
Languages in AC1 de�ned by iterating �nite
transducers
Robert Surówka, Kenneth W. Regan

Abstract

We present an explicit construction of AC1 circuits that simulate �nite state

transducer iteration. Our approach yields circuits with only Θ(n log(n)) linear
fan-in gates, whereas the circuits built from standard proof of L ⊆ AC1 use

matrix multiplication and hence have Θ(n2 log(n)) such gates.

1 Introduction
A Finite State Transducer (FST) is a �nite automaton that while processing

its input, sequentially writes an output. Several kinds of FST's have been studied in
the literature. The earliest and best known are the Moore machine and the Mealy
machine (cf. [Hopcroft, Ullman 1969]), which di�er mainly in whether an output
character is printed upon entering a state or while processing a transition. An
extension of the latter called a generalized sequential machine (also cf. [Hopcroft,
Ullman 1969]) allows outputting the empty string λ on some transitions, rather
than a character. Further extensions allow more than one output character, and/or
a �nal character printed in a halting state, and go by names such as �sub-sequential
machines.� We revert to the generic name for our formal de�nition:

De�nition 1. A �nite-state transducer is an 8-tuple M = (Q,Σ,Γ, δ, ρ, s, F, φ)
where F ⊆ Q is the set of good �nal states, s ∈ Q is the start state, Σ and Γ are the
input and output alphabets, δ : Q×Σ→ Q is the transition function, ρ : Q×Σ→ Γ∗

is the output function, and φ : F → Γ∗ is the �nal-output function. An FST M
computes a partial function f : Σ∗ → Γ∗ if for all x ∈ Σ∗, the computation M(x)
ends in a state r ∈ F if and only if x is in the domain of f , whereupon the outputs
of ρ concatenated with the �nal output φ(r) equal the value f(x).

For some examples, the function f(x) = xb where b is a parity-check bit for
x ∈ {0, 1}∗ is computed by the FST with two states Q = F = {s, o}, transitions
δ(s, 0) = s, δ(o, 0) = o, δ(s, 1) = o, δ(o, 1) = s; outputs ρ(q, b) = b, and �nal outputs
φ(s) = 0, φ(o) = 1. Note that φ(r) could alternately be regarded as the output
on a �nal end-of-string marker. The one-state FST with δ(s, c) = cc, φ(s) = λ
doubles each character c in the input string, and every other string homomorphism
is similarly computed.

Every FST-computable function f can be computed by O(log n)-depth, O(n)-
size Boolean circuits (under a homomorphic binary encoding of Σ and Γ, which we
presume from here onward), by the general technique of �parallel pre�x sum.� These
circuits also have bounded fan-in, so they comply with the de�nition of NC1 circuits,
while unbounded fan-in, log-depth, polynomial-size circuits are said to de�ne the
class AC1 (for both uniform circuit classes, see [Cook 1985]). The classes of deter-
ministic and nondeterministic logarithmic space are sandwiched between them, that
is

NC1 ⊆ L ⊆ NL ⊆ AC1,

but none of these inclusions is known to be proper, nor is NC1 even known to di�er
from the class NP.

To probe the relationships between these classes further�especially when we
insist on linear or nearly-linear rather than polynomial bounds on the sizes of the

1

circuits�we consider problems de�ned by iterating FSTs. Iterating an FST means
giving its output from the previous iteration as the input to the next one. An
example of a nontrvial problem that can be solved by iterating an FST is whether a
given string of parentheses correctly balances. The FST M for this problem checks
whether the �rst character is `(', rejecting if not, and then groups input characters
in pairs, also rejecting unless the last pair is followed by a �nal character `)'. For
each pair it uses two transitions to e�ect the outputs

((→ (,))→),)(→ λ, ()→ λ.

Then x is balanced if and only ifM(x) accepts and is balanced, while |M(x)| < |x|/2.
Hence the brackets in the input string match if and only if the sequence of iterations
ends with empty output, and there are at most log2 |x| such iterations.

When an FST's output is always either shorter than its input or smaller than
a certain constant, then such iteration is guaranteed either to converge to the empty
string or to reject (in�nitely cycle over a �nite number of strings). We pose the
problem of deciding whether a given string is (at some point) produced as an output
of such an iteration of a given FST on a given input. This problem is in L, because
we can simulate the log2 n iterations in parallel working left-to-right on the strings,
hence it is in AC1. However, we note:

• The circuits built from the standard proof of L ⊆ AC1 use matrix multiplica-
tion, and hence have Ω(n2 log(n)) gates of linear fan-in.

• Composing the NC1 circuits for each iteration givesO(n log n) size, but Θ(log2 n)
depth, which is not valid for AC1.

Hence there is interest in building explicit AC1 circuits for this problem that use
only O(n log(n)) gates of linear fan-in. Our main theorem does so.

After de�ning �xed-stride FSTs and formalizing the iteration problem, we
start with three lemmas about relationships between functions and AC1 circuits. We
follow with a theorem for the basic case of an FST with �xed stride 2, in which
our idea shows most clearly. Subsequently we build upon it to present a theorem
and corollaries for broader and broader cases, �nally obtaining the result for FSTs
without a �xed stride (yet with another, weaker, restriction), and for the general
question of whether a given word is produced at any level of the iteration.

2 De�nitions

De�nition 2. An FST M has a �xed stride k to t, if ∀i M outputs t characters as
a result of reading characters from ki to k(i + 1) − 1 of the input word. For t = 1,
we just say that M has a �xed stride k.

De�nition 3. For any FST M we de�ne L∗(M) = {x : M∗(x) = λ}, where λ is
the empty string. L∗(M) is a language of multiple passes of M . Additionally
we de�ne for any w ∈ Γ∗ a L∗w(M) = {x : ∃n∈N Mn(x) = w}. Finally note that
L∗(M) ≡ L∗λ(M).

3 Results

Lemma 1. A function f : D → V such that |D| = nO(1) and |V | = nO(1) can be
computed by a circuit having constant depth, polynomial size in n and unbounded
fan-in.

2

Proof. Let us assume that k bits/wires are su�cient to encode any d ∈ D, and m
bits/wires are su�cient to encode any v ∈ V . We represent the function f by nO(1)

pairs of sheaves of wires. Each pair has an �input� sheaf consisting of k wires, and
an �output� sheaf having m wires, which map any possible argument to f to value
f returns for it. As an input to f we supply k wires coding an element x of D for
which we want to obtain a value y from V . Computing f consists of the following
steps:

1. NXOR x with each input sheaf of each pair. Those are bounded fan-in pairwise
NXOR-s, i.e. ∀i ∈ [1, k] we NXOR i-th bit of x with i-th bit of each input
sheaf. As a result we obtain |D| k-wire sheaves, where exactly one of them
contains only ones.

2. We perform unbounded fan-in AND-s on each of those sheaves, now from each
input sheaf we will have a single wire, and exactly one of them will be 1�the
one whose input sheaf equaled x.

3. Now we perform pairwise ANDs between the single wires from previous step
and each wire of their respective �output� sheaves. In the end, there will be
exactly one 'output' sheaf (having �input� sheaf equaling x) whose bits will be
unchanged, whereas all other output sheaves will have their bits set to 0.

4. Let us perform now for all i ∈ [1, d] unbounded fan-in OR-s, each OR taking
as input all i-th wires from all �output� sheaves. The result of this step will
be a single m-wire sheaf equal to the �output� sheaf from previous step, which
means it will be equal to the f(x).

Lemma 2. A function f : D → V such that |D| = nO(1) and |V | = nO(1) can be
computed simultaneously for t = nO(1) inputs (and produce t outputs) by a circuit
having constant depth, polynomial size in n, and unbounded fan-in.

Proof. For each input we perform in parallel and in isolation the same procedure as
we presented in proof of Lemma 1. Because our blow-up in size is only quadratic,
the size of the circuit will be still polynomial in n.

Lemma 3. Assume we have two functions f : D → V and g : V → Y such
that |D| = nO(1), |V | = nO(1) and |Y | = nO(1), represented as wires mapping all
possible �inputs� of those functions to their respective �outputs�. We can compute
a function h = g ◦ f (which will be also represented as pairs of groups of wires
containing respective �inputs� and �outputs�) in constant depth, polynomial size in
n, and unbounded fan-in.

Proof. The function h will have pairs of groups of wires such that each �input� group
will represent an entity from D and each �output� group will represent an entity from
Y . To produce the wire representation of h from wire representations of f and g,
we compute g on each �output� group of wires from f . By lemma 2 we can do this
in constant depth, polynomial size in n and with unbounded fan-in. Afterwards we
route (no gates needed) wires representing �outputs� of g to be next to the respective
�inputs� of f (�outputs� of which where the �inputs� to h). In this way we obtain
the required representation of h.

3

Theorem 1. Let M be an FST with �xed stride 2. Then L∗(M) ∈ AC1.

Proof. We can assume that the initial input word x has length that is a power of 2.
We can do that, since we can always pad it with a special additional character ω,
to the closest power of 2. Additionally, we assume that the FST M on each of its
edges reads 2 characters and outputs a character, since any FST with �xed stride 2
can be rewritten in such a way (some of those edges may read up to 2 ω-s). Let us
divide x into |x|/2 pairs of consecutive characters. During the �rst pass of the FST
M , each of those pairs will be translated into a single character. We can de�ne a
function, that given a starting state in which FSTM is upon starting to read a pair,
and that pair itself, returns the state in which FSTM is after reading that pair, and
character outputted by the FST M in the process. Let us de�ne such a function as
g1 : Q × Γ2 → Q × Γ. Let us notice that we can compute that function for |x|O(1)

arguments in constant depth (due to Lemma 2). We should note that in our circuit
we represent all functions in a way allowing Lemmas 1 to 3 to be applied to them.

Let us denote the characters of the i-th pair as c1,i (1 meaning, that this
pair is an input to the �rst pass). Let us de�ne f1,i : Q → Q × Γ such that
∀q ∈ Q : f1,i(q) = g1(q, c1,i). We can build such an f1,i by computing g1 for all
(q ∈ Q, c1,i) and match outputs with their respective inputs. Let us note that due

to i ∈ [0, |x|2 − 1] and Lemma 2, we can build all f1,i functions in an AC0 sub-circuit.

Before moving forward let us introduce two new notations. For any function
h with codomain of the form Qa × Γb , for any a and b, for any possible argument
to h arg let hQ(arg) be just the �rst a elements of h(arg) (i.e. the states), and let
hC(arg) be just the last b elements of h(arg) (i.e. the characters).

Functions f1,i are what our circuit prepares as its �output� from the �rst pass
of the FST M . For any i-th pair of the �rst pass a function f1,i : Q→ Q× Γ states
for each state the FSTM may be when starting to read that pair, in which state the
FSTM is after �nishing to reading it, and which character is outputted. To simulate
the second pass of FSTM , �rst our circuit will compute functions g2,i : Q→ Q×Γ2

(for i ∈ [0, |x|22 − 1]) such that g2,i(q) = (fQ1,2i+1(fQ1,2i(q)), f
C
1,2i(q), f

C
1,2i+1(fQ1,2i(q))).

Any g2,i, given a state in which the FST M could be upon starting to read the 2i-th
pair of the �rst pass, says in which state FSTM would end reading the 2i+1-th pair
(during the �rst pass), and which 2 characters would be outputted in the process.
Due to Lemma 3 we can build g2,i in constant depth, and polynomial size.

Let us de�ne now f2,i : Q2 → Q2 × Γ (for i ∈ [0, |x|22 − 1]) as: f2,i(qa1 , qa2) =

(gQ2,i(qa1), g1(qa2 , g
C
2,i(qa1))). Each f2,i tells us, given a state in which FST M could

be when starting to read pair 2i in �rst pass, and a state in which the FST M
could be in when starting to read pair i in the second pass, what would be the
states in which the FST M �nishes reading pair 2i+1 in the �rst pass and pair
i in the second pass�and which character (during the second pass) is outputted
in the process. Once again, we can build all f2,i in constant depth�we just need
to compute their �inside� functions for all possible inputs, and then properly pair
outputs with inputs. The functions f2,i are the �output� of our circuit from the
simulation of the second pass of the FST M .

4

We described the operations our circuit performs for the �rst and the second
pass of the FST M . It can continue to perform the same operations for subsequent

passes. As an input to any given pass p + 1 it will have |x|2p functions of the form
fp,i : Qp → Qp × Γ, one for each of the pairs in the word the FST M reads on
its p-th pass. Each fp,i takes p states as arguments, where the j-th of them (for
j ∈ [1, p− 1]) is a state in which the FST M could be in its j-th pass, when starting
to read the �rst pair from those that generated the i-th pair of the input to pass
p. The p-th argument is the state in which the FST M may be when starting to
read the i-th pair of pass p itself. As an output, fp,i tells us, that providing the
�starting� states we inserted, what would be the �ending states� of the FST M after
reading each sequence of pairs responsible for i-th pair of pass p, the �ending state�
of reading the i-th pair of pass p itself, as well as the character generated by that
pair.

To produce output of any given pass p+ 1, �rst we compute functions gp+1,i :

Qp → Qp × Γ2 (for i ∈ [0, |x|2p+1 − 1]) as:

gp+1,i(~q) = (fQp,2i+1(fQp,2i(~q)), f
C
p,2i(~q), f

C
p,2i+1(~q))) (1)

(the functions fp,i are the input to the p-th pass), where ~q = qa1 , qa2 , . . . , qap . Let us
notice that p is bounded by lg|x|, which means that sizes of domain and codomain
of functions fp,2i and fp,2i are polynomial. Therefore, due to Lemma 3, we can build
all gp+1,i in an AC0 sub-circuit.

Next we produce functions fp+1,i : Qp+1 → Qp+1×Γ (for i ∈ [0, |x|2p+1 −1]) as:

fp+1,i(~q, qap+1) =(gQp+1,i(~q), g1(qap+1 , g
C
p+1,i(~q))), (2)

which constitute the output of the p+1-th pass. Because of the same reasons as with
gp+1,i functions, we can also produce all fp+1,i by an AC0 sub-circuit. Therefore,
from the input to any pass p+1 we can produce the output of that pass in constant
depth, unbounded fan-in and polynomial size in |x|.

We should also note that the size of any fp,i : Qp → Qp×Γ is up to polynomial
in |x|. This is because the FST M needs exactly lg|x| (lg being logarithm with base
2) passes to reach an output of single character. The one with the �biggest� size is
flg|x|,i. It can accept |Q|lg|x| di�erent argument sequences, and since |Q| is constant,
therefore the number of possible inputs to flg|x0|,i is |x|Θ(1). Additionally, for each
possible input, we need to remember an output for it, which is just a sequence of
length in Θ(lg|x|). Therefore the total size of fp,i is |Q|lg|x|(2lg|x|Qb + Γb), where
Qb = dlg|Q|e and Γb = dlg|Γ|e are numbers of bits needed to respectively represent
a state and a character of M . Furthermore, we should note that the total number
of all fp,i for all p and i, is bounded by |x|. Therefore the size needed to remember
all fp,i is polynomial in |x|.

At this point we see that we will produce functions fp,i for all of the lg|x|
passes. Furthermore the total size of all those functions is polynomial in |x|. We
also note that at the very end we will just have a single function flg|x|,0 : Qlg|x| →
Qlg|x| × Γ, and fClg|x|,0(q1, q1, . . . , q1) is the �nal single output character. This is
because we know that the FST M started each pass in its starting state q1. Due to

5

Lemma 1 we can obtain the output of flg|x|,0 in an AC0 circuit. M , upon obtaining
that single character, will still perform subsequent passes on it, but now any output
will have length up to 1. Therefore M will enter a cycle after up to |Γ| steps or will
output a λ at some point. Our circuit can simulate M for that constant number of
steps in AC1. If λ is an output during that simulation we accept, otherwise it means
M would cycle in�nitely, therefore we reject.

To sum up, we showed that we can build functions fp,i related to each pass p
(up to lg|x|) of FST M in a single AC0 sub-circuit per pass. Because there are lg|x|
of those passes, it means that we can build all those functions with use of an AC1

circuit. Moreover, having the last function flg|x|,0, we obtain (in AC0) the output
character of all those passes of the FST M . Then, in AC1, we check if M cycles or
arrives at λ.

Theorem 2. Let M be an FST with �xed stride 2. Then ∀w∈Γ∗L∗w(M) ∈ AC1.

Proof. The proof of this theorem requires a slight augmentation to functions pre-
sented in the proof of Theorem 1; basically we will make the functions remember
previous words. Now we will have fp,i : Qp → Qp × Γ × Γ2 × . . . × Γ2p−1

. Let us
note that f1,i has a form exactly as in the previous proof. Now any fp,i will not
only return the �topmost� character, but also all the character sequences that are
its ancestors (not including the part of the input ford). Similarly, now we will have
gp+1,i : Qp → Qp × Γ2 × Γ4 × . . .× Γ2p

.
Before we proceed, let us introduce a new notation: For any fp,i, any argument

arg, and s ∈ [0, p− 1] let fsp,i(arg) be the Γ2s

part of the fp,i(arg). We do similar for
gp+1,i and s ∈ [1, p].

Having functions fp,i : Qp → Qp × Γ2p−1 as input to p + 1-th pass, we now

produce gp+1,i : Qp → Qp × Γ2p+1−2 as:

gp+1,i(~q) =(fQp,2i+1(fQp,2i(~q)), f
0
p,2i(~q), f

0
p,2i+1(fQp,2i(~q)),

f1
p,2i(~q), f

1
p,2i+1(fQp,2i(~q)), . . . , f

p−1
p,2i (~q), fp−1

p,2i+1(fQp,2i(~q))), (3)

and afterwards we obtain fp+1,i : Qp+1 → Qp+1 × Γ2p+1−1 by:

fp+1,i(~q, qap+1) =(gQp+1,i(~q), g1(qap+1 , g
1
p+1,i(~q)), g

1
p+1,i(~q), . . . , g

p
p+1,i(~q)). (4)

An analogous argument as for Theorem 1 can be made, that all the functions
have polynomial size. At the end we have flg|x|,i, and flg|x|,i(q1, q1, . . . , q1) as an
output gives words obtained after each pass up to lg|x|. Afterwards, we simulate
M for additionalal |Γ| passes and remember the outputs. Then we just need to
compare w to each of the obtained outputs (when comparing we ignore any trailing
padding).

Corollary 1. Let M be an FST with �xed stride 2k to k. Then ∀w∈Γ∗L∗w(M) ∈ AC1

Proof. We can �translate� the alphabet Γ ofM , so that any sequence of k characters
will be just a single character. Then we can directly apply Theorem 2, yet we need

6

afterwards to translate all outputs back to the original alphabet before comparing
with w.

Corollary 2. Let M be an FST with �xed stride k to t, where k > t. Then
∀w∈Γ∗L∗w(M) ∈ AC1

Proof. Let us de�ne an FST Mr that simulates FST M , in a way that it performs r
passes of M in one pass. Mr has a �xed stride kr to tr. Let us take r =

⌈
log−1

2

(
k
t

)⌉
and notice that then kr ≥ 2tr. Mr from reading 2kr characters outputs 2tr of them,
and we can make Mr always pad that output to obtain a sequence of length kr.
Therefore Mr can be built to have a �xed stride 2kr to kr, which allows use of
Corollary 1. However, there are two issues that must be addressed. Firstly, Mr

produces intermediary words for only every r-th pass of M . To check, whether M
at some pass produces w, �rst let us simulate r− 1 passes of M on w and remember
the outputs�we can do this in AC1, since r is constant. Then, we check if w or any
of those r − 1 outputs equals any of the outputs of Mr. If that is not the case, we
reject. Otherwise, if op is the output of the p-th pass ofMr that was found to match,
we simulate r− 1 passes of M on op−1. If op−1 or any of the just produced outputs
equals w then we accept, otherwise we reject. Secondly, since we pad any part of
output of length 2tr to have length kr, now the padding is not only at the ends of
the outputs, but is mixed with the original characters. Therefore, before doing any
comparisons we need to �lter the padding to the right of each output. This can be
done in NC1, for each output in parallel. Afterwards we can easily compare any
outputs and w between each other.

Corollary 3. Let M be an FST for which ∃k∀w,x∈Γ∗ : |x| ≤ k ⇒ |M(wx)| <
|M(w)|+ k. Then ∀w∈Γ∗L∗w(M) ∈ AC1.

Proof. We can assume thatM after producing an output from any k-sequence, pads
that output with a special additional character ω so that it has a length of k − 1.
Additionally M upon reading any ω neither changes its current state nor outputs
anything. Therefore, we can take that M has a �xed stride of k to k − 1, which
allows us to directly apply Corollary 2.

4 Directions for future work

Even though the relation between P and NP is the most famous problem in
the theoretical computer science, no one has proven a lower bound even for classes
believed to be much smaller than P. A pivotal small class is ACC0, which con-
tains problems solvable by polynomial-size constant-depth circuits of gates that can
count solutions modulo some �xed integer m. When m is prime, lower bounds have
been established, but for a composite m almost nothing is known (see for instance
[Chattopadhyay, Wigderson 2009]). ACC0[6] is not known to be separated from NP
even when the circuits are uniform. It was considered a major breakthrough when
three years ago Ryan Williams [Williams 2011] separated nonuniform ACC0 from
nondeterministic exponential time.

Besides the ACC0 frontier for polynomial-sized circuits described above, there
is also a frontier posed by L. Valiant at what we might call �Linear-size NC1�. That
is, Valiant [Valiant 1977] raised the still open problem of proving that SAT � or any
other reasonable explicit language � does not have linear size circuits of logarithmic
depth. One source of uniform quasi-linear size log-depth circuits comes from iterating

7

an FST as we have shown. If one could additionally show that iterating FSTs may
simulate such circuits, then �nding limits on power of just FST iteration would be
su�cient to try solve the question posed by Valiant.

There are also challenging open questions in the range NC1, L, NL, AC1 [Kintali
2010]. Prompted by Valiants problem it would be interesting to develop a theory of
linear or quasi-linear space or circuit size for these classes. Finite state transducers
play an important role in linear-time computation and their algebraic properties are
already known to be extensive [Hansen 2012].

5 References

Chattopadhyay A., Wigderson A. 2009. Linear systems over composite moduli.
Foundations of Computer Science, 50th Annual IEEE Symposium on. IEEE 43-52.
Cook S. 1985. A Taxonomy of Problems with Fast Parallel Algorithms. Informa-
tion and Control 64: 2-22.
Hansen K. 2012. An Exposition of the Barrington-Thérien Classi�cation.
Manuscript available at https://services.brics.dk/java/courseadmin/CT12/

documents/getDocument/BarringtonTherienExposition.pdf?d=80382

Hopcroft J., Ullman J. 1969. Formal Languages and their Relation to Automata.
Addison- Wesley, Boston, USA.
Kintali S. 2010. Realizable Paths and the NL vs L Problem. arXiv preprint
arXiv:1011.3840.
Valiant L. 1977. Graph-theoretic arguments in low-level complexity. In Proceed-
ings of the 2nd Annual Conference on Mathematical Foundations of Computer Sci-
ence, Springer LNCS 53: 162-176.
Williams R. 2011. Non-uniform ACC circuit lower bounds, Computational Com-
plexity (CCC), IEEE 26th Annual Conference on. IEEE 115-125.

Author's a�liation: Department of CSE, University at Bu�alo, Amherst, NY
14260 USA

Academic adviser: Kenneth. W. Regan

Correspondence address: {robertlu,regan}@bu�alo.edu

8

