
Linear Speed-Up, Information Vicinity, and Finite-State Machines

Kenneth W. Regana

aDepartment of Computer Science, University at Buffalo
226 Bell Hall, Buffalo NY 14260-2000, USA

Connections are shown between two properties of a machine model: linear speed-up and
polynomial vicinity . In the context of the author’s Block Move (BM) model, these relate
to: “How long does it take to simulate a finite transducer S on a given input z?” This
question is related to the century-old problem of finding economical representations for
finite groups. Under some cost measures for computing S(z), the BM enjoys the linear
speed-up property, but under more-realistic measures, and subject to a reasonable but
unproved hypothesis, it has the antithetical property of a constant-factor time hierarchy .

Keyword Codes: F.1.1; F.2.2
Keywords: Models of Computation; Nonnumerical Algorithms and Problems.

1. Speed-Up and Vicinity

Hartmanis and Stearns [7] proved that the standard multitape Turing machine (TM)
model enjoys the following property, for which we give a general statement:

Definition 1.1. A machine model M has the linear speed-up property if there exists
k0 > 0 such that for every ε > 0 and t(n) time-bounded M-machine M , there exists a
M-machine M ′ that computes the same function as M and runs in time εt(n) + k0n.

The term k0n accounts for an initial step in which the input x ∈ Σn given to M is
“compressed” to length εn by being rewritten over an alphabet Σ′ of size more than
|Σ|1/ε. Their proof for Turing machines has k0 = 1, and in the case t(n) = O(n), the
machine M ′ runs in time (1 + ε)n. It also makes M ′ simulate M on-line, meaning that
(after the initial step) every dεte moves of M ′ simulate t moves of M . Hühne [10] gives a
formal definition of on-line speedup.

The “compression” is really an illusion in the TM proof, since the alphabet size expands
greatly, and the result can be criticized as an artifact of changeable units. However, it
connects to a concrete and important general property of machine models. Feldman
and Shapiro [5] informally define the vicinity of a machine to be the maximum number
of data bits on which the evolution of the computation over the next t time units can
possibly depend. Their definition applies not only to conventional models in which data
is stored between steps, but also to machines they describe in which data is propagated
in free space. We concentrate on the former case, and suppose that data is stored in cells
of machine-dependent size C. Let a “semi-ID” H of a machine M specify the current
locations of storage read heads, but not the actual content of memory or current program
state. Say that a cell is in reach of H within t steps if there is a configuration I extending
H such that the machine started in I scans the cell within t steps.

Definition 1.2. Given a machine modelM and t > 0, let u(t) be the maximum over all
semi-IDs H of machines in M of the number of cells in reach of H within t steps. Then
we say thatM has vicinity of order u(t), and that an individual machine M in M, with
capacity constant C, has vicinity v(t) = Cu(t).

This definition does not try to take account of everything, but suffices for this paper. All
of the popular RAM models, including the log-cost RAM of Cook and Reckhow [3] and
the polynomially compact RAM of Grandjean and Robson [6], have exponential vicinity.
So do the pointer models of Schönhage [14] and Jones [11], and the Turing machines
with tree-structured tapes considered by Hühne [10]. Turing machines with k tapes have
u(t) = k(2t + 1), and those with d-dimensional tapes have u(t) = Θ(td). Feldman and
Shapiro argue that to be realistic, a machine model should have polynomial vicinity,
indeed at most cubic vicinity under physics as we know it today.

We contend that every machine model M with the linear speedup property must have
polynomial vicinity . The general reasoning is as follows: If linear speed-up holds, then for
all machines M inM and D > 0, there is a machine M ′ inM that requires only t/D time
units to simulate M for t time units. For this to be possible, M ′ needs access within t/D
time units to as much information as M has within t time units; i.e., v′(t/D) ≥ v(t). Then
C ′u(t/D) ≥ Cu(t), so u has the property (∀D > 1)(∃E > 1)(∀∞t) [u(t/D) ≥ u(t)/E].
Every such nondecreasing function u must be polynomially bounded.

This is short of a proof , first because it only talks about on-line linear speed-up, and
second because the word “needs” and the assumption that M and M ′ have the same
“hardware,” hence the same u(t), must be justified in specific cases. This paper addresses
these concerns in the case of the Block Move (BM) model of [13,12], which has useful
generality because it comes with a parameter µ : N → N called a memory access cost
function that calibrates its vicinity.

2. The BM Model

A straight-line BM program is a sequence of block move instructions of the form
S [a1 . . . b1] into [a2 . . . b2]. Formally S is a deterministic generalized sequential machine
(DGSM), as defined in [9]. If z is the string formed by the characters in cells a1 . . . b1,
then S(z) is written into the block a2 . . . b2 beginning at a2. Overflows or underflows of
the target block may be permitted, and b1 < a1 and/or b2 < a2 is allowed. The blank B
is a writable character in block moves, with the proviso that every B appearing in the
output stream S(z) leaves the previous content of its target cell unchanged. Given the
parameter µ, the µ-time for the block move has the general form

µ(a) + time(S, z) where a = max{ a1, b1, a2, b2 }. (1)

An individual BM machine M has an input alphabet Σ and a work alphabet Γ, a sin-
gle tape that initially holds its input x, and a finite control that contains finitely-many
DGSMs and transition rules that, at the end of one block move, determine the addresses
a1, b1, a2, b2 and DGSM S used for the next block move (or cause M to halt). Specific ma-
chine forms may be found in [13], along with results that for the functions µd(a) = a1/d,
the forms all simulate each other up to linear µd-time. For other µ functions, and for
most of this paper, it suffices to consider the straight-line program given by the compu-
tation of M on a specific argument x. To talk about on-line simulations of straight-line

programs, we consider simulators P, P ′ that can take a sequence of instructions (whether
block moves or any kind) on an auxiliary read-only tape.

The main issue here is how to define time(S, z). We suppose that it is linear in the
length of z, on the grounds that nonlinearities due to the length of z are already accounted
for by the term µ(a) above. Thus we may write:

time(S, z) = norm(S)·|z|+ lag(S), (2)

where norm(S) represents the propagation rate or “clock cycle” of S, and lag(S) is the
delay between first input and first output as data is piped through S. These are analogous
to clock-cycle and lag for systolic automata as described by Even and Litman [4].

3. Results

Under the parameters µd(a) = a1/d, the BM has vicinity O(td), simply because any
access outside the first td tape cells incurs a charge µ(a) > t. For smaller µ functions, we
show by refining the argument in [10] that not only does the BM under µ lack polynomial
vicinity, but also linear speed-up, regardless of how time(S, z) is defined.

Theorem 3.1 Suppose that for all δ > 0, µ(n) = o(nδ). Then the BM under µ does not
have the on-line form of the linear speed-up property.

Proof. First we note that if µ has the property (∀E > 1)(∃D,K > 1)(∀∞n) µ(n/D) ≤
µ(n)/E + K, then there must exist ε > 0 such that µ = Ω(nε). So by hypothesis of µ,
there exists E > 1 such that for all D,K > 1 there exist infinitely-many n such that
µ(n/D) > (1/E)µ(n) + K. We design a P along the lines of the “Storage-Retrieval
Problem” in [8,10] such that P cannot be sped up on-line by a factor of E under µ.

Besides its argument x on its main tape, P is given a list of integers i0, . . . , il on an
auxiliary tape. Each integer i is an instruction for P to retrieve the bit of x in cell i. For
sake of definiteness, let b be maximum such that 2b ≤ n − 1, where n = |x|, and let w
be the portion of x in the interval B = [2b−1 . . . 2b − 1]; so |w| ≥ n/4. Then we restrict
attention to inputs in which each instruction ij belongs to B and calls for P to execute
the one-cell block move copy [ij . . . ij] into [j . . . j]. The simple DGSM for copy is the only
one P uses, so the norm(S) and lag(S) terms are constant, while all DGSMs are available
to P ′. We can choose x so that w has Kolmogorov complexity at least n/4.

To simulate P on-line, P ′ is first allowed some number of steps to “compress” the input
x over its alphabet Γ′ (if it so desires), and then must interpret the instructions given to
P one-at-a-time. Consider any step at which P ′ has finished simulating one instruction
to P and is beginning the next. Let I be the configuration of the tape of P ′ at that point,
and let C = log2 ‖Γ′‖. Now let a be the highest cell that P ′ would access if called upon
in configuration I to interpret any instruction i ∈ B. Then this is a description of w:

• The contents I ′ of cells [0, . . . , a], and the number b.

• Descriptions of P ′ and the routine “For i = 2b−1 to 2b − 1, print the bit output by
P ′ starting from configuration I ′ given instruction i.”

In bits, this has length C(a+ 1) + log n+O(1). By the choice of w, this must be at least
n/4, so a = n/4C −O(log n) ≥ n/(4C + 1) for sufficiently large n.

Hence for every l ≥ 1 there is a sequence of l instructions such that P ′ takes time
at least lµ(a) ≥ lµ(n/(4C + 1)) to process them, just from the memory-access charges
alone. For the same instructions, P takes time at most lµ(n) + lK, where the constant K
covers whatever norm and lag are assigned to the DGSM for copy . Thus for a factor-of-E
speedup we must have µ(n/D) ≤ µ(n)/E+K/E, where D = 4C+ 1 and C depends only
on E, but this contradicts the hypothesis on µ.

In machine forms of the BM, one must also take into account the time spent by a given
M to interpret the addresses i and move its heads to the required locations. The above
estimates still hold when µ is not polylog-bounded.

Now we consider the functions µd, d ≥ 1, and turn to the issue of defining norm(S) and
lag(S). We write S = (Q,Γ, δ, ρ, s, F) and let N = ‖Q‖ stand for the number of states,
and e = ‖δ‖ for the number of transitions. Also C stands for dlog2 ‖Γ‖e, and l stands for
the maximum number of characters over Γ that S can output in any one transition. It is
no real loss of generality to suppose l ≤ 2, less so for l ≤ logN .

Theorem 3.2 If norm(S) depends only on the number of states in S and lag(S) is con-
stant, then for any d ≥ 1, the BM under µd has the linear speed-up property.

Proof Sketch. The idea is that “speeding up” a DGSM to read k characters at a time
does not increase the number of states. The proof of Theorem 5.1 in [13] for the case
time(S, z) = |z| extends to do the rest.

We consider two more-realistic candidates for the correct measure of time(S, z). The
first argues that the cycle time norm(S) should be proportional to the information-
theoretic size of S, which we define by the upper bound |S|I = |Γ|N(log2 N + l). The
second holds that time(S, z) should be the time for the best off-line simulation of S(z),
by a single machine that is given some encoding of S on an auxiliary tape, as well as z.

The best off-line simulation we know first computes the trajectory s, q1, q2, . . . , qn of
states entered by S on input z, and then pulls off S(z). It uses the following standard
way of encoding the monoid of transformations of S over { 0, 1 }. Identify Q with a
subset of { 0, 1 }r, where r = dlog2 Ne, and Γ with a subset of { 0, 1 }C . For each c ∈ Γ let
gc : Q→ Q denote the mapping on states induced by c. Each gc is encoded as a list of N
binary strings of length r, and by adding “dummy states,” we may suppose N = 2r. The
complete encoding of δ then has length E = 2r+Cr = N logN ·‖Γ‖. while the encoding of
ρ has length at most el = 2r+C l = Nl‖Γ‖.

Lemma 3.3 There is a single BM that computes S(z) with this encoding in time propor-
tional to T (S, z) = |S|I log2 N ·|z| under µ1, and the same under any µd.

Proof Sketch. The basic idea is standard “parallel prefix sum” on the monoid of S. Let
z have length n over Γ, and regard the binary encoding of z as a list of n elements of size C.
We first compute the sequence gz1gz2 . . . gzn of mappings to be composed (in left-to-right
order) as follows: Make a list δn of n copies of δ. Use the first bits of the binary encodings
of the characters in z to mark half of the entries in each δ for erasure. Then continue with
the second bits of the encodings. By the successive halving, the running time for this
(under any µd) is O(|δ|n+ nC2). Since always 2C ≥ 2C2, this is O(|δ|n) = O(2r+Crn).

The sequence gz1gz2 . . . gzn has bit-length 2rrn. Now let u(r2r) stand for the µ1-time
taken to compose two functions from { 0, 1 }r into itself, and suppose that the method
“vectorizes” so as to compose successive pairs of gz1gz2 . . . gzn in µ1-time u(r2r)n. Then
the standard recursion for computing all gi = gzi ◦ . . . ◦ gz1 runs in µ1-time O(u(r2r)n).
The first r bits of each gi (for start state 0r) give the trajectory T , and one sweep in time
2rrn can pull these off. T is a list of n elements, each of length r.

Finally, S(z) is obtained by creating ρn, which has length eln = N2C ln. Then the first
bit of each element of T is used to mark half of the entries in each ρ for erasure. This is
the same trick as above, but applied to states rather than characters, and the time under
µ1 is O(|ρ|n+ nr2) = O(2r+C ln). The final running time is proportional to

(2r+C(r + l) + u(r2r))·n = |S|In+ u(N logN)n. (3)

The problem of composing two mappings reduces to sorting. Standard sequential sorting
methods appear to be inefficient under any µd on lists with O(logN)-sized elements.
However, simulating the Batcher odd-even sorting network with O(N log2 N) comparators
runs in µ1-time O(N log3 N) on such lists, and since the input length is N logN , this
accounts for the extra log2 N term in the statement.

We suspect that the AKS sorting network [1] can be simulated efficiently on the BM
in µ1-time O(N log2 N), which would cut the extra term to O(logN), but have not yet
checked this. If the time for composing two mappings were linear in N logN , or even
proportional to |Γ|N logN , then the time for the off-line simulation would be O(|S|I ·n).
Via the Krohn-Rhodes decomposition of DGSMs into “permutation” and “reset” machines
(see [2]), we need only worry about the case where the mappings gc generate a group
acting on a set of size N . So we ask, Is there a representation for such a permutation
group that allows elements to be multiplied in linear time? We note that the matrix
methods proposed in [2] actually take quadratic time in worst case.

Our intended use for a good bound T (S, z) on the time for the off-line simulation also
depends at this moment on the following:

Weak Efficiency Hypothesis. For any µd and reasonable time bound t(n) ≥ n, every
function f computable in µd-time t(n) is computable in µd-time t(n) by a BM whose
number R(n) of block moves satisfies R(n) = o(t(n)).

This is reasonable, because if R(n) ≥ t(n)/k where k is constant, this means that the
great majority of the computation is done entirely in cells [1 . . . k], and we would not
expect good programs for f to spend so much time there (for infinitely many n). An
analogous result for straight-line programs is proved in [12], but we have not proved the
hypothesis for machines , which seems needed for the following:

Theorem 3.4 Let time(S, z) in block moves be defined as T (S, z) from Lemma 3.3, and
suppose the “weak efficiency hypothesis” holds. Then there is a single BM MU and a
constant C such that for any µd and BM M that runs in µd-time t(n), MU given the code
of M on an auxiliary tape simulates M in µd-time Ct(n).

Furthermore, there is a constant C ′ > C and a language accepted in µd-time C ′t(n) but
not in µd-time t(n). This would imply that linear speed-up does not hold, even off-line,
for the BM under any µd.

Proof Sketch. MU has one tape for that of M and two tapes for the scratchwork in
Lemma 3.3. For each block move by M , MU pulls off the addressed string z and the code
of the DGSM S used. The memory access charge for this equals the µ(a) charged to M ,
plus a constant c(M) for fetching S. The only reason for the weak efficiency hypothesis
is to make the term c(M)R(n) less than t(n) as n → ∞, because the choice of T (S, z)
makes every other constant in the simulation independent of M . (The lag term is similarly
absorbed.) The existence of C ′ follows by analyzing the tape-reduction theorem of [13]
for µd and the choice of T (S, z), and the consequence of such a “constant-factor time
hierarchy” was observed by Jones [11].

In conclusion, we note the large gap between norm(S) = N for which linear speedup
holds, and norm(S) = N log3 N · |Γ| (with l constant) for which it appears not to hold.
Can it be closed? What happens with log |Γ| in place of |Γ|? In the larger sense, we
are asking: Is there a more-efficient way to simulate a finite transduction off-line than
by composing state mappings? We inquire whether the systolic approach of [4] or the
BDD-approach of [15] can yield more-efficient simulations, at least on the BM. As noted
above, a positive answer would have a derivative effect on computational group theory.

REFERENCES

1. M. Ajtai, J. Komlos, and E. Szemerédi. An O(n log n) sorting network. In Proc. 15th
STOC, pages 1–9, 1983.

2. M. Conner. Sequential machines realized by group representations. Info. Comp.,
85:183–201, 1990.

3. S. Cook and R. Reckhow. Time bounded random access machines. J. Comp. Sys.
Sci., 7:354–375, 1973.

4. S. Even and A. Litman. On the capabilities of systolic systems. Math. Sys. Thy.,
27:3–28, 1994.

5. Y. Feldman and E. Shapiro. Spatial machines: A more-realistic approach to parallel
computation. Comm. ACM, 35:60–73, October 1992.

6. E. Grandjean and J. Robson. RAM with compact memory: a robust and realistic
model of computation. In Proc. CSL ’90, LNCS 533, pages 195–233, 1991.

7. J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans-
actions of the AMS, 117:285–306, 1965.

8. F. Hennie. On-line Turing machine computation. IEEE Trans. Electr. Comp., EC-
15:35–44, 1966.

9. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison–Wesley, Reading, MA, 1979.

10. M. Hühne. Linear speed-up does not hold for Turing machines with tree storages.
Inf. Proc. Lett., 47:313–318, 1993.

11. N. Jones. Constant factors do matter. In Proc. 25th STOC, pages 602–611, 1993.
12. K. Regan. Linear-time algorithms in memory hierarchies, 1994. This proceedings.
13. K. Regan. Linear time and memory efficient computation, 1994. Revision of UB-CS-

TR 92-28, accepted to SIAM J. Comput.
14. A. Schönhage. Storage modification machines. SIAM J. Comput., 9:490–508, 1980.
15. D. Sieling and I. Wegener. Reduction of OBDDs in linear time. Inf. Proc. Lett.,

48:139–144, 1993.

