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Abstract

This paper first surveys the near-total lack of su-
perlinear lower bounds in complexity theory, for “nat-
ural” computational problems with respect to many
models of computation. We note that the dividing
line between models where such bounds are known
and those where none are known comes when the
model allows non-local communication with memory
at unit cost . We study a model that imposes a “fair
cost” for non-local communication, and obtain mod-
est superlinear lower bounds for some problems via a
Kolmogorov-complexity argument. Then we look to
the larger picture of what it will take to prove really
striking lower bounds, and pull from ours and others’
work a concept of information vicinity that may offer
new tools and modes of analysis to a young field that
rather lacks them.

1 The Problem of Superlinear Lower
Bounds

When the subject of the NP-complete problems
comes up, people think about the NP 6=? P ques-
tion: whether they have super-polynomial time lower
bounds. But the gap in our knowledge is much wider
than that: for all but a scant few of these problems,
there is currently no super-linear time lower bound,
not even for a deterministic Turing machine (DTM)
with two tapes. All of the twenty-one problems in
Karp’s foundational paper [Kar72] extending Cook’s
Theorem [Coo71] belong to nondeterministic TM lin-
ear time (NLIN) under reasonable encoding schemes,
but none—not SAT , not Clique, nor Hamiltonian
Path nor Subset Sum, has been proved to lie outside
DTM linear time (DLIN).

We do have the theorem of Paul, Pippenger, Sze-

∗This work was supported in part by NSF Grant CCR-
9409104. Author’s current address: Computer Science Depart-
ment, 226 Bell Hall, UB North Campus, Buffalo, NY 14260-
2000. Email: regan@cs.buffalo.edu, tel.: (716) 645–3180x114,
fax: (716) 645–3464.

merédi and Trotter [PPST83] that NLIN 6= DLIN.
When unwound, the proof of this theorem provides a
lower bound of Ω(n ·(log∗ n)1/4) on the running time
of any deterministic TM that accepts a certain lan-
guage in NLIN (whose construction goes through Σ4-
alternating TMs). This barely-superlinear bound also
applies to all languages that are complete for NLIN
under DLIN many-one reductions (≤lin

m ). That such
languages exist is not a simple matter of defining
L = {〈N,x, 0m〉 : the NTM N accepts x within m
steps}, because the NTMs N may have any number
of tapes. However, Book and Greibach [BG70] showed
that every language in NLIN is accepted in real time
(i.e., time n + 1) by some NTM N ′ with two work-
tapes. The alphabet of N ′ may be arbitrarily large,
but at the cost of losing the real time, we can replace
N ′ by a linear-time N ′′ with work alphabet { 0, 1 }.
Now define L′ := {〈N ′′, x, 0m·|N ′′|〉 : N ′′ accepts x in
m steps, where N ′′ has the form above}. Then L′ is
NLIN-hard under ≤lin

m , and also L′ ∈ NLIN.
However, the most efficient versions of Cook’s The-

orem known to date (see [Rob91, BG93, Sch78]) trans-
form a time-t(n) NTM N into formulas that have
O(t(n) log t(n)) variables, so while SAT belongs to
NLIN it may not be NLIN-hard. Grandjean [Gra88,
Gra90b] proved that a few NP-complete problems are
NLIN-hard under ≤lin

m , including just one listed in
[GJ79], called “Reduction to Incompletely Specified
Automaton”:

Given a DFA M with some arcs marked, and
an integer k, is there a way to redefine the
marked arcs to obtain a DFA M ′ such that
M ′ is equivalent to a DFA M ′′ that has at
most k states?

None of the problems identified by Grandjean is known
to belong to NLIN, but at least they definitely do not
belong to DTIME[o(n(log∗ n)1/4)].

Still, if one moves to a machine model that is
slightly richer than the standard TM, even the lower
bound of [PPST83] goes away. Deterministic TMs
with planar tapes may still accept NLIN-complete
languages in linear time. The linear-time classes



DTIMEd[O(n)] for TMs with d-dimensional tapes (d-
TMs) form a hierarchy that many suspect to be
proper. To simulate a linear-time d-TM M by a stan-
dard TM M ′, the best known time is O(n2−1/d). If
one requires that the simulation be on-line, meaning
in general that every t steps of M are simulated by t′

corresponding steps of M ′, then a lower bound that
matches this upper bound was proved early on by Hen-
nie [Hen66]. If M is a tree-computer (TC); i.e., a TM
with binary tree-structured tapes, then this time is
O(n2), again with a matching lower-bound for the
on-line case [Hen66] (see also [PR81, Lou81, Lou83,
Lou84, LL92]). However, this does not prove that the
language classes DTIMEd[O(n)] and TC-TIME[O(n)]
are distinct from DLIN or from each other. More-
over, none of these classes above DLIN is known to
differ from its nondeterministic counterpart. The up-
shot is that DLIN may be as much as quadratically
weaker than these other reasonable notions of linear
time, making our inability to prove bounds against
DLIN for most NP-complete problems all the more
flabbergasting.

One can, of course, construct languages and func-
tions that are not in these linear time classes by di-
agonalization. But these methods are intuitively “ar-
tificial.” Adachi and Iwata [AI84] (see also [KAI79])
proved Ω(nk) lower bounds on certain pebble games
in P, but these are tied closely to TM simulation and
diagonalization.1 What we are most interested in, be-
sides the major NP-complete problems, are “natural”
computational tasks of a simpler kind: sorting, finding
elements with duplicates on a list, arithmetic in finite
fields, Fast Fourier Transform, matrix transpose, ma-
trix multiplication, to name a few. All but the last be-
long to DTIME[n log n]; the best known time to mul-
tiply two n× n integer or Boolean matrices is n2.376...

[CW90], which gives time N1.188... when N = n2 is re-
garded as the input length. The first three have been
the focus of several efforts to prove super-linear lower
bounds on TMs; these efforts have been neatly sum-
marized by Mansour, Nisan, and Tiwari [MNT93], and
their technique is a major topic below. The two sim-
plest languages that have attracted similar efforts are

1S. Buss [Bus94] has recently proved that the language
{〈φ, n〉 : φ has a proof in first-order logic that is less than n
symbols long} requires time Ω(2N ) infinitely often on a DTM,
and time Ω(2N/N) on an NTM. Here n is written in binary
and the result holds even when φ is restricted to have length
N = O(logn) when encoded over a finite alphabet. But this
is up at the level of complete sets for (nondeterministic) expo-
nential time. Buss also shows that when n is written in unary
and φ can have size O(n), the problem is NP-complete. His
techniques hold some promise for progress on whether SAT is
NLIN-complete.

the language of lists with no duplicate elements, and
the language of undirected graphs that have a trian-
gle. The former can be solved with one call to sorting,
but the best known time to solve the latter (even on
a unit-cost RAM) is N1.188... by calculating A2 + A,
where A is the adjacency matrix of the graph.

Note that the famous Ω(n log n) lower bound on
sorting applies to a model where the only operation
allowed on numbers is to compare them. The lower
bound is preserved when numbers can also be added,
subtracted, and multiplied [PS84], but is not known
when division or bitwise Boolean operations (at log-
cost; i.e., per-op cost proportional to the bit-length
of the numbers) are allowed. Allow a TM to get
its mitts on the bits on a list of m r-bit numbers
(say r ≈ 2 logn), and no one has shown that the
TM can’t sort them in O(n) time, where n = mr
is the true bit-length of the list. For more in this
line, see [FW90, FW93]. Aggarwal and Vitter [AV88]
called the task of extending their lower bounds to
models that “allow arbitrary bit-manipulations and
dissections of records” a “challenging open problem.”
They do not offer such a model, and the related work
of [AACS87, ACS87, AC88, ACF90, ACS90, Vit91,
VN92] still treats integers and records as indivisible
units.

The sequential-time lower bounds in the last-
mentioned papers are “modest,” by which we mean
Ω(n log n) or Ω(n loglogn) and the like. Let us call
a bound of Ω(n1+ε), for some fixed ε > 0, strong . A
strong lower bound puts a problem out of reach of
the quasilinear time class DQL = DTIME[qlin] for
TMs, where qlin = n · (log n)O(1). Schnorr [Sch78]
proved (as mentioned above) that SAT is complete
for nondeterministic qlin time (NQL) under DQL-
reductions, and the catalogued results of Dewdney
[Dew81, Dew82, Dew89] extend this to many other
problems in [GJ79]. Time qlin on the TC may still be
quadratically more powerful than DQL in the above
sense. However, it is “robust” insofar as it equals
time qlin on a wide variety of “reasonable RAM” mod-
els: the log-cost RAM of Cook and Reckhow [CR73],
the successor RAM (SRAM) and its relatives (see
[WW86]), the random-access TMs of Gurevich and
Shelah [GS89] (the hub paper for the robustness), the
“pointer machines” of Schönhage [Sch80, Sch88], and
the models of Grandjean and Robson [GR91], Jones
[Jon93], and Grandjean [Gra93, Gra94b, Gra94a]. A
strong lower bound against these models also puts a
problem out of reach of the “∩ε>0time n1+ε” class of
Graedel [Gra90a], which is robust for these RAMs and
also for TMs that can have tapes of arbitrary dimen-



sion. But even modest lower bounds are hard enough
to get, enough to prompt some writers to say that the
lowly standard TM is “intractable to analyze for lower
bounds.”

In search of lower bounds, researchers have studied
models that are weaker than the standard TM. Among
several sources of super-linear lower bounds for these
models, we mention [DGPR84, MS86, LV88, DMS91,
LLV92, DM93]. The surveys [WW86, vEB90] give a
window onto the vast literature of machine models of
all powers. In an attempt to find a unifying principle
that divides (1) all the models for which such lower
bounds are currently known from (2) those on which
we’ve come up empty (or fourth-root of log-star from
empty), we offer the following observation:

Does your model permit communication be-
tween remote parts of memory at unit cost?
Does it operate on bits? Then it is in cate-
gory (2).

For example, the tight lower bounds of n3/2 and
n5/4 (up to some log factors) for matrix transpose
and sorting proved in [DMS91, DM93] apply to TMs
with only one worktape. A second worktape, or a
second head on the one tape, allows remote com-
munication at unit cost and blows away the bound.
(See also [FMR72, Kos79, LS81, JL93, JSV94].) VLSI
and systolic models by definition allow only local
communication, and there has been much success on
lower bounds and area-time tradeoffs for them (see
[MC80, CM85, Gru90, HKMW92]).

The approach proposed here is a logical response to
the above observation:

Let us allow remote communication, but
charge a “fair cost” for it, and then study
the effect of this charge on the running time.

Section 2 describes a machine model, called Block
Move, which carries out this motivation, and which
binds practical elements such as latency , pipelining ,
and stream transductions that the older models lack.
Section 3 proves “modest” lower bounds in this model
for some string-editing and permutation problems.
Section 4 reviews the Ω(n2) time-space tradeoff lem-
mas for functional branching programs (BPs) due to
Mansour, Nisan, and Tiwari [MNT93]. The general
idea is that if time t on your model translates to
time-space o(t2) for BPs, then any function with the
tradeoff—this includes sorting and finite-field arith-
metic [MNT93]—has a superlinear time lower bound.
We point out that these lemmas apply also to non-
deterministic BPs computing multivalued functions in

the “NPMV” sense of Selman (see [Sel94]). Section 5
shows how these upgraded lemmas combine with the
Kolmogorov-complexity argument of section 3 to yield
a lower-bound technique; however, this leads to in-
teresting combinatorial problems about BPs that we
have so far been unable to solve. Finally, Section 6
raises the greater goal of proving strong lower bounds.
In considering what of greater general value can be
learned from Block Move and the “modest” lower
bounds, we offer a notion of information vicinity that
extends a recent treatment by Feldman and Shapiro
[FS92], and that at least attempts to get beyond the
notorious relativization results that have cast a pall on
many efforts to prove strong lower bounds.

Sources and Acknowledgements. Sections 1
and 2 supplement my earlier survey article [Reg93].
The theorem in Section 3, which solves a problem left
open in [Reg93], appeared with only a “Proof Sketch”
in [Reg94a] owing to a 6-page limit; here we give more
details. The modification of [MNT93] in Section 4 and
everything that comes afterward is entirely new. I am
grateful to all who have given me comments on those
earlier papers, and in particular to Etienne Grandjean
and Sam Buss for discussions of their recent work.

2 String Editing and Block Moves

The main idea of the Block Move model can be ex-
pressed as a one-person game in which the Player (P )
edits a tape that stands for a long sequential file. Let
the tape initially hold a string w over { 0, 1 } in cells
0 through n−1, where n = |w|, and let P have at her
disposal a finite work alphabet Γ that includes { 0, 1 }
and the blank B. The Player is given a goal string
x, and seeks the least costly way, starting from w, to
produce a tape whose first |x| cells hold x. The cost
of each editing move by P is calibrated by a function
µ : N→ N that grades the communication time with
memory. The intent is that low-numbered cells are
like a fast-memory cache, while high locations figu-
ratively reside on a large but slow disk drive. For in-
stance, if P changes the single character in some cell e,
the cost is µ(e) time units. The principal µ functions
studied here, as earlier in the Block Transfer model of
[ACS87] (which is integer-based rather than bit-based,
and in other respects weaker than ours), are defined
by µd(e) = de1/de, where d ≥ 1 is figuratively the
dimension of the memory.

The distinctive idea of the game is that if several ed-
its of a similar kind can be done in one block [a . . . b] of



consecutive locations in the file, then P should profit
from this spatial locality by being charged µ(a) or µ(b)
only for the initial access, and unit time per edit there-
after. The notion of “similar kind” is that the edits
can be done in one stream that is pipelined through a
finite-state machine. Many commands in the Unix

(R)

stream editor sed are representable this way. The par-
ticular model of finite-state machine we use is the de-
terministic generalized sequential machine (DGSM),
as formalized in [HU79] or [HKL92]. The Player P
has some finite set S of DGSMs available to her.

Rule 1. In any move, P may mark locations
a, b, c, d, and select a DGSM S. Let z be the string
held in locations [a . . . b]. Then S(z) is written to lo-
cations [c . . . d]. The µ-time for the move is |z|+µ(a′),
where a′ = max{ a, b, c, d }.

We require that the intervals [a . . . b] and [c . . . d] be
disjoint, and that the output S(z) exactly fills the tar-
get block. One can have a < b and/or c < d; in par-
ticular, substrings can be reversed on the tape. S(z)
overwrites any previous content of the target block
[c . . . , d], except for the following provision:

Rule 2. The blank B may be an output charac-
ter of GSMs, and every B in the output stream S(z)
leaves the previous symbol in its target cell in [a2 . . . b2]
unchanged.

This rule is proved in [Reg94b] to have the same effect
as making the write of S(z) completely destructive,
but adding an instruction that shuffles two equal-sized
blocks into a third. Having Rule 2 enables us to de-
scribe all actions by P as a sequence of block moves
from Rule 1, viz.:

S1[a1 . . . b1] into [c1 . . . d1]
S2[a2 . . . b2] into [c2 . . . d2]

...
SR[aR . . . bR] into [cR . . . dR],

where S1, . . . , SR belong to the fixed finite set S of
DGSMs at P ’s disposal.

This editor does not have an insert/delete mode
or allow the familiar form of “cut and paste” where
the file is joined together after the cut. The realistic
file-system model of Willard [Wil92] has similar re-
strictions. Note that changing a single character in a
cell a′ is subsumed by a block move with c = d = a′.
The µ-time of the program is the sum of the µ-times
of the block moves.

The above defines a natural straight-line program
(SLP) model, similar in form to other non-uniform
SLP models based on machines, on arithmetical for-
mulas (see e.g. [BF90]), on Boolean circuits (see e.g.
[Wig93]), or on bounded-width branching programs
(see [BT88, Bar89, BIS90, BS91]). To build a uniform
machine around the above, we need to specify control
structures and appropriate “hardware.” The main re-
sults of [Reg94b] show that under any of the µd cost
functions, the model is linear-time robust under just
about any choice borrowed from familiar machines: A
form with just one (large) DGSM and one tape can
simulate a form with any finite number k of tapes and
k-input DGSMs, or a form with random-access ad-
dressing of the tapes, with only a constant-factor time
slowdown. The above restrictions on overlap and size
of the target block can be enforced or waived; it makes
no difference. For definiteness, we use a form with
four “fingers” and some finite number (8 is enough
[Reg94b]) of “markers,” initially placed on cells 0 and
n−1, such that after every block move: (1) each marker
on a cell i may be moved to cell bi/2c, 2i, 2i+1 at a
charge of µ(i)—or left where it is at no charge, (2) the
fingers “a,b,c,d” for the next move are (re-)assigned
to markers, and (3) control branches according to the
character now scanned by finger “a.”

In the SLP form, of course, we don’t have to worry
about control or which a, b, c, d can legally follow the
previous move, and we can have a separate program
P for each input length n—or even for each individual
w of length n. It is nice that the relevant robustness
results carry over, particularly that a one-tape Player
can simulate a k-tape Player in linear time. Next we
establish lower bounds on certain “non-uniform” prob-
lems for the SLPs, with an eye toward using them as
ingredients for lower bounds on the natural problems
described in Section 1, for the uniform machines.

3 A Kolmogorov Lower Bound Argu-
ment

Given two strings w and x of the same length n,
define their edit distance Eµ(w, x) to be the least t
such that the Player can change w to x in µ-time t.
Define eµ(n) := max{Eµ(w, x) : |w| = |x| = n }. For
all d ≥ 1, let Ed and ed stand for the above functions
under µd.

The idea of the lower bounds is that the time for
a block move under µd is asymptotically greater than
the number of bits required to write the move down.
The latter is bounded above by C + 4 log2(a′), where



C is a constant that depends only on the size of the
fixed S, and a′ is the maximum address involved in the
move. Indeed, the lower bounds work for any finite set
of operations, not just DGSMs, and ignore the time
to read and write the addressed blocks after the ini-
tial µd(a′) access charge The matching upper bounds
require only that S contain the DGSM copy and the
two DGSMs S0 and S1, which run for one step only
and write a single 0 or 1. This we tacitly assume in
stating:

Theorem 3.1 ([Reg94a]) For any fixed S, e1(n) =
Θ(n log n), and for all d > 1, ed(n) = Θ(n loglogn).

Proof. For the upper bounds, it suffices to bound
Ed(0n, x) for all x of length n. In the case d = 1,
we may suppose n = 2k. The procedure is:

1. Generate the right half of x in cells 0 . . . 2k−1− 1,

2. copy [0 . . . 2k−1 − 1] into [2k−1 . . . 2k − 1],

3. Generate the left half of x in cells 0 . . . 2k−1 − 1.

The basis is writing 0 or 1 to cell 0, and the µ1-time
taken is O(n log n). Note, moreover, that the moves
are oblivious, insofar as every x of length n uses the
same sequence of address 4-tuples (ai, bi, ci, di).

For integral d > 1, the recursion works on the
intervals from nk−1 = 2d

k−1
to nk = 2d

k

, cho-
sen so that nk/nk−1 = nd−1

k−1. For each j, 1 ≤
j < nk/nk−1, it recursively generates the required
substring in the first nk−1 cells and executes copy
[0 . . . nk−1 − 1] into [jnk−1 . . . (j + 1)nk−1 − 1]. The
charges µ(a) for these copy steps are bounded by D·nk,
where D depends only on d. This gives the recur-
sion T (nk) = (nk−1)d−1T (nk−1) + O(nk), with solu-
tion T (n) = O(n loglogn). This much is similar to
the upper bound methods for the“Touch Problem” in
[ACS87]. For non-integral but rational d > 1, the nec-
essary lemmas for computing interval endpoints effi-
ciently may be found in section 4.2 of [Reg94b].

For the lower bounds, we give full detail for the case
d = 1, and a start on the argument for d > 1. Let g(n)
be such that for all but finitely many n, e1(n) ≤ ng(n).
We will show that g(n) must be Ω(log n). Let n be
given, and let k = dlog2 ne.

Now let x be any string such that the conditional
Kolmogorov complexity K(x|0n) is at least n (see
[LV93]). Let P be an SLP that consists of the se-
quence of moves used to generate x in µ1-time ng(n).
Note that P itself is a description of x. We will con-
vert P into a “modified” program P ′′ that generates x

from 0n, and is such that if g(n) = o(log n), then P ′′

has length o(n), contradicting the choice of x.
For each i, 1 ≤ i ≤ k, call the tape interval

[2i−1 . . . 2i − 1] “region i.” Cell 0 itself forms “region
0.” The portion of the tape from cell 2k onward is
also usable by P ; for the purpose of the proof, it is
enough to consider it also part of region k. Say that
a block move (or marker movement) is “charged in
region i” if the memory-access charge µ(a′) recorded
for the move is for some cell a′ in region i. Note that
any move charged in region i is independent of any
information in regions i + 1 and above. To simplify
some calculations, without affecting µ1 time by more
than a factor of 2, we suppose that the charge for re-
gion i is exactly 2i, and regard n as equal to 2k. Now
we make an important observation that embodies the
connection between µ1 and the choice of regions.

Claim. P can be modified to an equivalent program
P ′ such that for each step charged in some region i,
the next step is charged in region i−1, i, or i+ 1, and
the µ1-time of P ′ is at most 3 times the µ1 time of P .

The proof of this is straightforward: if P wants to
jump from region i to region j, let P ′ make dummy
moves in the regions in-between. Now we refer to P ′

and ignore the constant 3. For each i, 1 ≤ i ≤ k,
define N(i) to be the number of steps in P ′ charged
in region i. Then

for some i, 2iN(i) ≤ ng(n)/k. (1)

Choose the greatest such i. We have N(i) ≤
2k−ig(n)/k, and rewriting (1) another way, N(i) ≤
ng(n)/2i log n. Also since N(i) ≥ 1, i ≤ k −
log(log(n)/g(n)).

By the choice of i, we have that for each j > i,
N(j) > 2k−jg(n)/k. Hence at least 2k−ig(n)/k moves
are charged above region i. Call these 2k−ig(n)/k
moves “required” moves. The total µ1-time charged
for these required moves is at least (k − i)2kg(n)/k.
Since n = 2k and the total µ1 time is assumed to be
ng(n), the total µ1-time available for all other moves
is at most

B = ng(n)(1− (k − i)/k) = ng(n)i/k.

By the adjacency condition imposed on P ′, all the
moves charged in regions i and above fall into at most
N(i) segments of the program P ′, which we refer to
as “high segments.”

Now the following is a description of x: For each
high segment l, 1 ≤ l ≤ N(i), give



(a) The contents wl of cells [0 . . . 2i−1−1] prior to the
first move of the segment, and

(b) The instructions executed by P ′ in that segment.

Finally, after the last high segment, append the first
2i−1 bits of x. This finishes P ′′.

Per remarks before Theorem 3.1, each block move
instruction charged in region j can be written down
using Cj bits, where the constant C depends only on
S. Now we can place upper bounds on the length of
the description:

• For intervals between high segments: at most
C02i−1 · (N(i) + 1) < C0ng(n)/(log n) bits, where
C0 depends on the work alphabet size.

• For the required high moves:
at most

∑k
j=i+1 2k−jCjg(n)/(log n) bits, which is

bounded above by (g(n)/ log n)·C ·(log2 e)2i2k−i.

• For moves charged in region i, at most N(i)Ci ≤
(g(n)/ log n)·Ci2k−i.

• For the “other” moves charged in regions j > i,
let N ′(j) = N(j) − 2k−jg(n)/ log n. For the
bound we need to maximize

k∑
j=i+1

CjN ′(j)

subject to
k∑

j=i+1

2jN ′(j) ≤ B.

Elementary calculation gives an upper bound of
CiB/2i+1 = (g(n)/ log n) · 2k−i−1Ci2.

(Intuitively, the maximum is achieved when N ′(i +
1) is maximum and N(j) = 0 for all j > i + 1, so
as to minimize the disparity between the description-
length of Cj and the µ1 time charge of 2j for each
move.) Putting this all together gives an upper bound
on description length of

g(n)
log n

[C0n+ C1i2k−i + C2i
22k−i]

for appropriate constants C0, C1, and C2. Finally,
we calculate that the second term inside the [. . .] is
bounded above by C1(n log2 e)/e, and the third by
4C2n[(log2 e)/e]2. Thus

description length =
g(n)
log n

Θ(n),

and we conclude that g(n) must be Ω(log n).
For d > 1, we use “regions” of the form

[nk−1 . . . nk), where nk = 2d
k

, as in the upper bound.
As before, the lead point in the proof is that one of
these loglog n-many regions receives no more than the
“average” ng(n)/ loglogn share of the total µ-time.
The rest follows a similar pattern to the above.

Proposition 3.2 There are permutations of
(1, . . . , n) (written in binary) that cannot be realized
in linear µd-time, for any d.

Proof. Since there are 2Θ(n logn) permutations of
(1, . . . , n), some π have conditional Kolmogorov com-
plexity K(π|n) = Θ(N), putting N = n log n. The
above proof, with the initial “0n” replaced by the in-
put list (1, . . . , n), shows that every SLP computing π
requires time Ω(N logN) under µ1 and Ω(N loglogN)
under µd for d > 1. (Matching upper bounds follow
as before.) Since N serves as the input length of the
encoding, the result follows.

Compared to the corresponding result in [ACS87]
(see also [AV88]), we have obtained the lower bound
in a memory-hierarchy model that allows (arbitrary)
bit operations.

The above bounds, however, hold merely because
of individual strings (of high Kolmogorov complexity).
For the problems mentioned in Section 1, we are re-
ally interested in larger-scale properties of the map-
ping of all input strings w ∈ { 0, 1 } to their outputs.
In the next section, we put the Block Move model
completely aside to review and improve some lemmas
of [MNT93] about mappings with a certain “property
of randomness,” which also provide a place to insert
the technique of Theorem 3.1 for larger ends.

4 Functional BPs and Time-Space
Tradeoffs

As described in [MNT93], a functional branching
program (here, just “BP”) with domain in { 0, 1 }n and
range in { 0, 1 }m is a one-source DAG B with labels
on its nodes and some of its edges. Each non-sink node
is labeled by an integer i, 0 ≤ i ≤ n− 1, and has two
outarcs, one for “bit xi = 0” and one for “bit xi = 1.”
Each sink is labeled “accept” or “reject.” Some edges
of P are labeled by pairs (j, b), where 0 ≤ j ≤ m − 1
and b ∈ { 0, 1 }. Traversing such an edge is intended
to signify that the jth bit of f(x) equals b.



It follows that every x ∈ { 0, 1 }n determines a
unique path from the source of P to a sink. The path
is valid, according to [MNT93], provided that there are
exactly m edge labels along the path, one for each j,
and that the last node of the path is labeled “accept.”
Then the corresponding bits b form the output value
P (x). The BP computes a (possibly partial) function
f : { 0, 1 }n → { 0, 1 }m if for every x ∈ dom(f), the
path for x is valid and outputs f(x). We can relax
the definition in [MNT93] somewhat by allowing more
than m labels along the path, so long as every j ap-
pears at least once, taking the output bit j to be the
last “mind change” made by P along the path.

As usual, when speaking of computing a function f
defined on all of { 0, 1 }∗, we use a family [Pn] of BPs,
one for each input length. The techniques in this sec-
tion do not require any uniformity properties of the
families under consideration. The BP time complexity
T (n) is the longest length of a valid path in Pn, and
the capacity C(n) is the number of nodes in Pn. It is
customary to write S(n) = logC(n) and call this the
space used by Pn; these notions of capacity and space
go back to Cobham [Cob64]. The point of (functional)
BPs is that all of the machines surveyed in Section 1,
together with their associated time measures t(n) and
space measures s(n) (see [vEB90]), can be translated
into BPs with T (n) = O(t(n)) and S(n) = O(s(n)).
Thus the BPs have been termed a “general sequential
model of computation” [BC82, Bea91]. Read-only in-
put tapes are not counted against the space bound of
the machines; they are handled directly be the node
labels of the BPs.

Now we consider a nondeterministic extension of
this model. For convenience, we define it in a nor-
mal form that is analogous to requiring an NTM to
make all of its nondeterministic guesses first and then
behave deterministically.

Definition 4.1. A nondeterministic branching pro-
gram (NBP) is a disjoint union of some number I of
pieces, which are ordinary BPs.

Here log(I) corresponds to the number of bits of
nondeterminism used by a nondeterministic machine.
Without the normal form, where one has nondeter-
ministic internal nodes (see [Mei89, Mei90a, Mei90b]),
one has to be careful to tally this quantity separately
from the space.

Of itself, an NBP P computes a partial multivalued
function F on { 0, 1 }n. Then following Selman (see
[Sel94]), say that an ordinary (partial) function f is
a single-valued refinement of F if dom(f) = dom(F ),
and for all x ∈ dom(f), f(x) is one of the values of

F (x). Below we restrict attention to total functions f
on { 0, 1 }n, but the counting arguments can be mod-
ified so long as the domain is sufficiently large.

In adapting notions and results of Mansour, Nisan,
and Tiwari [MNT93], we use their notation, with “l”
in place of “n,” but we will have `,m = Θ(n) anyway
for the functions we are interested in. Define a set B
of strings of length m to be a k-cylinder if there are k
indices 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ m and a string u of
length k such that B = {x ∈ { 0, 1 }m : (∀j, 1 ≤ j ≤
k)xij = uj }.

Definition 4.2 ([MNT93]).
A function f : { 0, 1 }l → { 0, 1 }m has the property
of randomness with parameters (n, α, β) if for every
n-cylinder A ⊆ { 0, 1 }l and k-cylinder B ⊆ { 0, 1 }m,
Prx∈A[f(x) ∈ B] ≤ 2β/2αk.

Lemma 4.1 ([MNT93]) If f has the property of
randomness with parameters (n, α, β), then for every
ordinary branching program P of depth at most n, and
every k ≤ n, the proportion of inputs for which P out-
puts k correct bits of f(x) is at most 2β/2αk.

Now we carry over what comes next in [MNT93] to
the case of NBPs.

Lemma 4.2 Let f : { 0, 1 }l → { 0, 1 }m be a function
that has the property of randomness with parameters
(n, α, β). If f is a single-valued refinement of an NBP
P , then P must have (S + log I + β)(T + n) ≥ αmn,
where S is a bound on the space of each individual
piece.

Proof. We basically mimic [MNT93]. Since T ≥ n
and S ≥ log n, we can make each individual piece
of P into a DAG that is leveled , meaning that all
paths through P have the same length. This is
done by adding “dummy nodes,” at an additive cost
of O(log n) to S. Then each piece is broken into
dT/ne blocks, where each block consists of n con-
secutive levels. For every x, there is some i ≤ I
and some block Pix in the ith piece that outputs at
least k := m/dT/ne correct bits of f(x). Note that
k ≥ mn/(T + n). Let cix stand for the source node
in Pix that is traversed by x in the ith piece, together
with all of its descendents in Pix; call this a “cone.”
Since each piece has at most 2S nodes, there are at
most I2S different cones. For each cone c, let

A(c) = {x : c(x) produces ≥ k correct outputs }.

By Lemma 4.1, |A(c)| ≤ 2−αk+β2l. Since { 0, 1 }l ⊆
∪cixA(cix), we have

2l ≤
∑
cix

2−αk+β+l ≤ 2SI2−αk+β+l,



and so 2S+log I−αk+β ≥ 1. Taking logs, S+log I+β ≥
αk ≥ αmn/(T+n), from which the conclusion follows.

It is interesting that this counting argument works
even though other pieces are allowed to output spuri-
ous values—Lemma 4.1 is needed only for a particular
“cone,” which is deterministic. If P has enough pieces
to cover all possible values, then log I is already as
high as advertised!

Corollary 4.3 Let { fl : { 0, 1 }l → { 0, 1 }m } be a
family of functions that have the property of random-
ness with parameters (n, α, β), where l,m = Θ(n) and
α, β are constants independent of n. Then every fam-
ily of NBPs Pl that have fl as single-valued refine-
ments must have (S + log I)T = Ω(n2).

For examples of functions shown by [MNT93] to
have the property of randomness with suitable pa-
rameters, let H be a family of hash functions h :
{ 0, 1 }n → { 0, 1 }m(n) that is universal2 ([CW79]),
meaning that the random variables rx = h(x)-over-
h ∈ H are pairwise independent. Further suppose
that there exists c > 0 such that for all h ∈ H and
all n, the cardinality of h({ 0, 1 }n) is at least 2m/c.
Now define fH by fH(h, x) = h(x). Then, as proved
in [MNT93], fH has the property of randomness with
constant α and β. Via known ways of computing
universal2 hash functions, they show that computing
ab+ c in a finite field and computing the convolution
of two strings have the Ω(n2) tradeoff. Beame [Bea91]
proved ST = Ω(n2) tradeoffs on essentially the same
model (with alphabets of variable size R) for sorting
and for finding all uniquely-occurring elements on a
list, and [MNT93] observe that these have the same
property of randomness.

Corollary 4.4 Let N be a nondeterministic Turing
machine (or TC) that, on every input list (a1, . . . , am)
of binary numbers ai = mO(1), has at least one non-
deterministic branch that outputs the correctly sorted
list. Then either the number of bits of nondetermin-
ism or the space used by N must be Ω(n), where
n = m logm.

The same goes for N that find all the uniquely-
occurring elements in the list along some branch, or
that have ab + c in GF(2n) as a single-valued refine-
ment.

What this says is that for computing the above
functions, adding nondeterminism will not save you
any space, unless you use a lot of nondeterminism. It

is tempting to try to find counterexamples to this last
result, even just to knock the space and nondetermin-
ism down to O(m), but it will not yield them. What
it does yield, however, is a funny strategy for possi-
bly using nondeterminism to prove super-linear lower
bounds for functions f against deterministic machines
M :

(1) Show that if M runs in linear time, then M can
be simulated by BPs with sub-quadratic ST prod-
uct.

(2) Nondeterminism may help you get (S+log I)T =
o(n2) instead!

(3) Then show that f has the “property of random-
ness” with appropriate parameters, or has some
other suitable “mixing” property.

The main inherent limitation of this scheme is that it
can only ever achieve “modest” lower bounds. This
is because every function f on { 0, 1 }n already has a
“simple direct” BP that computes it with ST = n2:
make a binary tree of depth n that branches for each
bit of x, so that each x goes to a unique leaf, and
then burp out all the bits of f(x) below that leaf.
Thus already the above O(n log n)-time functions are
“maximally complex” for this technique. However, a
modest lower bound is better than none. We attempt
to apply this strategy to the Block Move model, and
then speculate on its use for Turing machines.

5 Block Move and BPs

Let f be a function with a time-space tradeoff
S(n)T (n) = Ω(n2) for NBPs. We may suppose that
|f(x)| is linear in |x|. We sketch the lower bound idea
for d = 1. Suppose M computes f in µ1-time ng(n).
The proof strategy is to build a small NBP for f , so
as to show that g(n) must be Ω(log n).

Following the proof of Theorem 3.1, let k = dlog ne.
Divide the tape into “regions” [2i−1 . . . 2i − 1]; as be-
fore, we may suppose that successive moves by M visit
adjacent regions. Fix an input x ∈ { 0, 1 }n for the
moment. Then there is an SLP Px that describes the
actions of M on input x. For each i, 1 ≤ i ≤ k,
let Nx(i) be the number of times M on input x is
charged in region i. Fix the greatest i such that
Nx(i) ≤ 2k−ig(n)/ log n. By the same calculations
as before, Px can be changed to a “modified SLP” P ′′x
that consists of moves of the following kinds:

(a) Arbitraryi: change cells [0 . . . 2i−1−1] of the tape
only.



(b) S [a . . . b] into [c . . . d], where S is a DGSM, and
[c . . . d] contains cells in region i or above. Call
these “high moves.”

We claim that, analogous to the way the “con-
tents of cells [0 . . . 2i−1− 1] just prior to a high move”
were written verbatim into the description in the proof
of Theorem 3.1, we can build the mapping in each
Arbitraryi step by the “simple direct” tree-branching
idea at the end of the last section. But the BP com-
ponents for the high moves will still have to be filled
in.

The main point is that, by the calculations in
Theorem 3.1, every such SLP P ′′x has bit-length
(g(n)/ log n) ·Θ(n). Unless g(n) = Ω(log n), the total
number I(n) of these programs, over all x of length n,
is much less than 2n. If we allocate one NBP “piece”
for each one, then we will have:

• For each x, at least one piece correctly computes
f(x).

• log I(n) = (g(n)/ log n) · Θ(n) << n, so that
log I(n) effectively drops out of the picture, and
we need only bound the space S(n) of each indi-
vidual piece.

Hence, it remains to bound the capacity/space
needed to code the high moves by BPs. By analogy
with a high move charged in region j having descrip-
tion complexity O(j), it would be nice to bound the
additional space for the move by O(j). Letting N = 2j

figure as the input length for that move, we’re talking
about achieving ST = O(N logN) for a DGSM trand-
suction on input length N , and preserving a compara-
ble bound when we sequence these transductions.

Although the high moves are intermixed with the
“low” moves, the above treatment of the Arbitraryi
moves “factors through” in a way that allows us to
pretend that all the high moves form one sequence.
This brings us to the following

Problem. Find the best general bound on ST for
BPs that simulate R block moves with total µd-time
t on a tape of n cells, where each block move has a
minimum charge of m, and the DGSMs read w bits in
total.

In our context with d = 1, the high moves we need
to simulate have minimum charge 2i. This problem is
interesting by itself without the “where” clause, but
this last clause tries to take advantage of what we have
already done in the above proof strategy.

Now we can simulate a single block move S[a . . . b]
into [c . . . d] by a BP in the form of a |b−a|×|d−c| grid.

Each entry in the grid has q nodes, one for each state
of S. The main invariant is that each node in entry
(i, j) signifies that S has so far read i symbols, written
j symbols, and is in the corresponding state. For each
input character c, the edge from this node on c goes
to the node in row i+ 1 that maintains this invariant,
and has the edge labels for whatever S outputs in this
step. If S in that step outputs a (single) B, then we
may insert an extra node that is labeled “xc+j” (or
“xc−j” if d < c) in order to preserve the character
that previously occupied the corresponding cell. S for
this grid is roughly log |b−a|+log |d−c|, which is fine
and dandy so far.

However, things already become thorny when we
compose two block moves. The actual inputs to the
second move may come from outputs of the first one,
and we have to “cascade” through to the inputs of the
first move. Two factors that make doing this difficult
are (1) the shuffling effect of blank outputs, and (2) the
fact that the time step in which a DGSM writes its
jth output may depend heavily on the input. We can
both simplify our task and crystallize these difficulties
by exploiting another “robustness result” of the Block
Move model. First, two definitions that are more-or-
less standard:

Definition 5.1. Given integral d > 0 and e ≥ 0, a
generalized homomorphism (gh) with ratio d : e is a
finite function from Σd to Σe that is extended homo-
morphically to all strings in Σ∗ whose length is a mul-
tiple of d. For strings of other lengths, we allow any
fixed “patching” at the end—this makes no difference.

For c ∈ Σ, the erasing homomorphism (eh) Er c
erases all occurrences of c in its argument.

Lemma 5.1 Every BM M can be simulated, with
constant-factor overhead under any given µd, by a BM
M ′ each of whose DGSMs is a fixed-ratio gh or an eh.
This holds also for the SLPs.

Proof Sketch. The idea is first to pad a DGSM S
used by M by a new character c so that every step by
S outputs the same number of characters. Then the
method of “parallel prefix sum” from [Ofm63, LF80]
can be applied to compute S(z). Since each “sweep”
in this method does local computation only, it can
be simulated efficiently by fixed-ratio gh’s. A final
erasing homomorphism Er c removes the padding. The
technical details needed to implement this idea may be
found in [Reg94b].

Now, we can also require a ≤ b and c ≤ d in ev-
ery block move if we give M ′ an instruction reverse



[a . . . b], and we can remove the convention on B if
we give M ′ an instruction shuffle [a . . . b], [c . . . d] into
[e . . . f ], subject to the first two intervals having equal
length that is half that of the third.

The BP for a gh does not even need the grid of the
above example, because the jth output always comes
when the dj/e-th input is read. However, an eh still
poses the problem that the timing of the outputs is
“unpredictable.” Note that in the context of our proof
strategy, we may suppose that if the ith block move in
P ′′x is an erasing one Er c [ai . . . bi] into [ci . . . di], then
x and d are such that the output of this step exactly
fills [ci . . . di]. However, even this convenience does
not tell us “when” outputs midway through the tar-
get block are produced. So the square grid approach
is the best we know, even here. But it and the “shuf-
fle” feature combine to cause headaches when we try
to work backward from outputs to inputs in a compo-
sition of block moves. Even with these simplifications,
we have not been able to obtain bounds on ST for this
part that are subquadratic, let alone O(N logN). . .

. . . And, here is a clear indication that N logN
is sheer wishful thinking, that something like ST ≤
N2/ logN is the best we can hope to eke out even
here. A BM, even under µ1, can simulate a time-t(n)
Turing machine T in time t(n) log t(n), by carrying
out the Hennie-Stearns construction [HS66] (see also
[HU79, WW86]) applied to T . Hence a BM can sort
in µ1-time O(n log2 n). If there were steep time-space
savings to be had in translating a sequence of block
moves to functional BPs, then this would contradict
the very tradeoff proved for sorting!

The knotty Problem we are left with is not an
isolated problem. Rather, it is next-in-line to a se-
quence of problems relating to branching programs
that have been recently posed and solved. These con-
cern input-oblivious BPs, which are leveled BPs such
that every node at the same level is labeled by the
same input bit. Alon and Maass [AM88] proved ex-
ponential lower bounds on the size of input-oblivious
BPs that recognize the “sequence-equality” language
{x, y ∈ { 0, 1, 2 }∗ : Er2(x) = Er2(y) }. This language
is decidable by a short sequence of block moves, in-
cluding one eh move and one shuffle. These results
were extended in [KMW89, KW91, HKMW92] for re-
lated problems.

The “grid” BP above for an individual DGSM com-
putation is input-oblivious provided that either (1) S
follows some d : e “steady pace” (see the general no-
tion of Manacher [Man82]; here S need not be a gh)
or (2) the convention on B is not used. The simpli-
fications to gh and eh, with-or-without the exchange

for shuffle and reverse instructions, push the problem
of maintaining “some degree of” input-obliviousness
into the compositions. On the basis of the last-cited
results and the earlier work in this section, we have:

Theorem 5.2 A BM in which every DGSM is a
gh (or is steady-paced) requires time Θ(n log n) to
recognize the sequence-equality language, and time
Ω(n log n) to sort, find unique elements, or compute
ax+ b in finite fields (etc.).

There is some interest in the BM with only gh and
shuffle, since O(logk n) block moves and polynomial
unit-cost runtime gives an exact characterization of
(DLOGTIME-uniform) NCk, for each k ≥ 1 [Reg94c].
But we really want something much better than this
partial result.

If known strategies for making time-t Turing ma-
chines “block-respecting” (see [HPV75, PPST83] and
note the implicit nondeterminism in the proof-size
bound of [Bus94]) can be improved, they may yield
(N)BPs with TS = O(t2/ log t). This would suffice to
answer the conjecture at the end of [MNT93] that the
sorting and hashing-related functions require super-
linear (indeed, Ω(n log n)) time on TMs.

6 For Better Lower Bounds—?

Despite the impasse reached in Section 5, the ideas
behind the machinery in Sections 3 and 4 are worthy
of notice, also since they apply more generally than to
the Block Move model. Let us now try to see the ba-
sic idea in a larger context: The whole dilemma with
lower bounds is that one has to reason about what a
nonexistent algorithm cannot do. One is given just
blank tape to work with, a tabula rasa for a “black
box.” We want to analyze structures in how informa-
tion must flow in order to solve a given problem in a
given short amount of time, but we seem to have no
structure to work with.

The argument in Section 3 begins with just a grain
of structure: at least one region has to fall at-or-
below the average for time use. The µd cost func-
tion determines the division into regions and intro-
duces this grain, around which the rest of the argu-
ment crystallizes. This is like finding (somewhat non-
constructively) a “pinch point” in the “black box.”
In this regard, we have something very like clas-
sical “crossing sequence” lower-bound arguments—
these and related arguments using Kolmogorov com-
plexity are described extensively in [LV93].

What one would really like is a larger-scale method-
ology that finds multiple major bottlenecks in in-



formation flow to solve a problem, rather than one
“pinch point,” and that doesn’t rely so heavily on the
particular one-dimensional geometry of tapes (or of
pipelining in general). One would like the method-
ology to begin with, and apply to, uniform models
such as machines—real obstacles to non-uniform cir-
cuit lower bounds have recent been raised by Razborov
and Rudich [RR94], and striking contrasts to uniform
lower bounds emerge from [AG92], and also [RSC95].
In search of a start, we offer the following formaliza-
tion and generalization of ideas in [FS92] and refer-
ences therein:

Take the notion of a machine configuration or ID as
fundamental. The one general assumption we need is
that we can break an ID into two components: one for
the “status” of the machine and its hardware, and the
other for the actual bit-values of stored data. With a
Turing machine, the former includes the current state
of the finite control and the current positions of its
tape heads, while the latter stands for the actual con-
tents of the tapes. The one choice we have to make,
which is reflected below, is whether a read-only in-
put tape is counted as part of the “machine status”
or part of the “data.” For a RAM, one can postulate
that the current instruction and the current value of
the main (ALU) register are status information, and
the remaining registers hold data. For a PRAM, the
“status” includes the current state and local memory
of each processor, while the “data” is the current con-
tents of the shared memory.

This notion can also accomodate models in which
data is not stored at referenced locations but is mo-
bile, such as the cellular machine of Feldman and
Shapiro [FS92] in which data bits propagate through
free space; this indeed is the setting of their informal
definition of “vicinity.” To make the definition formal,
we just have to be able to talk about “data points” as
distinct from the values, 0 or 1, that each data point
currently has. We need to be able to single out sub-
sets S of the data points in an ID I, and talk about an
ID J that results from changing the actual bit-values
of some data points in S, or in the complement S̃ of
S. For RAMs, we specify some way of talking about
individual bits of registers. Most interesting in the
present context, we can accomodate oracle machines
by identifying the answer to an oracle query w as the
bit stored in location w. Thus the IDs of an OTM
include the oracle; in general, the IDs we talk about
are infinite objects.

Definition 6.1. Given IDs I and J , write I ≈ J if I
and J have the same “machine status” (i.e., same head
positions, same current instruction, and possibly the

same read-only input). Given a set S of data points,
write I ≈S J if they have the same machine status and
agree on the values of data points in S. Finally, write
I ∼S J if they agree on S, but may have different head
positions and so on.

Now for an ID I of a deterministic machine M , and
an integer r ≥ 0, write I(r) for the unique ID J such
that I `rM J . (If M halts in those steps, let J be
the halting ID; if M “crashes,” take J = ⊥.) If M
is nondeterministic, then write I(r) for the set of IDs
than can occur after r steps, and write I(r) ≈S J(r)
to mean that there is a 1-1 correspondence between
IDs I ′ ∈ I(r) and J ′ ∈ J(r) such that I ′ ≈S J ′. Now
we can define the main notion.

Definition 6.2 (compare [FS92]). The vicinity
function vH of an ID H is defined for all r ≥ 1 to
be the minimum size k of a set S of data points such
that for all IDs I, J ≈ H (meaning: I and J have the
same state and head positions as H):

I ≈S J =⇒ I(r) ≈S J(r) ∧ I ∼
S̃
I(r).

This says that the evolution of the computation of
M over the next r steps is completely determined by
the state and head positions and by the data values in
the set S, and that no data outside S can be affected
in these r steps.

Definition 6.3. (a) The vicinity function VM of a
machine M is defined by VM (r) = the maximum
of vH(r) over all IDs H of M .

(b) The vicinity function VM of a machine model or a
class of machinesM is defined by similarly taking
the maximum over all M ∈M.

(c) The relative vicinity is defined by v′H(r) =
vH(r)/vH(1), and so on for V ′M and V ′M.

Relative vicinity is the sensible notion for a PRAM
and for any other machine whose hardware scales up-
ward with input length. It is also the notion to use
when we talk about machine models with variable
hardware, such as “any finite number of tapes” for
TMs. For example,

• The vicinity function of a k-tape Turing machine
M is VM (r) = (2r − 1)k.

• Same for a TM with k heads on one tape, etc.

• A TM with d-dimensional tapes has vicinity
O(rd).



• A Block Move machine with cost parameter µd
also has vicinity O(rd).

• The relative vicinity of the d-TM model, and of
the Block Move model under µd, is O(rd), regad-
less of the number of tapes and heads.

• The tree computer has vicinity Θ(2r). So do the
log-cost RAM and the related machines in the
“cluster” referred to in Section 1.

• The unit-cost RAM has undefined (or “infinite”)
vicinity.

• A “strongly polynomially compact RAM” M of
Grandjean and Robson [GR91], where M runs in
time t(n), is defined so that the value VM (t(n)) of
its vicinity function is polynomial in t(n). How-
ever, VM (r) may be (and generally is) exponential
for smaller values of r. This exponential “local”
vicinity is used for M to simulate efficiently the
other models in the aforementioned cluster.

The fact that a time-t(n) TC can be simulated by
an ordinary TM in time t(n)2, and a unit-cost RAM
in time t3(n), means that exponential vicinity gives no
more than a polynomial speedup on memory that has
been initialized to zero. Oracle machines, however, use
memory that has been initialized to something else.
We can identify an oracle A with an extra tree tape
such that cell w on the tree tape initially holds A(w).

Now, the heart of the matter is that for every or-
acle set A that is known to make NPA = PA, the
PA-machines M accepting SATA all have exponential
vicinity, viz. 2Θ(r). Indeed, oracle machines with poly-
nomial vicinity turn out to be equivalent to notions
already known in structural complexity, depending on
whether the input x is considered a fixed part of the
machine or part of the data, and on whether a given or-
acle is fixed. In the next result, “oracle machine” can
mean an OTM or oracle TC or oracle RAM, although
the intent of the result is more general than that. The
classes P.ALL(D) and NP.ALL(D) were defined and
studied by Book, Long, and Selman [BLS85] (see also
[SMRB83, BLS85]), who showed “positive relativiza-
tions” for them.

Theorem 6.1 Let “M” stand for a polynomial-time
deterministic oracle machine, and “N” for a nonde-
terministic one. Let L be a language.

(a) There exists an M of polynomial vicinity, that
accepts L with some oracle, iff L ∈ P/poly (i.e.,
iff L has polynomial-sized circuits).

(b) There exists an M whose vicinity is polynomial
when the input is regarded as machine status, that
accepts L with some oracle D, iff L belongs to
P.ALL(D).

(c) There exists an N of polynomial vicinity, that ac-
cepts L with some oracle, iff L ∈ NP/poly.

(d) There exists an N of polynomial vicinity exclud-
ing input from data, that accepts L with some or-
acle D, iff L is in NP.ALL(D).

Proof. (a) For the forward direction, let t(n) be a
polynomial bound on the running time of M on in-
puts of length n. Let D be some oracle with which
M accepts L. Let H be the initial ID of MD on any
such input. Then there exists a set S of size polyno-
mial in t(n), hence polynomial in n, that satisfies the
condition in Definition 6.2. It doesn’t matter whether
S includes the input tape or not; what matters is that
the premise I ≈ H in that condition does not restrict
I to have the same input as H. Now fix all the bits
in S that belong to D. This becomes a polynomial-
size advice string for inputs of length n, yielding the
characterization of P/poly from [KL80].

For the converse direction, let S comprise the (lo-
cations of the) “advice bits.” We may either keep
the advice on a tape, or treat the advice as an ora-
cle that can be “random-accessed.” In the latter case,
however, in order to bound the vicinity function by a
polynomial for all r ≤ t(n), we have to “slow the OTM
down” by making it wait n steps between queries (or,
by adopting the convention that an oracle query string
is erased when it is submitted; see [WW86, BDG88]).
For polynomial bounds, this slowdown does not mat-
ter.

(b) Here, the condition in Definition 6.2 applies
only to IDs I that have the same input as the ini-
tial ID H. Hence one can have different sets S for
different inputs x. This is what yields the same situa-
tion as in [BLS84]. Parts (c) and (d) are similar.

Book, Long, and Selman [BLS84] proved the follow-
ing “positive relativization”: P = NP iff for all oracle
sets D, P.ALL(D) = NP.ALL(D). From this it fol-
lows that if some oracle A making PA = NPA does so
with a polynomial-vicinity algorithm for SATA, then
P = NP. The question of whether one can arrange
PA = NPA with sub-exponential vicinity is an interest-
ing one, perhaps related to questions about the power
index of (unrelativized) SAT raised by Stearns and
Hunt [SH90].



However, we really have in mind going in the other
direction, toward saying what we can do in linear
vicinity. The NLIN 6= DLIN separation of [PPST83]
is not known to carry over to any model with super-
linear vicinity. Here, the difference between bounding
VM (t(n)) and bounding VM (r) for all r ≤ t(n) should
also matter, as reflected in the suspected difference be-
tween the linear time classes of a “strongly nd-compact
RAM” and a TM with d-dimensional tapes.

The first item to work on is whether we can find a
general way to map machines of, say, quadratic vicin-
ity into specific planar networks, of a kind that may
bring “geometric” lower-bound arguments into play.
The hope is that the simple “one-bottleneck” idea
in Section 3 can be extended into a more-powerful
kind of argument. One reason the extension via Sec-
tion 4 turned out to have only “modest” power in Sec-
tion 5 is that the “property of randomness” defined in
[MNT93] depends only on the input/output behavior
of the function in question, and combined with the
branching-program model, which is non-uniform and
has no internal data structure apart from the I/O la-
bels at all, this “washes out” most of the dataflow
structure we want to analyze. We conclude with the
hope that this survey gives a better picture of the
shape of the problem of lower bounds, and a direc-
tion for the challenge of proving them.
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tural Complexity Theory. Springer Verlag,
1988.

[Bea91] P. Beame. A general sequential time-space
tradeoff for finding unique elements. SIAM J.
Comput., 20:270–277, 1991.

[BF90] L. Babai and L. Fortnow. A characterization
of #p by arithmetic straight-line programs.
In Proc. 31st FOCS, pages 26–34, 1990.

[BG70] R. Book and S. Greibach. Quasi-realtime lan-
guages. Math. Sys. Thy., 4:97–111, 1970.

[BG93] J. Buss and J. Goldsmith. Nondeterminism
within P. SIAM J. Comput., 22:560–572,
1993.

[BIS90] D. Mix Barrington, N. Immerman, and
H. Straubing. On uniformity within NC1. J.
Comp. Sys. Sci., 41:274–306, 1990.

[BLS84] R. Book, T. Long, and A. Selman. Quan-
titative relativizations of complexity classes.
SIAM J. Comput., 13:461–487, 1984.

[BLS85] R. Book, T. Long, and A. Selman. Qualita-
tive relativizations of complexity classes. J.
Comp. Sys. Sci., 30:395–413, 1985.

[BS91] D. Mix Barrington and H. Straubing. Su-
perlinear lower bounds for bounded-width
branching programs. In Proc. 6th Structures,
pages 305–313, 1991.

[BT88] D. Mix Barrington and D. Thérien. Finite
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