than the amplitudes in a way that preserves the cylindrical structure. We write [ZI = β] for
the act of substituting the variables zi for i ∈ I by the respective bits in β.

Theorem 2. For any C, a,m as in Theorem 1 and K = 2 or 4 we can find constants R,R′ and build a
polynomial PC over any adequate ring, a polynomial QC over ZK , and a Boolean formula Φ with the same
variables as φC plus an extra variable w such that for any cylinder B = (I, β):

DC,a(B) =
1

R2
[#binsols(PC [X = a, ZI = β]− 1)−#binsols(PC [X = a, ZI = β] + 1)] (6)

=
1

R′2
[#binsols(QC [X = a, ZI = β])−#binsols(QC [X = a, ZI = β]−K/2)] (7)

=
1

R2
[#sat(Φ[X = a, ZI = β,w = 0]−#sat(Φ[X = a, ZI = β,w = 1]] . (8)

The same asymptotic size limits as for PC , QC , φC in Theorem 1 apply to P,Q,⊕.

16

Proof. We use the conjugates P ∗C , Q
∗
C , φ

∗
C with the proviso that they share the input and output variables

X,Z but have their own copies V ′,W ′, Y ′ (and Υ ′) of line, phase, and nondeterministic variables. We also
make φ′C to be a similar non-conjugated copy of φC . We prove (7) first. For any b, abbreviating QC [X =
a, Z = b] to Qa,b, we have

Pr[C(a) = b] = 〈b|C |a〉〈b|C |a〉∗ =
1

R′2

K−1∑
J,L=0

ωL+J#binsols(Qa,b − J)#binsols(Q∗a,b − L). (9)

For K = 4 with ω = i, the terms for odd powers cancel. So as with K = 2 we are left only a positive term
with L = K − J and a negative term with L = K

2 − J , both modulo K. So R′2 Pr[C(a) = b] equals

K−1∑
J=0

#binsols(Qa,b − J)#binsols(Q∗a,b + J)−
K−1∑
J=0

#binsols(Qa,b − J)#binsols(Q∗a,b + J − K

2
)

= #binsols(Qa,b +Q∗a,b)−#binsols(Qa,b +Q∗a,b −
K

2
).

So put QC = QC +Q∗C . Since the right-hand side has no phase dependence anymore,

R′2 Pr[C(a) ∈ B] =
∑
b∈B

R′2 Pr[C(a) = b]

=
∑
b∈B

#binsols(QC [X = a, Z = b]−
∑
b∈B

#binsols(QC [X = a, Z = b]− K

2
)

= #binsols(QC [X = a, ZI = β])−#binsols(QC [X = a, ZI = β]− K

2
).

In like manner we obtain PC = PC ·P ∗C (with shared X,Z), and using h(1) = 1, h(−1) = −1 per remarks
before Theorem 1, we obtain

R2 Pr[C(a) ∈ B] = #binsols(P[X = a, ZI = β]− 1)−#binsols(P[X = a, ZI = β] + 1).

It is notable that no absolute value bars are needed here. For ΦC there is a final twist. Let Ws,W
∗
s ,W

′
s be

the final suites of phase variables in φC , φ
∗
C , φ

′
C and similarly abbreviate φC [X = a, Z = b] to φa,b. We get

that R2 Pr[C(a) = b]

=

K−1∑
J,L=0

ωJ+L#sat(φa,b[Ws = J])#sat(φ∗a,b[W
∗
s = L])

=

K−1∑
J=0

#sat(φa,b[Ws = J])#sat(φ∗a,b[W
∗
s = K−J])−#sat(φa,b[Ws = J])#sat(φ∗a,b[W

∗
s =

K

2
− J])

=

K−1∑
J=0

#sat(φa,b[Ws = J])#sat(φ′a,b[W
′
s = J])−#sat(φa,b[Ws = J])#sat(φ′a,b[W

′
s =

K

2
+ J])

Now unpacking Ws = w0, . . . , wk−1 and similarly for W ′s, define

ΦC = φC ∧ φ′C ∧ (wk−1 = w′k−1) ∧ · · · ∧ (w1 = w′1) ∧ (w0 ⊕ w′0 = w).

Then ΦC [w = 0] equates W ′s = Ws and so by the disjointness of Y, V,W from Y ′, V ′,W ′,

#sat(ΦC [X = a, Z = b, w = 0] =

K−1∑
J=0

#sat(φa,b[Ws = J])#sat(φ′a,b[W
′
s = J]).

17

Because adding K/2 is the same as flipping the top phase,

K−1∑
J=0

#sat(φa,b[Ws = J])#sat(φ′a,b[W
′
s = J +

K

2
]) = #sat(ΦC [X = a, Z = b, w = 1]).

The rest involving cylinders B is similar to before. ut

For K ≥ 8 the terms for J not a multiple of K
4 need not cancel, so simplifying (9) leaves a sum over

phases. The simple one-qubit circuit HTH consisting of a twist gate flanked by two Hadamard gates gives

probabilities 1
2 +

√
1
8 = 0.85355 . . . and 1

2 −
√

1
8 , which are not (dyadic) rational numbers. We still get the

benefit in Theorem 2 of having a single expression that encompasses all possible final locations z, but the
sum over phases entails a number of calls to an equation solver or #SAT solver that is proportional to K.
For universal circuits C with K ≤ 4, however, we conclude:

Theorem 3. The distribution DC projected onto any cylinder B = (I, β) can be computed with m − |I|
evaluations of #sat(ΦC [X = a, ZI′ = β′, w = 0]) − #sat(ΦC [X = a, ZI′ = β′, w = 1]) for successive
extensions I ′ of I and β′ of β. Assuming constant arity, this needs only O(m + sk) time and space apart
from the #sat invocations.

Proof. Theorem 2 enables using the classical polynomial-time oracle procedure given before it. ut

Thus sampling can be emulated via #SAT solvers but at the cost of linearly many invocations (rather
than one or two), and most important, of doubling the number h = |Y | of nondeterministic variables. The
tradeoff is that the double rail entirely saves the space previously used to build a dictionary of counts for
each location. With regard to equation (5) and the idea of emulating Shor’s algorithm, it can be objected
that the logic uses the multiplication relation K = I ·J for numbers I, J,K of the same order as the number
M we are trying to factor—indeed, on the order of M2. We have attempted to rebut this already with the
remarks at the end of section 5 about the flow of processing.

What is the meaning of, say, φC [z1 = b] where b ∈ { 0, 1 } without the “double-rail” use of φ′C? Theorem 2
also justifies the interpretation that φC [u1 = b] (at any time, not just at the end when u1 is equated
to z1) represents the state of the system after measuring the first qubit and getting the outcome b. After
the measurement, the constant R needs to be re-normalized by multiplying it by the square root of the
probability of getting the outcome b as computed via Theorem 2. This enables continuing to represent the
system as quantum operations are added to C after the measurement is executed. The use of φC [u1 = b]
is also consonant with the principle of deferred measurement, which states that if b on line i is used only
in a test “if b then do G else do nothing” on other qubits, then the results are the same as removing the
measurement, replacing G by the controlled gate CG with source on i, and including i and result bi in any
final measurement.

We finish our systems toolkit with two more observations. First, define C∗ to be the mirror image of C
with the former outputs b1, . . . bm now being designated as inputs and vice-versa for a1, . . . , am, and with
each gate G reversed by substituting its adjoint G∗. Note that this is not the same as conjugating each gate
but keeping the sequence from a to b the same, which is what is modeled by P ∗C , Q∗C , and φ∗C .

Proposition 1. For every quantum circuit C, PC∗ = PC , QC∗ = QC , and φC∗ = φC (up to re-labeling of
variables).

Proof. Since the adjoint of a “bra” is a “ket,” 〈b|C∗ |a〉 = 〈a|C |b〉, so we may picture the original C running
right-to-left with a and b interchanged. Since the general-case construction in the proof of Theorem 1 is
symmetrical for each gate until the zi = ui step, and the only substitution is to equate two variables, the
resulting PC∗ is the same polynomial as PC , up to interchanging the substituted variables and a with b. The
same goes for QC and φC . ut

18

The tensor product C1⊗C2 of two quantum circuits C1 and C2 simply consists of laying them side-by-side,
with no gates between their respective qubit lines.

Proposition 2. For any quantum circuits C1 and C2 of min-phase K, PC1⊗C2 can be taken as PC1 · PC2 ,
QC1⊗C2

can be taken as QC1
+QC2

(mod K), and φC1⊗C2
can be taken as φC1

∧ φC2
.

Proof. We can regard C1 ⊗ C2 as a single quantum circuits in which the gates are introduced in any left-
to-right order. The sequencing does not affect which variables are “ui” on any qubit line when each gate is
placed. ut

The compute-uncompute structure mentioned in section 1 combines several of these elements. We have our
initial circuit C with some set I of r qubit lines intended for output. Then r CNOT gates are placed with
controls in I and targets in r fresh ancilla lines initialized to 0. Then C∗ is placed on the initial m lines so
that C(x) is “uncomputed” and measurements of the m + r lines will always give xy for some output y.
It is noteworthy that the composition of C∗ after C gives almost the same product, sum, and AND forms,
respectively, as Theorem 2 for the computation of probabilities. Further processing on y alone is in parallel
with C∗ and is modeled by multiplying, adding, or AND-ing in more terms. The only distinction from the
completely-parallel situation of Proposition 2 comes from the forced variables vj and terms connecting vj to
ui and uj (where j = m+ i with i ∈ I) when the CNOT gates are placed.

7 Examples and Prospective Applications

First, we take stock. We have defined a three-pronged framework that not only handles some universal set
of gates and decision problems in BQP, but directly implements a wide range of quantum operations: exact
quantum Fourier transform, sampling, on-the-fly measurement, and some circuit combinations. Our formal
objects remain small and yet maintain full information about the quantum system. They are conducive to
further manipulation by computer algebra and formal logic packages. They not only postpone the ostensible
exponential blowup but raise the prospect that heuristic solvers—honed with high effort apart from the
quantum context—can avoid it altogether. We give some examples that hint at the manner and plausibility
of advances obtained this way.

One problem to attack is, which restricted forms of quantum circuits can be emulated in classical polynomial
time? A fundamental case is the Gottesman-Knill theorem (see [34, 35]):

Theorem 4. Quantum circuits that use only Hadamard, the Pauli gates, the phase gate S, CNOT, CZ, and
swaps can be simulated in classical deterministic polynomial time. In particular, languages defined in the
manner of section 1 by uniform families of such circuits belong to P.

Many proofs of this theorem have been given, including one in the related polynomial framework of [16].
Ours uses the even newer high-level result in [36] (also in section 12 of [37]) that computing functions of the
form (2) for polynomials of degree 2 belongs to P. It shows an even finer line than one of degree between
polynomial-time computability and hardness.

Proof. Build the additive representation QC of a circuit C using these gates with K = 4. Note that Z = S2

and HZH = X, from which it follows that CNOT can be made from H and CZ, and finally Y = iXZ. So we
need only examine the terms as H, S, and CZ are added—none involves a constraint so there is no Υ :

– H: 2uiyg.
– S: ui, but since ui is 0-1 valued we can add u2i instead.
– CZ: 2uiuj .

Thus QC is a sum of monomials of the form 2xy or x2. Modulo 4, both of these terms are invariant under
replacing x by x+ 2. Hence solution counts in { 0, 1 }t where t is the total number of variables and the count
in Zt4 are related by a fixed factor of 2t. We can thus use the theorem of [36] directly to count solutions in
{ 0, 1 }t to QC − J , J = 0, 1, 2, 3. ut

19

Now, however, notice that CS also produces an additive quadratic term, namely uiuj . Thus any circuit C
composed of H and CS (which simulate S and CZ) also has QC of degree 2. If the theorem of [36, 37] applied
to counting binary solutions then BQP = P would follow. The nub is that the term xy is not invariant
under x 7→ x+ 2. Counting 0-1 solutions for quadratic polynomials with such terms is shown #P-complete
in general by [38]. The difference between ui and uiuj reflects the linear-versus-quadratic difference in [16],
but here we have isolated the jump in complexity to the latter’s coefficient being 1 not 2. This happens
entirely within a setting where counting the number of solutions of quadratic polynomials modulo K ≥ 4 is
easy—but counting the number of binary solutions is hard.

Since our proof of Theorem 4 can yield amplitude information at any stage of the circuit we speak of
simulation not just emulation here. The general algorithm in [36, 37] does not run in Õ(t) time. It remains
to be seen whether its specialization to sums of 2xy or x2 can be honed to rival the nearly linear running
time of Jozsa [39]. The Toffoli, CS, and T gates all introduce terms of degree 3 into QC . It is interesting to
ask whether circuits obtained by adding one of these gates have QC with a simply-expressed structure that
resists the “dichotomy” phenomenon (problems being either in P or #P-complete, nothing in-between) in
these papers.

Note that we avoided the constraint Υ ·(· · ·) involved with CNOT. That or propagating the annotation
2uiuj −ui−uj along line j would lead to terms of degree 3 or higher, while still giving polynomials that are
functionally equivalent to the ones of degree 2 above. This leads to the broad question of recognizing such
equivalence, and whether algebraic and Boolean solvers may even go beyond it by finding simplifications that
do not have direct analogues at the level of quantum gates. The simplest identity involving a nondeterministic
gate, namely HH = I, already shows some challenges. Substituting x1 = a and z1 = b gives the diagram:

a
H

y
H

b
=

a
I

b

The multiplicative polynomial of the left-hand circuit is

PC = (1− 2ay)(1− 2yb) 7→ 1− 2ay − 2yb+ 4ayb,

with a background factor of R = 1/2 from the two Hadamard gates. Why is this equivalent to the identity-
gate polynomial? The latter is

PI = E(a, b) = 1− a− b+ 2ab.

A clue is to look at what happens to PC under the “illegal” substitution b = 1− a, when it becomes

1− 2ay − 2y + 2ay + 4ay − 4a2y 7→ 1− 2y.

A multiplicative term (1− 2y) where this is the only occurrence of the interior variable y behaves much like
“Υ” in the additive representations. It sets up a 1-1 correspondence between solutions for each e(ω) and
e(−ω), which cancels everything to zero. Thus all assignments into PC that make a 6= b contribute a net
of zero to the complex amplitude. Substituting a = b makes both polynomials reduce to 1. Interestingly,
substituting y = 1/2 into PC yields PI , but this is not a “legal” substitution.

For the additive representation over Z4 we get QC = 2ay + 2yb = 2y(a + b). Again the legal paths with
b 6= a cancel, while those with b = a make 2y(a + b) a multiple of 4, which yields 0 like the identity does.
But how can we recognize this? The Boolean formula φC does p1 = p0 ⊕ (a ∧ y) and p2 = p1 ⊕ (y ∧ b),
which combine to give p2 = p0 ⊕ (a ∧ y) ⊕ (y ∧ b). For y = 0 this gives p2 = p0 = 0, whereas for y = 1 this
makes p2 = p0 ⊕ (a ⊕ b). Again we can infer that a 6= b gives canceling phases while a = b makes p2 = 0
in this case too, so the net effect is the identity. But still, this already seems challenging to automate, let
alone recognizing larger-scale circuit identities discussed previously. The nub is how well #SAT solvers can
rearrange clauses so that variables like y get “leveled off” in all cases, in the manner of eliminating rows in
the Tetris video game.

Now we consider a much harder example of equivalence. A controlled gate CG deviates from the cases in
section 5 when G is nondeterministic. For example, the controlled Hadamard gate CH has the circuit notation
and matrix shown at left below.

20

•

H
=

1 0 0 0
0 1 0 0
0 0 1√

2
1√
2

0 0 1√
2
− 1√

2

 =

•

Rx(−π/2) T∗ T Rx(π/2)

The matrix is not balanced. Letting i be the control line and j the target, we can introduce a new variable
yg opposite uj . The phase term (1 − 2ujyg) for a free-standing Hadamard on line j becomes (1 − 2uiujyg)
but the control gives a constraint: if ¬ui then yg = uj . So we could multiply P by (1 − 2uiujyg)(ui + (1 −
ui)(1 + 2ujyg − uj − yg)) and do analogously for Q by

Q += (K/2)uiujyg + Υ`(1− ui)(uj + yg − 2uiyg).

The problem from the lack of balance, however, is a miscount in case ui = 0. Then yg is forced to equal uj so,
for instance, there is only one path from the input 00 to the output 00. We could patch this by introducing
a new variable v, multiplying P also by (1− uiv), adding uivΥ` to Q, and doing the following for φ:

φ ∧= (p` = p`−1 ⊕ (ui ∧ uj ∧ yg)) ∧ (yg = uj ⊕ (ui ∧ v))

The right-hand pae enforces the constraint when ui = 0 and rectifies the count of satisfying assignments.
However, v needs to be treated as a new “virtual location” so that the paths for v = 0 and v = 1 do not
amplify. This re-raises issues of sampling and post-selection that can be explored further. Alternately, one
can use the equivalence of CH to a composition of five balanced gates shown at right. Let y1 be the variable
introduced by the Rx(−π/2) and y2 the one introduced by its conjugate. For a = 00, what happens is that
the forced variable vf introduced by the CNOT gate is equated to y1. The final quarter and half phases
computed in four stages (besides the CNOT which changes no phase) are:

q4 = q3 ⊕ vf ⊕ y2 = y1 ⊕ y1 ⊕ y2 = y2

p4 = p3 ⊕ ((vf ⊕ y2) ∧ q̄3) = (y1 ⊕ y2) ∧ ȳ1 = ȳ1 ∧ y2.

The outcome b = 00 sets y2 = 0 and hence gives both paths for y1 a final phase of zero in a way that leaves
the variable y1 completely free in both equations. Thus y1 acts like “v” above. The potential outcome b = 01
sets y2 = 1, which fixes the quarter phase as 1 and makes the variable y1 switch between i and −i in the top
phase, which duly cancel to make b = 01 impossible. This leads to an operational verification of equivalence
when the other values of a are verified as well, but this is far from a simplification.

The challenge is to recognize such simplifications. The identity HSH = V and its analogue using CS and
CV may have intermediate difficulty. So may the equivalence of the Toffoli gate to two-qubit gates [20]:

• • • •

• = • H Z H • • H Z H

H S Z S S H

In our rendition there are six Hadamard gates to “level away.” We have only opened the door to these
questions about equivalence and efficacy by a crack. We conclude with only a very preliminary indication
that there may be light through the crack from the performance and scaling of existing solvers.

8 A Few Experimental Results

We show the experimental results from the performance of solving the generated Boolean formulas using
our brute-force (BF) method and current versions of the Cachet [12–14] and sharpSAT [11] solvers. All the
circuits generated and tested begin with a bank of Hadamard-gates on every line applied to the input vector,
and subsequently differ as follows:

21

– CNOT staircase: apply CNOT gates with control n and target n + 1 followed by a T-
gate on line n for n = 1, · · · ,m − 1. Concretely, a sequence of applied gates would be
CNOT(1, 2),T(2),CNOT(2, 3),T(3), . . . ,T(m),CNOT(m, 1).

– CNOT staircase with appended CZ and CV gates that alternate: After the bank of H gates and the above
CNOT staircase, apply CV and CZ alternately to lines n, n + 1 and n + 2. Concretely, a sequence of
applied gates would be:

CNOT(1, 2),T(2),CNOT(2, 3),T(3), . . . ,T(m),CNOT(m, 1)

CV(1, 2),CZ(2, 3),CV(3, 4),CZ(4, 5), · · · ,CZ(n− 2, n− 1),CV(n− 1, n).

– Initial segments of circuits proposed in [21] to be hard for classical simulations.

The following results were run from C++ code on one core thread of a Dell PowerEdge R720 server
with 3.3Ghz E5-2643 CPU. The experimental specification called for reading a description of the quantum
circuit as described above, transcribing it into the standard (“DIMACS”) format used by SAT solvers, and
running ten trials each of our brute-force routine, sharpSAT, and Cachet. The latter two were compiled with
optimization on the same machine as our solver. Our code uses pointers to unsigned integers to reference
Boolean values; there does not seem to be any tangible gain from packing integers to represent multiple
Boolean values or using a bitset implementation.

Table 1. CNOT staircase (microsecond (us))

m BF sharpSAT Cachet

4 35 7,409 35,870
8 618 8,021 36,245

12 12,239 8,292 35,245
16 122,063 8,100 34,120
20 2,101,034 9,594 39,994
24 62,935,720 9,024 42,994

Table 1 shows the results of solving the generated Boolean formulas for circuits consisting of a “staircase”
of m Hadamard and CNOT gates producing entanglements. While the brute-force (BF) running time grows
exponentially in m as expected, the running times of sharpSAT and Cachet change little. This suggests that
the solvers are able to figuratively flatten the staircase so that the transformed solutions are easy to count.
The next experiment tries to frustrate this by sprinkling controlled gates of non-binary phases amid the
lines. The CV gates add extra nondeterminism in the standard basis.

Table 2. CNOT staircase with CZ and CV (microsecond (us))

m BF sharpSAT Cachet

4 410 8,373 42,744
8 91,534 8,486 49,493

12 13.9 s 10,400 64,300
16 14,588 s 18,500 52,000
20 � 5 hours 145,700 106,000
24 � 5 hours 1,196,100 362,700

In Table 2, the relations between them are similar to that in Table 1 until the line for m = 16. The BF
running time balloons up even more owing to the extra nondeterministic variables. The sharpSAT solver
seems to have special difficulty with the circuits of 20 and 24 qubits.

22

We also tried initial sets of layers from the circuits treated in [22] based on indications from [21] of their
being hard to simulate classically. Those circuits had too much nondeterminism for BF but gave results
within a few hours for sharpSAT and Cachet until the circuits reached 6 or 7 layers of 24 to 36 qubits—well
short of the 40-layer simulations on massively parallel hardware announced by [22].

The results show that sharpSAT and Cachet give better scalability on these circuits. They as yet do not,
however, even “recognize” the identity HH = I in the sense of having similarly close running times when
extra HH pairs are added to these circuits. Of course, our BF method has its time compounded by a factor
of 4 for each pair since it blindly tries all combinations. This points to the goal is tuning the solvers for a
repertoire of basic quantum simplifications, in the hope that this will boost the heuristics already employed.

The final preliminary experiment, just at press time, emulated the circuits for Shor’s algorithm that are
constructed by libquantum [2–4]. The libquantum package and its shor routine are distinguished among
quantum simulation software by being part of the SPEC CPU2006 benchmark suite [40]. We modified the
v1.1.1 release code so that it prints out each quantum gate in the readable format of our emulator. The
circuits are generated specially for each M and choice of random seed a. For M = 2021 and a = 7 the circuit
built by the shor routine uses 22 principal qubits, 35 ancillas, and has 98,135 elementary gates. By far
the largest block is for the modular exponentiation step which consists entirely of deterministic gates (only
NOT, CNOT, and Toffoli). They are somewhat larger than the original circuits for Shor’s algorithm detailed
in [41]. They are far from optimal; indeed, Markov and Saeedi [31, 42] showed 6-to-8-fold improvements by
high-level means and other gate-level improvements have been made [43, 32, 44].

The SPEC CPU2006 benchmark consists of one run of shor on M and a, which does just one iteration of
the quantum circuit—no restarts in case it doesn’t succeed. It uses a numerical gate-by-gate simulation. For
M approaching 10,000 our compile of shor overflows its hash table of over 500MB. It functioned correctly
on M = 2021 = 43 ∗ 47, which is just under 211. Our emulator’s brute-force routine reaches its limit for
numbers larger than 29 = 512, which entails running through 236 = 64 billion assignments for each of 9
sampled bits. Optimizing the initial modular exponentiation stage would make very little difference in our
brute-force routine because only one in every 218 assignments backtracks beyond the final QFT step which
has 18 Hadamard gates of its own. Runs with the #SAT solvers succeeded for M = 15 and M = 21 but
bogged down for M = 55, with sharpSAT expanding to over 34GB of system resources. This evidently
owes to the second copy of φ in the proof of Theorem 2 doubling the count of Hadamard gates again. The
brute-force compilation needed only the single copy and stayed within 71MB, under 0.1% of system memory,
per billion assignments tried.

9 Conclusions and Research Directions

We have defined a natural emulator in the sense of [8]. It has no explicit representation of matrices or
quantum states or any physical elements and loses no precision while needing only whole integer arithmetic.
Preliminary experimental work shows that it is competent even in brute-force simulation and enables dis-
tinctly high performance through #SAT solvers in several instances. It has a high memory footprint only in
the accumulation of final results. The sampling procedure of section 6 essentially eliminates that footprint
but at double the cost in nondeterminism and a squaring of brute-force simulation time. Overall the archi-
tecture is markedly different from that of commonly employed systems. It is so fine-grained as to escape
limitations of more-structured systems including [45–49], but eschews explicit benefit from such structures.
We showed its capability to work with quantum circuits of thousands of gates, though also where it is lagging
by a factor of about 20 in the magnitude of numbers M that it can handle compared to libquantum and
that the #SAT solvers lagged by another factor of 10.

Higher performance may come from software advances in #SAT solvers. These might be tailored to leverage
the special “parity-of-AND” form of the equational clauses before conversion to conjunctive normal form.
At the very least, our work has supplied a new class of natural instances by which to challenge these solvers.
One natural metric will come from the work in progress of emulating Shor’s algorithm. We have shown all
the ingredients except for concretely optimizing the deterministic layer for modular exponentiation—which
may make a greater difference for #SAT solvers than it does for our brute-force routine. Research progress

23

will need to center on the details of the solvers and their heuristics, to tune them more to recognizing
symmetries and identities arising in quantum circuits. Most in particular, it would be interested to test the
direction-of-flow arguments made at the end of section 5 on a set of natural instances.

Another question is whether solvers can be tailored to the algebraic forms, the low-degree QC polynomials
in particular. Comparison of the efficacy of our algebraic and logical representations is hampered by the
relative lack of dedicated symbolic polynomial equation solvers compared to SAT solvers. On the theoretical
side, our own proof of Theorem 4 shows a new level of fineness in the demarcation between cases of counting
problems that are polynomial-time solvable and those that are #P-complete.

A further research direction suggested by the obstacles to exact emulation of Shor’s algorithm is to use
approximation. In the context of simulators typified by libquantum and much research on perturbations of
Shor’s algorithm, approximation has its standard numerical meaning, as exemplified by [50–53]. In logic, we
can approximate a complex predicate by a simple one that gives the correct answer on all but a sparse set
of instances. This suggests looking for a sparse approximation to the modular exponentiation relation.

We close with an analogy to elaborate the main issue with our architecture. Solvers that represent whole
state vectors in some form and emulate circuit levels sequentially figuratively have the memory footprint
of a giant. Once the giant gets going, however, it walks with a steady gait. Our model instead employs
an army of fleet-footed mice and can send one ‘mouse’ (i.e., evaluate one Feynman path) at a time with
zero footprint—except for housing the results of the mice at the end. The issue is that each intermediate
nondeterministic gate doubles the size of the mouse army. Of course the brute-force simulation doesn’t reduce
it but all heuristics must grapple with the initial condition that multiple mice are still “there” before any
cancellations or Tetris-style blocking are applied. Aaronson and Chen [54] have recently shown a simple
tradeoff between the “path” and “whole-state” extremes, but it still pays some exponential factor (they
state what in our notation would be 2n versus 2s, but in our setup it is more like 2m versus 2h) up front.

The formulas manipulated by SAT and #SAT solvers, insofar as they expand via resolution and other
techniques, are between the mice and the giant. The further success of this approach may depend on how much
implicit combination they can achieve. For some sampling steps of quantum algorithms, certain tradeoffs
between accuracy of the counting and size can be tolerated. How this can possibly interact with the deep
tradeoff of approximation and hardness in sampling, over which the argument over “quantum supremacy”
is currently centered, remains to be seen.

Acknowledgments Most of the initial work on this paper was done while the first author was a sabbatical
visitor to the Universitié de Montreal, partly supported by the UdeM Département d’informatique et de
recherche opérationnelle, and by the University at Buffalo Computer Science Department. We thank espe-
cially Professors Pierre McKenzie, Alain Tapp, and Jin-Yi Cai for insightful discussions, and Igor Markov
for further pointers to the literature and a press-time tip that libquantum could be modified to output the
entire quantum circuits of thousands of gates for Shor’s algorithm in a format readable by our emulator. We
thank the referees and also Michael Nielsen, John Sidles, Wim van Dam, Alex Russell, and Ronald de Wolf
for helpful comments.

References

1. Dawson, C., Haselgrove, H., Hines, A., Mortimer, D., Nielsen, M., Osborne, T.: Quantum computing and poly-
nomial equations over the finite field Z2. Quantum Information and Computation 5 (2004) 102–112

2. Butscher, B., Weimer, H.: Simulation eines Quantencomputers. http://www.libquantum.de/files/libquantum.pdf
(2003)

3. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P., Büchler, H.: A Rydberg quantum simulator. Nature Physics
6 (2010) 382–388

4. Weimer, H., Butscher, B.: libquantum 1.1.1: the C library for quantum computing and quantum simulation.
http://www.libquantum.de/ (2003–2013 (v. 1.1.1))

5. Wybiral, D., Hwang, J.: Quantum circuit simulator. http://www.davyw.com/quantum/ (2012)
6. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the

35th Annual IEEE Symposium on the Foundations of Computer Science. (1994) 124–134

24

7. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the American Mathematical Society
46 (1999) 203–213

8. Häner, T., Steiger, D., Smelyanskiy, M., Troyer, M.: High performance emulation of quantum circuits. In:
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
Salt Lake City, Utah, Nov. 2016, IEEE press (2016) Article 74 in e-volume.

9. Greuel, G.M., Pfister, G., Schönemann, H.: Singular version 1.2 User Manual . In: Reports On Computer Algebra.
Volume 21. Centre for Computer Algebra, University of Kaiserslautern (1998) http://www.singular.uni-kl.de/

10. Greuel, G.M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Compu-
tations, Centre for Computer Algebra, University of Kaiserslautern (2005) http://www.singular.uni-kl.de.

11. Thurley, M.: sharpsat – counting models with advanced component caching and implicit bcp. In: Theory and
Applications of Satisfiability Testing - SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15,
2006. Proceedings. Volume 4121 of Lect. Notes in Comp. Sci., Springer Verlag (2006) 424–429

12. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component caching and clause learning
for effective model counting. In: Seventh International Conference on Theory and Applications of Satisfiability
Testing, Vancouver. (2004)

13. Sang, T., Beame, P., Kautz, H.: Heuristics for fast exact model counting. In: Eighth International Conference
on Theory and Applications of Satisfiability Testing, Edinburgh, Scotland. (2005)

14. Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model counting. In: Proceedings of
the Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA. (2005)

15. Gerdt, V., Severyanov, V.: A software package to construct polynomial sets over Z2 for determining the output
of quantum computations. Nuclear Instruments and Methods in Physics Research A 59 (2006) 260–264

16. Bacon, D., van Dam, W., Russell, A.: Analyzing algebraic quantum circuits using exponential sums.
http://www.cs.ucsb.edu/ vandam/LeastAction.pdf (2008)

17. Adleman, L., DeMarrais, J., Huang, M.: Quantum computability. SIAM J. Comput. 26 (1997) 1524–1540
18. Fortnow, L., Rogers, J.: Complexity limitations on quantum computation. In: Proc. 13th Annual IEEE Conference

on Computational Complexity. (1998) 202–206
19. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Physical Review

Letters 74(20) (1995) 4083–4086
20. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter,

H.: Elementary gates for quantum computation. Phys. Rev. A 52(5) (1995) 3457–3467
21. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Bremner, M.J., Martinis, J.M., Neven,

H.: Characterizing quantum supremacy in near-term devices. https://arxiv.org/pdf/1608.00263.pdf (2016)
22. Häner, T., Steiger, D.: 0.5 petabyte simulation of a 45-qubit quantum circuit. arXiv:1704.01127v1 (2017)
23. Feynmann, R.: Simulating physics with computers. International Journal of Theoretical Physics 21 (1982)

467–488
24. Feynmann, R.: Quantum mechanical computers. Foundation of Physics 16 (1986) 507–531
25. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. Proceedings

of the Royal Society A400 (1985) 97–117
26. Deutsch, D.: Quantum computational networks. In: Proceedings of the Royal Society of London. Volume

425(1868) of Series A. (1989) 73–90
27. Yamashita, S., Markov, I.: Fast equivalence-checking for quantum circuits. In: Proceedings of the 2010

IEEE/ACM Symposium on Nanoscale Architectures, Anaheim, CA USA. (2010) May 2013 update at
https://arxiv.org/pdf/0909.4119.pdf.

28. Eggersglüß, S., Wille, R., Drechsler, R.: Improved SAT-based ATPG: More constraints, better compaction. In:
Proceedings of the 2013 International Conference on Computer-Aided Design, San José, CA USA. (2013) 85–90

29. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing Arch. Elektron. Rechnen 7
(1971) 281–292

30. van Meter, R., Itoh, K.: Fast quantum modular exponentiation. Phys. Rev. A 71 (2005) 052320
31. Markov, I., Saeedi, M.: Constant-optimized quantum circuits for modular multiplication and exponentiation.

Quantum Information and Computation 12 (2012) 361–394
32. Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for shor’s factoring algorithm.

Quantum Information and Computation 14 (2014) 694–682
33. Cao, Z., Cao, Z., Liu, L.: Remarks on quantum modular exponentiation and some experimental demonstrations

of Shor’s algorithm. https://arxiv.org/abs/1408.6252 (2014)
34. Gottesman, D.: The Heisenberg representation of quantum computers. http://arxiv.org/abs/quant-ph/9807006

(1998)
35. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70 (2004)

25

36. Cai, J.Y., Chen, X., Lipton, R., Lu, P.: On tractable exponential sums. In: Proceedings of the 2010 Frontiers in
Algorithms Workshop. Volume 6213 of Lect. Notes in Comp. Sci., Springer Verlag (2010) 48–59

37. Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem (2013)
38. Cai, J.Y., Lu, P., Xia, M.: The complexity of complex weighted Boolean #CSP. J. Comp. Sys. Sci. 80 (2014)

217–236
39. Jozsa, R.: Embedding classical into quantum computation. In: Proceedings of MMICS’08. (2008) 43–49

arXiv:quant-ph 0812.4511.
40. Spec.org, Butscher, B., H, W.: 462.libquantum spec cpu2006 benchmark description.

https://www.spec.org/cpu2006/Docs/462.libquantum.html (2006)
41. Beckman, D., Chari, A., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A

54 (1996) 1034–1063
42. Markov, I., Saeedi, M.: Faster quantum number factoring via circuit synthesis. Phys. Rev. A 87 (2013) 012310

1–5
43. Beauregard, S.: Circuit for shor’s algorithm using 2n+3 qubits. Quantum Information and Computation 3 (2003)

175
44. Häner, T., Roetteler, M., Svore, K.: Factoring using 2n+2 qubits with Toffoli based modular multiplication.

Quantum Information and Computation 17 (2017)
45. Viamontes, G., Rajagopalan, M., Markov, I., Hayes, J.: Gate-level simulation of quantum circuits. In: Proceedings,

ACM/ IEEE Asia and South-Pacific Design Automation Conf. (ASPDAC), Kitakyushu, Japan, January 2003.
(2003) 295–301

46. Viamontes, G., Markov, I., Hayes, J.: Improving gate-level simulation of quantum circuits. Quantum Information
Processing 2 (2003) 347–380

47. Greve, D.: Qdd: A quantum computer emulation library. http://thegreves.com/david/QDD/qdd.html (1999–
2007)

48. Patrzyk, J., Patrzyk, B., Rycerz, K., Bubak, M.: Towards a novel environment for simulation of quantum
computing. Computer Science 16 (2015) 103–129

49. Lee, Y., Khalil-Hani, M., Marsono, M.: An FPGA-based quantum computing emulation framework based on
serial-parallel architecture. Journal of Reconfigurable Computing 2016 (2016) 18 pages

50. Barenco, A., Ekert, A., Suominen, K.A., Törmä, P.: Approximate quantum Fourier transform and decoherence.
Phys. Rev. A 54 (1996) 139–146

51. Zilic, Z., Radecka, K.: Scaling and better approximating quantum Fourier transform by higher radices. IEEE
Trans. Comp. 56 (2007) 202–207

52. Rötteler, M., Beth, T.: Representation-theoretical properties of the approximate quantum Fourier transform.
Applicable Algebra in Engineering, Communication and Computing 19 (2008) 117–193

53. Prokopenya, A.: Approximate quantum Fourier transform and quantum algorithm for phase estimation. In:
Computer Algebra in Scientific Computing. Volume 9301 of Lect. Notes in Comp. Sci., Springer Verlag (2015)
391–405

54. Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments.
https://arxiv.org/abs/1612.05903 (2016)

26

