
On Closure Properties of Bounded 2-Sided Error

Complexity Classes

Kenneth W. Regan∗

SUNY/Buffalo

regan@cs.buffalo.edu

James S. Royer†

Syracuse University

royer@top.cis.syr.edu

June 14, 1993

Abstract

We show that if a complexity class C is closed downward under polynomial-
time majority truth-table reductions (≤p

mtt), then practically every other
“polynomial” closure property it enjoys is inherited by the corresponding
bounded 2-sided error class BP[C]. For instance, the Arthur-Merlin game class
AM [Bab85] enjoys practically every closure property of NP. Our main lemma
shows that for any relativizable class D which meets two fairly transparent
technical conditions, we have DBP[C] ⊆ BP[D C]. Among our applications, we
simplify the proof by S. Toda [Tod89, Tod91] that the polynomial hierarchy
PH is contained in BP[⊕P]. We also show that relative to a random oracle
R, PHR is properly contained in ⊕PR.

Keywords Computational complexity, theory of computation, polynomial-time

hierarchy, randomness, oracles.

AMS/MOS classification(s) 68Q15.

∗The first author was supported in part by NSF Grant CCR-9011248
†The second author was supported in part by NSF Grant CCR-89011154.

1

1. Overview

There has been much interest in relationships among BPP and related bounded

two-sided error complexity classes [Ko82, Zac82, ZH86, Sch85, Sch88, Sch89, Kla90].

We show that many of the arguments in these papers are instances of the following

“oracle interchange lemma”: for complexity classes C and D which possess some

commonly-found polynomial-time closure properties,

DBP[C] ⊆ BP[D C].(1)

Besides tightening several proofs in the literature, our formulation helps us study

the exact conditions under which one can use these arguments. We believe that (1)

is interesting in itself, especially for classes D such as NP and ⊕P whose computa-

tions may involve exponentially many branches and oracle queries, because it says

that all the coinflips implicitly used to answer queries to BP[C] can be replaced by

polynomially many coinflips made at the outset by a D-machine with an oracle from

C itself.

We give several applications of our lemma, including a short and tighter proof of

S. Toda’s theorem [Tod89, Tod91] that the polynomial hierarchy PH is contained in

BP[⊕P]. Then we show that all “reasonable” closure properties of a class C meeting

our conditions are inherited by its bounded two-sided analogue BP[C]. In a final

section we show that relative to a random oracle R, PHR is properly contained in

⊕PR.

2. Preliminaries

We use the alphabets Σ := { 0, 1 } and Γ := { 0, 1,# }, where ‘#’ is an extra

symbol used to form tuples. Given x ∈ Γ∗, there is a unique k ≥ 0 and list of

strings x1, . . . , xk ∈ Σ∗ such that x = x1# · · ·#xk. We identify both languages

and predicates with 0–1 valued functions (for predicates, 0 ≡ false and 1 ≡ true).

For each A ⊆ Γ∗, we write A for the complement of A in Γ∗. For any language

A ⊆ Γ∗ and string u ∈ Σ∗, we define the projection of A along u, written πu(A), to

be {x ∈ Γ∗ : x#u ∈ A }. We also identify Σ∗ with the natural numbers N in the

standard manner. For any m ≥ 0, Σm stands for the set of strings x ∈ Σ∗ whose

2

length |x| equals m. For each language A and m ≥ 0, A|m := {x ∈ A : |x| = m } and

A|≤m := {x ∈ A : |x| ≤ m }. Double bars denote set cardinality; thus ‖Σm‖ = 2m.

Languages over Γ are our main objects of study. These could be recoded over

the alphabet Σ, but we prefer to distinguish Σ∗ as a domain for quantifiers to range

over. For brevity we indicate quantification restricted to strings of a given length

m by superscripting m after the quantifier. We also employ the following extended

quantifier notation:

Definition 1. For any predicate Q(·), m ∈ N, and real δ ∈ (0, 1):

(a) (threshold counting) (Tmδ y)Q(y) holds iff ‖{ y ∈ Σm : Q(y) }‖ > δ · 2m.

(b) (parity counting) (⊕m y)Q(y) holds iff ‖{ y ∈ Σm : Q(y) }‖ is odd.

Several well-known operators on complexity classes are then definable as fol-

lows. (We add square brackets to Toda’s ‘·’ notation in order to clarify the order of

application in compound expressions.)

Definition 2. Let C be any class of languages over Γ. Then a language A ⊆
Γ∗ belongs to co-[C] if A belongs to C. A belongs to, respectively: (a) NP[C],
(b) coNP[C], (c) ⊕P[C], (d) BP[C], (e) RP[C], iff there is a language R ∈ C, a

polynomial p, and a δ > 0 such that for all x ∈ Γ∗, with m := p(|x|):
(a) A(x) = (∃m y)R(x#y),

(b) A(x) = (∀m y)R(x#y),

(c) A(x) = (⊕m y)R(x#y),

(d) (Tm.5+δ y)[A(x) = R(x#y)],

(e) (Tmδ y)[A(x) = R(x#y)] and ¬A(x) =⇒ (∀my)¬R(x#y).

For C := P, the above are respectively equivalent to the usual definitions of NP,

coNP, ⊕P, BPP, and RP in terms of machines. The following is immediate:

Proposition 3. For any language class C, co-[NP[C]] = coNP[co-C] and

co-[BP[C]] = BP[co-[C]]. In particular, co-[BP[NP]] = BP[co-[NP]] = BP[coNP].

Applying (c) and then (d) to P gives Toda’s class BP[⊕P]. This class is also

characterized by machines M which on any input x first flip polynomially-many

3

coins to form a string y ∈ Σ∗, and then simulates a ⊕P machine Q on input x#y.

Corresponding to Q there is a P-machine P and a polynomial p such that for any

x and y, Q(x#y) accepts iff the number of strings z ∈ Σp(|x|) such that P (x#y#z)

accepts is odd. The natural definition of Toda’s class relative to an oracle X, written

(BP[⊕P])X , is in terms of oracle machines M of this kind. Without loss of generality

we may suppose that M makes all of its coin-flips to form y and guesses to form z

at the outset of every computation path, so that the queries are left to the machine

P . This shows that for any oracle set X, (BP[⊕P])X equals BP[⊕P[PX]], and also

equals BP[⊕PX].

In an Arthur-Merlin protocol [Bab85, BM88], the “Arthur” machine A, given an

input x, first flips polynomially many coins and sends the resulting string y to the

“Merlin” machine M . M reads x#y and nondeterministically computes a string

z. A deterministic polynomial-time procedure then verifies a predicate R(x#y#z).

The protocol is said to recognize a language L if there exist δ > 0 and a polynomial

p such that for all x, with m := p(|x|),

x ∈ L =⇒ (Tm.5+δ y)(∃m z)R(x#y#z)

x /∈ L =⇒ (Tm.5+δ y)(∀m z)¬R(x#y#z).

This is equivalent to L ∈ BP[NP]. Relative to an oracle X, we may once again wlog.

suppose that A makes all of its coin flips and M makes all of its nondeterministic

moves before either machine makes any queries, so that all queries are left to the

stage of verifying the P-predicate R(x#y#z). This shows that for any oracle set X,

AMX = BP[NPX] = BP[NP[PX]].

An attempt to extend this kind of argument to a general result of the form

(op[C])X = op[CX] may be found under the heading “associativity of relativization”

in [HZ84]. The following proposition collects all the instances needed for applications

in this paper.

Proposition 4. For any oracle set X:

NPX = NP[PX] AMX = BP[NPX]

⊕PX = ⊕P[PX] (BP[⊕P])X = BP[⊕PX]

BPPX = BP[PX] Σp,X
2 = NP[coNPX] = NP[co-[NPX]].

4

Last, we collect some known observations which quantify the extent to which

probabilities can be amplified by conducting polynomially many repeated trials.

A language A is polynomial-time majority truth-table reducible to a language B

(written: A ≤p
mtt B) iff there is a deterministic polynomial-time procedure which,

for each x, constructs a set S(x) of an odd number of strings such that x ∈ A

⇐⇒ more than half the strings in S(x) are in B. Since S has polynomial size,

this is far from the full power of threshold counting used in describing PP and

related counting classes (see [Sch90]), and closure under ≤p
mtt can be considered a

“moderately” strong property of complexity classes. Our slight improvement in the

proof of (d) is apparently new.

Proposition 5 ([Ko82, Zac82, Sch89, Lau83]). Let C be a collection of lan-

guages which is closed downward under ≤p
mtt. Then:

(a) For each A ∈ BP[C] and polynomial r, there is a set R ∈ C and a polynomial q

such that for all m > 0, (T
q(m)
1−ε y)(∀x : |x| ≤ m)[A(x) = R(x#y)], where ε = 2−r(m).

That is, (T
q(m)
1−ε y)[A|≤m = (πyR)|≤m].

(b) RP[C] ⊆ BP[C].
(c) BP[BP[C]] = BP[C] and RP[RP[C]] = RP[C].
(d) BP[C] ⊆ NP[coNP[C]].

Proof Sketch. The counting arguments in (a) and the consequences (b) and (c)

are well-known; the basic idea is that by polynomially many repeated trials, one can

make the error probability for any given x ∈ Σ≤m less than 2−(m+1)r(m), so that the

chance of failure for even a single such x is bounded by 2−r(m). Previous proofs of

(d) [Lau83, ZH86] involve the formula

x ∈ A ⇐⇒ (∃C ⊆ Σm)(∀z ∈ Σm)(for some y ∈ C) R(x#(y + z)),

where C is a collection of polynomially many strings and the addition is bitwise

mod 2. They stipulate that the class C be closed downward under something like

polynomial-time disjunctive truth-table reductions (≤p
dtt). However, a straightfor-

ward analysis replaces the ‘for some y ∈ C’ by ‘for most y ∈ C’, so that the proofs

work for C closed under ≤p
mtt.

5

3. The Interchange Lemma

We identify the notion of a relativized class D with a collection {Di : i ∈ N } of

oracle Turing machines, such that for all oracle sets X, DX = {L(DX
i) }. Our results

do not require that this collection be effectively enumerated. We also write D(X)

for DX , and D C or D(C) for
⋃
X∈C DX . Our reason for the generality in this section

is that many reducibility relations and operations on classes can be represented as

relativized classes. For instance, the NP[·] operator is represented by the family D
of polynomial-time bounded NTMs which on any input x, each computation path

makes one oracle query, and accepts iff the answer to the query is ‘yes.’

Definition 6. A relativized class D has polynomially bounded oracle use iff for each

D-machine D there is a polynomial p such that for all n and oracle sets A,B,

A|≤p(n) = B|≤p(n) =⇒ L(DA)|≤n = L(DB)|≤n.(2)

This is guaranteed if D on input x makes no queries of length > p(|x|).

Definition 7. A relativized class D is closed under oracle projections if for each

D-machine D and oracle set A, there is a D-machine D∗ such that for all x ∈ Γ∗

and u ∈ Σ∗, DA
∗ (x#u) = DπuA(x).

The following stronger condition gives a better intuitive picture of what Definition

7 involves. Given any oracle machine D, define Dπ to be a machine which acts as

follows, on any input w ∈ Γ∗ of the form x#u with u ∈ Σ∗: Dπ simulates D on

input x, but for each query string q submitted by D, Dπ submits the query string

q#u instead. If w does not have this form; i.e., if w ∈ Σ∗, then Dπ just simulates D

on input w.

Definition 8. A relativized class D is closed syntactically under oracle projections

if for each D-machine D, Dπ is also a D-machine.

Generally speaking, Dπ is a machine of much the same “complexity type” as D. For

instance, if D is an NP-machine, then so is Dπ. If D is an oracle machine which

on any input w ∈ Γ∗ only submits w itself as a query, then Dπ is equivalent to D

6

itself. These remarks, and the obvious polynomial length bound on queries, suffice

to verify that Definitions 6 and 8 hold for all the relativized classes D considered

in this paper, in particular P, NP, coNP, and ⊕P. There is one exception: the

“D(C) = C ∩ co-C operator” at the end of Section 5 gives an example of why the

closure under oracle projections is needed for the results.

Lemma 9 (BP Interchange Lemma). Let D be a relativized class which is closed

under oracle projections and has polynomially bounded oracle use. Let C be a class

which is closed downward under ≤p
mtt. Then DBP[C] ⊆ BP[D C].

Proof. Let D be a D-machine. The object is to show that for each oracle set

B ∈ BP[C], the language L(DB) is in BP[D C]. Take p to be a polynomial which

bounds the oracle use of D as in (2). Then by Proposition 5a, there is a set R ∈ C
and a polynomial q such that for all m, we have (T

q(m)
3/4 z)[B|≤m = (πzR)|≤m], and,

hence, setting m = p(n),

(T
q(p(n))
3/4 z)[B|≤p(n) = (πzR)|≤p(n)].

Thus, since p bounds the oracle use of D, we have that

for all x ∈ Γ∗, (T
q(p(|x|))
3/4 z)[DB(x) = DπzR(x)].

By the closure of D under oracle projections, there is a D-machine D∗ such that for

all x ∈ Γ∗ and z ∈ Σ∗, DR
∗ (x#z) = DπzR(x). Hence,

for all x ∈ Γ∗, (T
q(p(|x|))
3/4 z)[DB(x) = DR

∗ (x#z)].

Since R ∈ C, we have L(DB) ∈ BP[D C], as required.

4. Applications

Our first applications are direct corollaries of Proposition 4 and the interchange

lemma:

7

Corollary 10. (a) [Ko82] BPPBPP = BPP.

(b) [ZH86, Sch89] Σp,BPP
2 = Σp

2.

(c) [ZH86] NPBPP = NP[BPP].

(d) AM equals the closure of P under the operators NP[·] and BP[·].

Proof. (a) BPPBPP = BP[PBP[P]] ⊆ BP[BP[PP]] (by Lemma 9) = BPP.

(b) Σp,BPP
2 = (NP[coNP])BPP = NP[coNPBPP] ⊆ NP[BP[coNP]] (by Lemma 9).

By Proposition 5d we have BP[coNP] ⊆ NP[coNP[coNP]] = NP[coNP]. Therefore,

NP[BP[coNP]] ⊆ NP[NP[coNP]] = Σp
2.

(c) NPBPP = NP[PBPP] = NP[BPP].

(d) Clearly AM is contained in the closure, and BP[AM] = AM. Let D represent

the NP[·] operator as above; then NP[AM] = D(BP[NP]) ⊆ BP[D(NP)] (by Lemma

9) = BP[NP[NP]] = AM.

Remark: Part (d) does not directly imply L. Babai’s theorem that the constant-

round Arthur-Merlin game hierarchy collapses to AM, because the definition given

in [Bab85] is not the same as iterations of the NP[·] and BP[·] operators. To

represent the inductive relation “Player A has a winning strategy at move k” in a k-

round Arthur-Merlin game appears to require defining an MA[·] operator, to which

Lemma 9 doesn’t directly apply. This is one case where the quantifier-interchange

techniques of [Zac88] show to advantage, whereas our oracle interchange lemma

seems cleaner and more general in other cases.

Now we obtain Toda’s theorem that PH ⊆ BP[⊕P] as a quick consequence of

Lemma 9 and the relativized forms of two earlier-known theorems in the literature,

namely that ⊕P
⊕P = ⊕P [PZ83] and that NP ⊆ RP[⊕P]. The latter was actually

stated in the form “parity-SAT is NP-hard under randomized reductions” in [VV86];

to show that this relativizes in our given form, we include a proof sketch.

Proposition 11 ([PZ83]). For any oracle set X, ⊕P
⊕PX = ⊕PX .

Corollary 12. For any oracle set X, ⊕PX is closed downward under polynomial

time Turing reducibility. In particular, for any set T ∈ ⊕PX and polynomial p, the

language R := {x : (∃i ≤ p(|x|))[x#i ∈ T] } also belongs to ⊕PX .

Proposition 13. (cf. [VV86, Tod89]) For any oracle set X, NPX ⊆ RP[⊕PX].

8

Proof Sketch. Fix an A ∈ NPX and let B ∈ PX and polynomial p be such that

A = {x : for some y ∈ Σp(|x|), x#y ∈ B }. For each x ∈ Γ∗, define Sx := { y ∈
Σp(|x|) : x#y ∈ B }. So, x ∈ A iff Sx is nonempty.

By convention, for each n, we view a string w ∈ Σp(n)2
as the concatenation of

p(n)-many strings w1, . . . , wp(n), where each wj has length p(n). For each x ∈ Γ∗,

n := |x|, w ∈ Σp(n)2
, and j < p(n), define

Sxw,j := { y ∈ Sx : (∀i ≤ j)[wi · y = 0] },

where · is the GF2 inner product on Σp(n). Then, for each x, w, and k as above,

Sx = Sxw,0 ⊇ Sxw,1 ⊇ · · · ⊇ Sxw,p(n). By the key counting lemma in [VV86], whenever

Sx is nonempty, at least 1/4 of the strings w ∈ Σp(n)2
are such that for some j,

‖Sxw,j‖ = 1. Define (again with n := |x|),

R :=
{
x#w : w ∈ Σp(n)2

and (∃j ≤ p(n))
[

(⊕p(n) y) y ∈ Sxw,j
]}
.

By applying Corollary 12 to the ‘∃’ quantifier, we obtain that R ∈ ⊕PX . By the

[VV86] counting lemma we also have that (i) (T
p(n)
1/4 w)[R(x#w) = A(x)], and (ii)

no witness string w makes R(x#w) hold when x /∈ A. Therefore, it follows that A

belongs to RP[⊕PX].

Our proof of Toda’s theorem now goes through quickly.

Theorem 14 ([Tod89, Tod91]). PH ⊆ BP[⊕P].

Proof. By Proposition 13, we have that for all oracle sets X, NPX ⊆ BP[⊕PX].

Hence
NPNP ⊆ BP[⊕PNP]

⊆ BP[⊕PBP[⊕P]] (since NP ⊆ BP[⊕P])

⊆ BP[BP[⊕P
⊕P]] (by Lemma 9)

⊆ BP[BP[⊕P]] (by Proposition 11)

⊆ BP[⊕P] (by Proposition 5c).

By iterating this argument, the theorem follows.

Since the relativized polynomial hierarchy PHX is the union of the levels PX ,

NPX , NP(NPX), and so on, the above proof relativizes straightforwardly to yield:

9

Corollary 15. For any oracle set X, PHX ⊆ BP[⊕PX].

The next result is a little stronger than the lemma BP[⊕P[BP[⊕P]]] = BP[⊕P]

shown in Toda’s paper.

Proposition 16. ⊕PBPP⊕P

= BPP
⊕P = BP[⊕P].

Proof. BPP
⊕P = BP[P⊕P] and P⊕P = ⊕P.

This gives us equality in Lemma 9 in the case C = D = ⊕P. There are also

cases in which equality fails. M. Santha [San87] constructs an oracle X such

that AMX \ Σp,X
2 is nonempty. Since NP[BPPX] ⊆ Σp,X

2 (by Corollary 10b) and

AMX = BP[NP[PX]], taking C := PX and D to represent the NP[·] operator gives

us DBP[C] ⊂ BP[D C]. We do not have good general conditions under which equal-

ity holds.1 It is also interesting to ask whether the 1-sided error in Proposition 13

can be exploited here—for instance, whether PH is contained in RP[⊕P]. J. Tarui

[Tar91, Tar93] shows that PH ⊆ RPPP and PH ⊆ RPC=P, but we do not see how

to apply his techniques for RP
⊕P, which equals RP[⊕P].

5. Closure Properties

It is generally known that an effective reducibility relation ≤r can be represented

by a relativized class D. For instance, polynomial-time Turing reducibility ≤p
T is

represented by the collection of oracle P-machines, and polynomial-time many re-

ducibility ≤p
m, by the subcollection of P-machines which on any input make exactly

one query, and accept iff the answer to that query is ‘yes’. Then a language class C
is closed downward under ≤r iff D(C) ⊆ C.

What may not be so well known is that many other commonly-studied closure

properties of language classes C can be represented by relativized classes, so long

as one tolerates an extension to query machines with more than one oracle and

1In [AW90] the claim PBP[C] = BP[PC] (for classes C closed downward under ≤p
mtt) is stated

without proof, but this claim is unfounded [E. Allender, personal communication]. We do not
have any contrary evidence, however. With C := NP this becomes the open question of whether
BP[PNP] = PAM, which we have studied without result.

10

query tape. For instance, the property of being closed under finite unions can be

represented by a single oracle machine D which has two distinguished query tapes

and takes a pair Â := (A1, A2) of sets as oracle. On any input x, D writes x on

each query tape in turn and accepts iff at least one of the two answers is ‘yes’; thus

we write L(DÂ) = A1 ∪A2. Then C is closed under finite union iff D(C) = C, where

D := {D }. Other Boolean closure properties can be treated similarly.

We use the following notation for tuples Â := (A1, . . . , Ak) and B̂ := (B1, . . . , Bk)

of languages over Γ, used as oracles by “k-ary” query machines. Given m ∈ N and

u ∈ Σ∗, write Â|≤m = B̂|≤m if for each j, 1 ≤ j ≤ k, Aj|≤m = Bj|≤m, and also

write πuÂ for (πuA1, . . . , πuAk). Then, for collections D = {Di : i ∈ N+ } of oracle

machines of various arities k, the definitions of polynomially bounded oracle use and

closure under (syntactic) oracle projections are the same as in Definitions 6–8, on

substituting Â and B̂ for the oracles A and B. Observe that the representations D of

Boolean closure properties have polynomial-bounded oracle use and are syntactically

closed under oracle projections, since the machines D only submit their input w as

a query. In general we feel the following is justified:

Definition 17. A closure property Π is a reasonable polynomial closure property if

it is representable by a collection D = {Di : i ∈ N } of oracle machines, such that

D has polynomially bounded oracle use and is closed under oracle projections.

We show that if C is closed downward under ≤p
mtt, then practically every other

closure property of C is inherited by the associated bounded 2-sided error class,

BP[C].

Theorem 18. Let C be a class which is closed downward under ≤p
mtt. Then every

reasonable polynomial closure property of C is also a closure property of BP[C].

Proof. The proof of Lemma 9 remains valid for machines D which have multiple

query tapes, on substituting B̂ and R̂ for the oracles B and R. Hence, given DΠ

representing Π (a given reasonable polynomial closure property), we have

DΠ(BP[C]) ⊆ BP[DΠ(C)] (by Lemma 9)

= BP[C] (since DΠ is a closure property of C).

11

To illustrate, we can state that BPP enjoys every reasonable closure property of P,

and that AM enjoys every reasonable closure property of NP.

An interesting and strong property of NP is that it is closed under nondeter-

ministic positive Turing reducibility (written ≤np
pos; see [Sel82, Sch89]). An OTM D

is positive if for all oracle sets A,B, A ⊆ B =⇒ L(DA) ⊆ L(DB). Then for any

two languages A and B, A ≤np
pos B if there is a positive oracle NP-machine N such

that A = L(NB). NP is also closed under the gamma-reductions introduced by

L. Adleman and K. Manders [AM77] and studied further by T. Long [Lon82], who

rechristened them strong nondeterministic polynomial time reductions : A ≤snp
m B iff

there is a polynomial-time NTM N such that for all inputs x, at least one computa-

tion path of N(x) outputs a string y, and x ∈ A =⇒ every output string y belongs

to B, while x /∈ A =⇒ every output string y belongs to B. These reductions are im-

portant because there are natural problems in NP which are complete under ≤snp
m ,

but which are not known to be complete under ≤p
T [AM77].

Proposition 19. AM is closed downward under ≤np
pos and under ≤snp

m .

Proof. Let D be a positive oracle NP-machine, and let Dπ be the machine given

before Definition 8, which on any input of the form x#u simulates D on input x, but

replaces each query q made by D by the query q#u. Then Dπ is also a positive oracle

NP-machine. Hence ≤np
pos defines a reasonable polynomial-time closure property of

NP. Thus the conclusion for ≤np
pos follows from Theorem 18.

Now suppose B ∈ AM and A ≤snp
m B via an NTM N . Let N ′ be an oracle

NTM which on any input x simulates N(x). Along any computation path, if N(x)

outputs a string y, then N ′ queries y, and the computation path accepts iff the

oracle answers ‘yes.’ Then N ′ is a positive NOTM, and L(N ′B) = A. Hence by the

closure of AM under ≤np
pos, A ∈ AM.

Now we examine a certain closure property of NP which is represented by ma-

chines with two query tapes. We define it by a “class operator” DE(·) which takes a

relativized class E as a parameter; we will show that DNP(NP) = NP, and use this

to draw conclusions about AM.

12

Definition 20. Let E := {Ei : i ∈ N } be a relativized class. Then define the

property of “reflection by E” to be the relativized class DE := {Di : i ∈ N } given

by machines Di which operate as follows: Each Di has two query tapes, and on any

input x ∈ Γ∗, begins to simulate Ei(x). Whenever Ei submits a query string q, Di

queries q on both of its tapes. If the answers are

(yes,no), Di simulates a ‘yes’ answer to Ei’s query;

(no,yes), Di simulates a ‘no’ answer to Ei’s query;

(yes,yes), the current computation path of Di accepts;

(no,no), the current computation path of Di rejects.

If an accepting (resp. rejecting) ID of Ei is reached in the simulation, then the

current computation path of Di accepts (resp. rejects).

Lemma 21.

(a) For any class C, DE(C) contains EC∩co-C.

(b) If E has polynomially bounded oracle use, then so does DE .
(c) If E is syntactically closed under oracle projections, then so is DE .
(d) DNP(NP) = NP.

Proof. Statements (a) and (b) are immediate, while (c) follows because the only

queries made by Di are copies of queries made by Ei. We prove (d). Let Ei be an

NP-machine, and let Di correspond to Ei as in Definition 20. Let A,B ∈ NP, let RA

and RB be P-predicates for A and B as in Definition 2(a), and let L := L(D
(A,B)
i).

Suppose x ∈ L. Then there exists a computation path ~c of Di and a number k ≥ 0

such that

(i) ~c contains k-many queries q1, . . . , qk made by Ei,

(ii) For each j, 1 ≤ j ≤ k− 1, the responses by the two oracles of Di to the query

qj are either (yes,no) or (no,yes).

(iii) Either query qk receives a (yes,yes) response, or: qk receives a (yes,no) or

(no,yes) response, and ~c leads to an accepting ID of Ei without any further

queries.

13

Conversely, if such a computation path ~c of D
(A,B)
i on input x exists, then x ∈

L. A certificate for ‘x ∈ L’ consists of ~c and strings w1, w2, . . . , wk, wk′ such that

for each j, 1 ≤ j ≤ k: if the response to query qj represented in ~c is (yes,no)

then RA(qj, wj); if it is (no,yes), then RB(qj, wj); and if qk receives (yes,yes) then

RA(qk, wk) & RB(qk, wk′), else wk′ is the accepting ID of Ei. Since the quantities k,

|~c |, and |w1|, . . . , |wk|, |wk′| are all bounded by a polynomial in |x|, L ∈ NP.

Our first application gives a more-detailed treatment of a result in [Kla90].

Corollary 22 ([Kla90]). AMAM∩coAM = AM.

Proof. Since NP has the closure properties required of E in Lemma 21 and is also

closed under ≤p
mtt, we have, using DNP(NP) = NP:

AMAM∩coAM = BP[NPAM∩coAM] ⊆ BP[DNP(AM)] =

BP[DNP(BP[NP])] ⊆ BP[BP[DNP(NP)]] = BP[BP[NP]] = AM.

Corollary 23 ([Sch89]). Σp
2(AM ∩ coAM) = Σp

2.

Proof. Σp
2(AM∩coAM) = NP[co-[NPAM∩coAM]] = NP[co-[AM]] = NP[BP[coNP]] ⊆

NP[NP[coNP[coNP]]] = Σp
2.

Unfortunately, the closure of C under ≤p
mtt does not seem enough by itself to ensure

that DC(C) equals the “reflection” CC∩co-C of C—the proof above that this works

for NP uses something like the closure of NP under ≤np
pos, as in [Sch88]. Hence even

with our tools, we do not have a general result of the kind, “If C equals its own

reflection, then so does BP[C]”; this remains an open technical problem.

We are also interested in exploring other “class operators” of this kind. For in-

stance, the variant of DE whereby the response ‘(no,no)’ causes a universal branch

by Di (rather than rejection as above) may be interesting in the study of promise

problems . There are, however, natural class operators D(·) which, at least intu-

itively speaking, fail to be closed under oracle projections because they incorporate a

“looking-back” mechanism of the kind studied by P. Chew and M. Machtey [CM81].

The following is a representative example:

14

Definition 24. Let D∩co be the relativized class consisting of a single oracle ma-

chine D with two query tapes, which operates as follows on any input x:

Submit each of the first |x|-many strings wi ∈ Γ∗ as a query on each tape. If

some wi receives two ‘yes’ answers or two ‘no’ answers, then reject .

(Call this routine Check(x).)

If Check(x) passes, then submit x as a query on both tapes, and accept iff the

answers are respectively ‘yes’ and ‘no’.

Then for any language class C, D∩co(C) contains C∩co-C, since if A and A both belong

to C, then L(D(A,A)) equals A, and hence belongs to D∩co(C). If C contains all finite

and all co-finite sets, then D∩co(C) = C ∩ co-C. Note that D∩co has polynomially-

bounded oracle use.

If the proof of Lemma 9 worked for D∩co, then we would have in particular that

AM ∩ coAM = D∩co(BP[NP]) ⊆ BP[D(NP)] = BP[NP ∩ coNP]. Put another way,

we’d have BP[NP] ∩ BP[coNP] = BP[NP ∩ coNP]. To our knowledge, this problem

is open; nor do the proofs we know (see e.g. [Sch88]) that the graph-isomorphism

problem is in NP ∩ coAM show that it is in BP[NP ∩ coNP]. The lack is that this

singleton class D∩co is not closed under oracle projections, owing to the “looking-

back” Check routine. When one attempts the proof of Lemma 9 for D∩co, Check

trips across the few strings u which make B̂ 6= πuR̂, and this shuts down the whole

computation. If one closes D∩co out syntactically under oracle projections to obtain

a class Dπ, then the property Dπ(NP) = NP ∩ coNP appears to be lost.

6. Random Oracles

The following is essentially an abstraction of the proof of Theorem 5 in [BG81]. Let

µ be the standard product measure on 2N. All the oracle properties we consider

are first-order definable, so that the subsets of 2N they define are Borel, and hence

measurable. Say a property Ψ(·) holds for a random oracle set R iff µ({R ⊆ N :

Ψ(R) }) = 1. We note that for all the classes D in this paper which are closed

downward under ≤p
m, and any oracle A, DA is closed downward under ≤p,A

m ; i.e. if f

15

is computable in polynomial time with oracle A, D ∈ DA, and C reduces to D via

f , then C ∈ DX .

Theorem 25. Let D be a relativized class which has polynomial bounded oracle

use, such that for all A, DA is closed downward under ≤p,A
m . Then for a random

oracle set R, BP[DR] ⊆ DR.

Proof. Let {Di } be a representation of D by OTMs with corresponding polynomial

bounds { ri } on their oracle use. For every i and polynomial pj, let Mij be an OTM

which behaves as follows, for any input x and oracle A:

Make queries to the first pj(|x|) strings of length ri(|x|+ pj(|x|)) + 1

and call the 0–1 string of results y.

Simulate DA
i on input x#y.

Then for all oracle sets A, L(MA
ij) ∈ DA, because L(MA

ij) reduces to L(DA
i) by the

function which maps x to x#y, which is PA-computable.

Now let k > 0. For all i, j, and x define Eijx to be the set of oracles A such that

(i) the proportion of strings y ∈ Σpj(|x|) such that DA
i accepts x#y is either less than

2−q(|x|) or greater than 1−2−q(|x|), where q(n) := 2n+ i+ j−k for all n, and (ii) MA
ij

on input x disagrees with the answer of this overwhelming majority for DA
i (x#y).

Because Di never queries those strings which are used by Mij to obtain the bits for

y, µ(Eijx) ≤ 2−q(|x|). The rest of the analysis, showing that with this choice of q,

µ(∪ijxEijx) < 2−k (which can be made arbitrarily small), and that BP[DA] = DA

for any A /∈ ∪ijxEijx, is the same as that in [BG81].

Corollary 26. Relative to a random oracle R, PHR is properly contained in ⊕PR.

Proof. By Corollary 15, for any oracle setR, PHR ⊆ BP[⊕PR]. Since the relativized

class ⊕P has the closure properties required in the statement of Theorem 25, it

follows that for a random oracle set R, PHR ⊆ ⊕PR. J. Cai [Cai89] and L. Babai

[Bab87] proved that for a random oracle set R, ⊕PR is not contained in PHR.

16

Definition 27 ([NW88]). For any relativized class C, Almost[C] denotes the class

of languages L such that µ({A ⊆ N : L ∈ CA }) = 1.

Corollary 28. BP[⊕P] ⊆ Almost[⊕P].

Whether equality holds here runs into the problem that a single relativized ⊕P

computation may access exponentially many bits of the oracle, whereas the BP[⊕P]

computations have only polynomially many coin flips. The relativized ⊕P computa-

tions can be modeled by depth-2 circuits whose bottom level is a single parity gate.

It is interesting to ask whether these can be “fooled” by strong pseudorandom gen-

erators which generate exponentially many bits from a polynomial-length random

seed, along the lines of [NW88] for relativized PH computations.

Problem. Is BP[⊕P] = Almost[⊕P]?

A positive answer would yield yet another proof of PH ⊆ BP[⊕P] using random

oracle sets R, via NPNP ⊆ BP[⊕PBP[⊕P]] = BP[⊕P
⊕PR] = BP[⊕PR] = ⊕PR =

BP[⊕P].

Nisan and Wigderson also proved that Almost [NP] = BP[NP], and similarly for

the other Σp
k and Πp

k levels of the polynomial hierarchy. It follows that Almost [NP∩
coNP] equals AM ∩ coAM. However, this leaves the following open question:

Problem. Is BP[NP ∩ coNP] = Almost[NP ∩ coNP]?

Last, we remark that under the “Random Oracle Hypothesis” of [BG81], PH would

be (strictly) contained in⊕P. Our initial reaction is to disbelieve this even somewhat

more than the hypothesis BPP = P. It is interesting to ask how these two assertions

are related. In conclusion, we hope that our results add understanding to the effect

of sources of randomness in polynomial-time computations.

Acknowledgments. We would like to thank Richard Beigel, Ronald Book,

Seinosuke Toda, and several anonymous referees for helpful comments and sug-

gestions on this work.

17

References

[AM77] L. Adleman and K. Manders. Reducibility, randomness, and intractability.

In The Proceedings of the 9th Annual ACM Symposium on the Theory of

Computing, pages 151–163, 1977.

[AW90] E. Allender and K. Wagner. Counting hierarchies: Polynomial time and

constant depth circuits. EATCS Bulletin, 40:182–194, February 1990.

[Bab85] L. Babai. Trading group theory for randomness. In The Proceedings of the

17th Annual ACM Symposium on the Theory of Computing, pages 421–429,

1985.

[Bab87] L. Babai. Random oracles separate PSPACE from the polynomial-time

hierarchy. Information Processing Letters, 26:51–53, 1987.

[BG81] C. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= coNPA

with probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[BM88] L. Babai and S. Moran. Arthur-merlin games: A randomized proof system,

and a hierarchy of complexity classes. Journal of Computer and System

Sciences, 36:254–276, 1988.

[Cai89] J. Cai. With probability one, a random oracle separates PSPACE from

the polynomial-time hierarchy. Journal of Computer and System Sciences,

38:68–85, 1989.

[CM81] P. Chew and M. Machtey. A note on structure and looking-back applied to

the relative complexity of computable functions. Journal of Computer and

System Sciences, 22:53–59, 1981.

[HZ84] P. Hinman and S. Zachos. Probabilistic machines, oracles, and quanti-

fiers. In Proceedings, Oberwohlfach Recursion-Theory Week, Lecture Notes

in Mathematics 1141, pages 159–192. Springer-Verlag, 1984.

[Kla90] A. Klapper. Generalized lowness and highness and probabilistic complexity

classes. Mathematical Systems Theory, 22:37–45, 1990.

18

[Ko82] K. Ko. Some observations on the probabilistic algorithms and NP-hard

problems. Information Processing Letters, 14:39–43, 1982.

[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information Processing

Letters, 17:215–217, 1983.

[Lon82] T. Long. Strong nondeterministic polynomial reducibilities. Theoretical

Computer Science, 21:1–25, 1982.

[NW88] N. Nisan and A. Wigderson. Hardness vs. randomness. In The Proceedings

of the 29th Annual IEEE Symposium on Foundations of Computer Science,

pages 2–11, 1988.

[PZ83] C. H. Papadimitriou and S. Zachos. Two remarks on the power of counting.

In The 6th GI Conference on Theoretical Computer Science, Lecture Notes

in Computer Science No. 145, pages 269–276. Springer-Verlag, 1983.

[San87] M. Santha. Relativized Arthur-Merlin vs. Merlin-Arthur games. In Founda-

tions of Software Theory and Theoretical Computer Science, Lecture Notes

in Computer Science No. 287, pages 437–442. Springer-Verlag, 1987.

[Sch85] U. Schöning. Complexity and Structure, volume 211 of Lecture Notes in

Computer Science. Springer-Verlag, 1985.

[Sch88] U. Schöning. Graph isomorphism is in the low hierarchy. Journal of Com-

puter and System Sciences, 37:312–323, 1988.

[Sch89] U. Schöning. Probabilistic complexity classes and lowness. Journal of Com-

puter and System Sciences, 39:84–100, 1989.

[Sch90] U. Schöning. The power of counting. In A. Selman, editor, Complexity

Theory Retrospective, pages 204–223. Springer-Verlag, 1990.

[Sel82] A. Selman. Reductions on NP and p-selective sets. Theoretical Computer

Science, 19:287–304, 1982.

19

[Tar91] J. Tarui. Randomized polynomials, threshold circuits, and the polynomial

hierarchy. In The Proceedings of the 8th Annual Symposium on Theoretical

Aspects of Computer Science, volume 480 of Lecture Notes in Computer

Science, pages 238–250. Springer-Verlag, 1991.

[Tar93] J. Tarui. Probabilistic polynomials, AC0 functions, and the polynomial-

time hierarchy. Theoretical Computer Science, 113:167–183, 1993.

[Tod89] S. Toda. On the computational power of PP and ⊕P. In The Proceedings

of the 30th Annual IEEE Symposium on Foundations of Computer Science,

pages 514–519, 1989.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal

on Computing, 20:865–877, 1991.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions.

Theoretical Computer Science, 47:85–93, 1986.

[Zac82] S. Zachos. Robustness of probabilistic computational complexity classes

under definitional perturbations. Information and Computation, 54:143–

154, 1982.

[Zac88] S. Zachos. Probabilistic quantifiers and games. Journal of Computer and

System Sciences, 36:433–451, 1988.

[ZH86] S. Zachos and H. Heller. A decisive characterization of BPP. Information

and Computation, 69:125–135, 1986.

20

