
Branching Programs with Variables, and Implications for

Time-Space Tradeoffs

Denis X. Charles∗

University at Buffalo

Kenneth W. Regan†

University at Buffalo

Abstract

We introduce branching programs augmented with the ability to write to and read
from variables other than the inputs. This is a substantial strengthening of the model.
We show, however, that Ajtai’s size lower bounds for linear-time multi-way branching
programs solving a Hamming distance problem [Ajt99a] carry over to the stronger model.
This indicates an obstacle to extending this and related results to a general TS = Ω(n2)
tradeoff for running times T above n log n, yet also indicates “slack” in these results that
might be exploited for better lower bounds in the original model. We also define and
study an intermediate model in which the variable registers are write-once-only.

1 Introduction

A branching program B is an idealization of a random-access machine M running on inputs x
of some length n over an alphabet Σ. B is a directed acyclic graph with one source start and
sinks labeled 0 or 1. Each non-sink node of B bears a label “xi” (1 ≤ i ≤ n) meaning to poll
the ith character of x, and has an outgoing edge for each value in Σ. An input x ∈ Σn defines a
unique path Px through B, with result (accept or reject) given by the label of the sink reached
by Px. Intuitively, each node in Px represents a configuration of M in its computation on x.
The number s of nodes in B is thus the number of different configurations needed by M on
inputs of length n. The logarithm of s was advanced by Cobham [Cob64] as a measure of the
space S required by M . The time complexity T of B, corresponding to the worst-case running
time of M , is the maximum length of Px over all inputs x. Extending the model by giving
certain edges labels 〈j, b〉 for “the j-th character of f(x) is b” allows branching programs to
compute functions f : Σn → Σm rather than recognize subsets of Σn.

Branching programs abstract away any notions of “contiguity” of successive configurations
by which (for instance) Turing machines are considered more constrained than random-access
machines. Hence lower bounds on T and S for branching programs are considered to carry over
to any reasonable machine model (see argument in [BC82, Bea91]). However, every subset of
or function on Σn is computed by a trivial branching program B of size 2n+1 − 1 and depth
n, giving S = Θ(n) (for fixed Σ) and T = n. This B is simply a full |Σ|-ary tree that reads
the n input characters and maintains a separate configuration for all possibilities. Hence no

∗Supported in part by NSF grant CCR-9821040
†Supported in part by NSF grant CCR-9821040. Corresponding author—contact: regan@cse.buffalo.edu

1

super-linear lower bounds can be proved for branching-program time or space in isolation, nor
anything higher than ST = Ω(n2) for the time-space product. However, so-called ST = Ω(n2)
time-space tradeoffs have long been known for functions f such as sorting or computing ab+ c
in finite fields or any mapping F (h, x) = h(x) with h chosen from families of universal2
hash functions (see [Bea91, MNT93]). Ajtai made the breakthrough of obtaining time-space
tradeoffs for languages, first with |Σ| growing as n [Ajt99a] and then with Σ = { 0, 1 } [Ajt99b].
His bounds have the form that if T = O(n), i.e. T ≤ kn for some fixed k > 0 and all large
enough n, then S = Ω(n log |Σ|), i.e. the branching programs must have size 2εn log |Σ| for some
ε > 0 depending on k and all large enough n. Beame et al. [BSSV00] obtain cases with
T = O(nδ(n)) and S ≈ n/δ(n) for certain functions δ(n) = o(

√
log n). It is natural to ask

whether these results extend for super-linear time bounds to a general ST = Ω(n2) time-space
tradeoff in the manner of [BC82, Bea91, MNT93], or at least with T ≥ n log n. This paper
provides evidence to the contrary.

Our main result is that Ajtai’s above-cited results carry over to an extension of the BP
model that is far stronger than its inventors contemplated. The extension adds to the input
variables x1, . . . , xn a set y1, . . . , ym of read-write variables, where m may depend on n. The
syntax for writing a value b ∈ Σ to variable yj is the same edge-label 〈j, b〉 as in the branching-
program model for functions, while reads are handled by node labels in y1, . . . , ym rather than
x1, . . . , xn. This extension makes space essentially free for the computation: for each yj to
contribute one unit to S the size s of the branching program should double, but instead the
occurrences of yj are merely added to s. More concretely, any linear time Turing machine
can be simulated with T = O(n log n) and S = O(log n) in this “RW-BP” model, even with
oblivious computation. Hence any ST = Ω(n2) or even ST = Ω(n1+ε) time-space tradeoff is
ruled out in the extended model. Insofar as Ajtai’s techniques are impervious to this extension,
they absorb this limitation.

While our read-write extension is too powerful for practical relevance, the intermediate
“WORM-BP” model obtained by limiting writes to once per variable seems interesting in
its own right. Irani, Naor, and Rubinfeld [INR92] studied WORM versions of RAM models,
and observed that logspace (or constant space) plus a polynomial amount of WORM mem-
ory characterizes polynomial time. Beame, Saks, and Thathatchar [BST98] began by giving
polynomial-time versus log-space as a primary motivation for studying branching programs;
the added power of WORM-BPs shows up in erasing that distinction. We observe that for run-
ning times kn our syntactically defined RW-BPs and WORM-BPs are equivalent with regard
to size. Our paper raises some interesting open problems about the power of WORM-BPs and
their relation to nondeterminism and to the closure of small-BP functions under composition.

2 Branching programs with variables

Formal definitions of the standard branching-program models for decision problems and func-
tions are readily available in the major references [Bea91, MNT93, Ajt99a, Ajt99b, BSSV00].
In this paper we consider only branching programs for decision problems. We define our
extensions formally.

Definition 2.1. A branching program with read-write variables (RW-BP) over an alphabet
Σ is a one-source DAG B whose non-sink nodes have labels in the input set {x1, . . . , xn } and
the variable set { y1, . . . , ym }. Those with labels in { y1, . . . , ym } have an extra integer tag as

2

in (a) below. Sinks are labeled 0 or 1 as usual, and non-sink nodes have |Σ|-many outgoing
edges labeled by the elements in Σ. Certain edges may have additional labels 〈j, b〉 meaning
“yj := b,” with 1 ≤ j ≤ m and b ∈ Σ. We enforce the following syntactic restrictions:

(a) Every node with a variable yj is tagged also with an integer ` ≥ 1 standing for the
number of times yj has been previously written to. Along every path from the source
to yj (not just legal paths Px for some input x) there must be exactly `-many edge-
labels of the form 〈j,−〉. In order down from the source, these labels can be denoted by
〈j, b1〉, . . . , 〈j, b`〉.

(b) An individual edge can have at most one 〈j, b〉 label. That is, at most one yj variable
can be assigned in any one step.

The unique path Px for an input x ∈ Σn is determined by taking the out-edge labeled xi
at a node labeled xi, and for a node labeled yj with extra tag `, taking the out-edge labeled
b` (from the closest preceding edge label 〈j, b`〉 in Px). The output B(x) is the label 0 or 1 of
the sink reached by Px.

Definition 2.2. A BP with write-once variables (WORM-BP) is the case of Definition 2.1 in
which all yj nodes have tag ` = 1.

The two syntactic restrictions are mainly for convenience, and are met in our Theorem 2.2
on simulations of Turing machines. One can entertain “semantic” variants without the extra
integer tags ` in (a) and/or the restriction to one write per edge in (b), but we defer questions
about their power to the concluding section. One aspect of (b) is that we can associate each
write yj := b with a unique separate node by inserting a new node into the edge, with all out-
arcs from that node (reading, say, x1) going to the original target node of that edge. Doing so
multiplies the size by a factor of |Σ|+ 1, which is negligible when |Σ| is independent of n but
may be noticeable when Σ = { 0, . . . , α } with α = nO(1), as in [Ajt99a]. Alternately we can
associate the write with the original source or target node of the edge—we revisit this matter
when we get to the technical details of time-intervals as defined by Ajtai. We associated the
write to an edge rather than a node in our formal definition for clarity and consistency with
the standard definition of functional BPs.

A branching program is leveled if its nodes can be partitioned into “level sets” S0, . . . , St
with S0 comprising the unique source node, St the sinks, and with all edges from Sk (0 ≤ k ≤
t− 1) going to St. The width of a leveled BP is the maximum size of Sk over all k.

Lemma 2.1 For every RW-BP B of size s and maximum depth d over Σ, we can create an
equivalent leveled RW-BP B′ of depth 2d and width at most s and with a new RW-variable y0,
whose levels alternate reading from {x1, . . . , xn } and from { y0, y1, . . . , ym }.

Proof. First apply the standard leveling process to B, inserting extra nodes reading from
{x1, . . . , xn }, which creates an equivalent BP of depth d and width at most s. All edges from
the root write 0 to y0, this being the only time that y0 is written to, and go to dummy nodes
that read from y0. Then for each level, segregate nodes reading from {x1, . . . , xn } and those
reading from { y1, . . . , ym } into two levels, inserting dummy reads to x1 and to y0 (the latter
with tag 1 always) as needed.

3

Note that this says nothing about leveling the writes . It is possible to associate each write
with a node rather than an edge, by inserting extra levels of nodes that do dummy-reads, but
this idea is not needed here.

A BP is oblivious if it is leveled and all nodes in each level have the same label (xi or
yj, ` in the case of a RW-BP). Unlike leveling, this condition is far from innocuous—no better
general way of achieving it is known than multiplying the depth by the number of variables,
which forces T ≥ n2. Some lower bounds are known for oblivious BPs but not general ones,
such as those in [AM88]. Of main interest to us is the following upper bound.

Theorem 2.2 A Turing machine M running in time t(n) and space s(n) can be simulated
by oblivious RW-BPs Bn with m = O(s(n)) read-write variables, constant width, and depth
T = O(t(n) log t(n)).

Proof. By Pippenger-Fischer’s extension [PF79] of the Hennie-Stearns theorem, M can be
simulated by an oblivious 2-tape Turing machine M ′ in time O(t(n) log t(n)) and space m =
O(s(n)). Here “oblivious” for Turing machines means that the sequence of positions of the
input tape head and the two worktape heads at a given time t depend only on the length n
of the input x, not on the characters in x. Now let the m worktape cells used by M ′ become
read-write variables of a RW-BP Bn. Since the sequence of visiting cells depends only on n,
we can associate to each worktape cell yj visited at some time-step t the ordinal ` of times
yj has been visited before in this sequence. The single time-step t of M ′ becomes 5 levels of
Bn, one to read an input variable, then two to read the two worktape cells, and finally two to
write the new values to the worktape cells. (Technical details in [PF79] and in our definition
actually allow us to save two levels, but this doesn’t matter.) The width of the fourth level
in this sequence is bounded by |Σ|3 · |Q|, where Σ is the (fixed!) alphabet of M ′, and Q is the
state set of M ′.

The family Bn thus obtained is also uniform in senses we need not elaborate here. When
t(n) = O(n), there exists a fixed δ > 0 such that for all sufficiently large n, Bn uses δn
read-write variables and runs in time T = O(n log n). For RW-BPs Bn that run in linear time
T = kn, we can eliminate multiple writes:

Proposition 2.3 RW-BPs Bn that run in time kn can be simulated by WORM-BPs B′n that
run in the same time and use at most kn variables.

Proof. We have set the definitions so that this only requires replacing each label yj, ` by
a new variable yjl. (Addendum 6/6/01: Not quite so from the above—we could strengthen
Definition 2.1 to make this so while preserving Theorem 2.2 and its import, but the whole
WORM idea is actually not needed for our proofs, as noted also below. It was our original
motivating idea and was also a convenience for initially visualizing the proofs, but a closer look
at the counting confirms that it is unnecessary, and the idea is obsolete for cases T = ω(n)
that we are working on anyway.)

Corollary 2.4 Every language in deterministic Turing machine linear time can be accepted

(a) by uniform oblivious RW-BPs with m = O(n), T = O(n log n), and S = O(log n); and

4

(b) by uniform oblivious WORM-BPs with m = O(n log n), T = O(n log n), and S =
O(log n+ log log n) = O(log n).

Likewise, every language in P has oblivious WORM-BPs with T = nO(1) and S = O(log n).
Thus WORM-logspace captures P in this model, as in [INR92].

3 Essential notions and transition to RW-BPs

The strategy of Beame et al. [BSSV00] of “applying the space bound early in the argument,”
by initially fragmenting a BP B into an OR of ANDs of small-depth decision trees, seems
at first sight to fail for RW-BPs, even for WORM-BPs, because of the dependence on the
yj variables across fragments. We believe it is possible to make our strategy resemble theirs
by building the notion of which write-once values are set during a time-interval on top of
a decision-tree fragment. However, this may upset the essential simplicity of this step in
[BST98, BSSV00], making it less worthwhile. Hence we stay with Ajtai’s side of the contrast
drawn in [BSSV00], applying the space bound “later in the argument” after first getting
control of the yj dependences.

The paper [Ajt99a] contains a first sequence of lemmas that provide lower bounds on a
Hamming distance problem over alphabet Σ = { 0, . . . , α − 1 } with α = nO(1), and then a
stronger sequence giving lower bounds on the classical element-distinctness problem. To date
we have successfully carried over the first sequence. This culminates in the following extension
of Ajtai’s first main theorem.

Definition 3.1. Given any γ < 1/2 and c > 0, and for any input length n, define αcn to be
the next power of 2 above nc, and Σcn = { 0, . . . , αcn − 1 } thought of as the set of binary
strings of length ` = log2(αcn). Then define the Hamming distance set HDn(γ, c) to be the set
{x ∈ Σn : there exist distinct characters xi, xj of x whose corresponding binary strings differ
in no more than γ` places}.

Theorem 3.1 (cf. [Ajt99a], Theorem 1 on p7) For all positive γ < 1/2 there exists c > 0
such that for all integers k, r ≥ 1 there exists ε > 0 such that for all sufficiently large n, every
n-input RW-BP M of depth kn and size at most 2εn logn, using alphabet Σnc and rn variables,
fails to recognize HDn(γ, c).

We will perforce also obtain the abstraction of this statement to arbitrary relations on Σ
(in place of the Hamming distance condition) that are “λ-full” and “(1/2, n)-sparse,” with
λ = n−δ for arbitrary positive δ < c, which corresponds to Theorem 2 of [Ajt99a], p7. This
implies Theorem 3.1 via a combinatorial argument that is postponed to page 16 of [Ajt99a] and
has nothing to do with branchine programs. Our version of the abstracted theorem follows
from our parallels to the sequence Lemma 1–Lemma 8 in [Ajt99a] in the same manner as
there. We give detailed proofs only for those parts where the argument requires modification
for RW-BPs in this extended abstract, putting other information in prose text with reference
to [Ajt99a] (page numbers are for the revised version) itself.

First, we include the rest of Ajtai’s notation with important additions and changes noted.
We preserve his use of M as synonymous with B for branching programs, and “state” for
node; while we pluralize his right to rtimes and rstate to rstates to emphasize that these

5

functions do not return a single timestep or node when their argument is not a single time
interval. By results in the last section, we may assume that M is leveled and write-once, the
latter since M runs in linear time,

Notation, Terms, and Givens
The parameters c and γ on the Hamming-distance problem are fixed. The large constants

k on the linear running time of BPs M and r (new, can be chosen equal to k) on the num-
ber m = rn of variables they may use are givens. The following quantities are chosen and
manipulated in the proofs:

1. σ: a small real number depending on k.

2. I: a partition of the timesteps 0, . . . , kn− 1 into intervals of duration between σn and
2σn. Subject to this, it does not matter how I is chosen.

3. ε: depends on k and choice of σ, and defines a size bound of 2εn logn for M .

4. x: an element of Σn given as input to M .

5. Px: the unique path in M induced by x (added notation). Often x and Px are inter-
changeable.

6. out(x): the 0-1 output value of the sink reached by Px.

7. defvals(u, x): the defined values of y1, . . . , ym at node u in Px, including ‘?’ for an
undefined value (new).

8. state(t, x): the t-th node in the path Px.

9. η: a “partial input,” formally a function from a subset D of { 1, . . . , n } to Σ|D|.

10. x o η: the modified input obtained by changing the character in any place u ∈ dom(η)
to η(u).

11. T : any subset of { 0, . . . , kn }, regarded as a set of timesteps.

12. I: a set of timesteps that forms an interval.

13. rtimes(T): the set of t /∈ T such that t − 1 ∈ T . If T is an interval this is a single
timestep.

14. rstates(T, x) = { state(x, t) : t ∈ rtimes(T) }.

15. wvals(T, x): a function g : T → ({ 1, . . . ,m } × Σ) ∪ { ? } such that for all t ∈ T ,
g(t) = (j, b) if value b is written to yj at that timestep along Px, g(t) = ? if no value is
written in that step.

16. reg(T, x): the set of registers in {x1, . . . , xn } and { y1, . . . , ym } accessed in state(t, x)
for t ∈ T (changed).

17. Ireg(T, x) = reg(T, x) ∩ {x1, . . . , xn }: the literal equivalent of register(T, x) in
[Ajt99a], but our extended reg(T, x) above plays the corresponding role in the proofs.

6

18. core(T, x) = reg(T, x)\reg(∼ T, x), where ∼ T is the somplement of T in { 0, . . . , kn−
1 }. These are the registers accessed only at timesteps in T . This set can be empty, but
the goal is to find many inputs x for which it is large for certain T .

19. Icore(T, x) = core(T, x)∩ {x1, . . . , xn }: again the literal but not figurative equivalent
of Ajtai’s core(T, x). The last two differences actually do not matter in defining:

20. Rx: The partition of {x1, . . . , xn } only (i.e., no yj registers) defined by u ≡x v if for
every interval I ∈ I, u ∈ Ireg(I, x) ⇐⇒ v ∈ Ireg(I, x). (Recall that I is fixed and
its members I have adjustably short height σn to 2σn.)

21. R′x ⊂ Rx: those classes of Rx such that some (equivalently, all) u ∈ R′x are accessed in
at most 2k intervals on I.

22. Γx ⊂ R′x: those classes of Rx that have more than n/(4|R′x|) registers.

23. set(C, x): for a class C in Γx, the set of intervals in which some (equivalently, each)
register of C is accessed.

The distinction between Icore versus core and between Ireg versus reg, is not needed for
our main proof here, but is important to bear in mind and seems to be important for current
attempts to extend Ajtai’s second main result in [Ajt99a], as discussed in the conclusions
section.

4 Proof of the Main Theorem

Lemma 1 from [Ajt99a] is unchanged here: it states that if A1 and A2 are sets of partial
inputs so that for all η1 ∈ A1 and η2 ∈ A2, dom(η1) ∩ dom(η2) = ∅, and the numbers of
modified inputs obtainable as x o η for η ∈ A1 respectively η ∈ A2 are both at least α/nδ, then
there exist η1 ∈ A1 and η2 ∈ A2 with outkn((x o η1) o η2). This connects with the structure
of the Hamming distance problem (or any defined analogously via an n−δ-full relation Q) to
provide the contradiction that proves Theorem 3.1 in the same way as in [Ajt99a]. Our first
adjustment is to Lemma 2 on p11 of [Ajt99a].

Lemma 4.1 (cf. Lemma 2 of [Ajt99a]) Let x be an input, let η1, η2 be partial inputs, and
let T1, T2 ⊆ {0, 1, · · · , kn− 1}. Suppose the following hold:

1. dom(η1) ∩ dom(η2) = ∅;

2. T1 ∩ T2 = ∅;

3. dom(η1) ⊆ core(T1, x) and dom(η2) ⊆ core(T2, x).

4. rstates(T1, x) = rstates(T1, x o η1). and rstates(T2, x) = rstates(T2, x o η2).

5. wvals(T1, x) = wvals(T1, x o η1) and wvals(T2, x) = wvals(T2, x o η2).

6. dom(η1) ∩ reg(T2, x o η2) = ∅ and dom(η2) ∩ reg(T1, x o η1) = ∅.

Then outkn(x) = outkn((x o η1) o η2) and defvals(state(kn, x), x) = defvals(state(kn, (x o
η1) o η2), (x o η1) o η2)).

7

Item 5 is a strong condition to impose, and we succeed only because it does not fatally dilute
the counting lemma that comes last.

Proof. Let Ki be a set of disjoint intervals of minimum cardinality such that ∪Ki = Ti. Let
K = K1 ∪K2. Order K = {I1, I2, · · · , Ir} so that ti ∈ Ii < tj ∈ Ij if i < j. Let x1 = x o η1,
x2 = x o η2 and x′ = (x o η1) o η2. We will show that M on input x′ acts like M on input xi
during times from intervals I ∈ Ki and acts like M on input x elsewhere, which implies the
result.

Let hs be the unique element of rtimes(Is). We claim that

statex(hs) = statex1(hs)

= statex2(hs)

= statex′(hs).

For the basis consider s = 1, and wlog. suppose that the interval I1 belongs to K1. Since
η1 ⊆ core(T1, x) and η2 ⊆ core(T2, x), all values read before we enter this interval by M
on all the four inputs are the same, so that the paths taken up to times in I1 are the same
and hence the write-once registers have the same values. During I1, by using the condition
dom(η2) ∩ reg(T1, x o η1) = ∅, we conclude that M does not access any input changed by η2

(the write-once registers have identical values so reading them does not cause a problem), and
so M behaves as though it operates on input x1. However at the right end of the interval,
rstates(T1, x) = rstates(T1, x1), which gives statex(hs) = statex1(hs). The write-once
registers also have the same values by condition 5. Thus at the end of the first interval
M(x),M(x1),M(x2) and M(x′) are in identical configuration. The proof of the inductive step
is similar.

Note that the paths taken by M(x),M(x1),M(x2) and M(x′) may differ within the intervals
considered, but since by condition 4 the first three end at the same node closing the interval,
and since by condition 5 the same values were written during the interval (and at the same
time instants—this doesn’t matter here) to the yj variables, the paths of all four reconvene
after the interval.

The next two lemmas in [Ajt99a] are counting lemmas that relate the number of strings
obtainable as x o η over η ∈ A (there called s = |⋃η∈A range(η)|) to the size of the set
D ⊂ { 1, . . . , n } for which A is a set of η of common domain D. Lemma 3 concludes that
s|D| ≥ |A|, so that if |A| ≥ (α/nδ)|D| then s > α/nδ. (Here s does not mean BP size.) Lemma 4
states that if M,x,A1, A2, T1, T2 are such that:

• The η ∈ A1 have a common domain W1 and the η ∈ A2 have a common domain W2;

• For all η1 ∈ A1 and η2 ∈ A2 the conditions of (our) Lemma 2 are satisfied by
x, η1, η2, T1, T2; and

• |A1| > (α/nδ)|W1| and ditto for A2,W2,

then there exist η1 ∈ A1, η2 ∈ A2, and distinct i, j ∈ { 1, . . . , n } such that with x′ = (xoη1)oη2)
we have outkn(x) = outkn(x′) and the required Hamming-distance or λ-full relation holds
between xi and xj. This carries over transparently and connects directly with the (converted)
Lemmas 1–3.

Lemma 5 involves the definitions of Rx, R
′
x, Γx, and set(C, x) above. It states:

8

Lemma 4.2 (cf. Lemma 5 in [Ajt99a], p12) For any input x:

1. ∀C ∈ Γx : |C| ≥ 1
4
(σ
k
)2kn.

2. |∪C∈ΓxC| ≥ 1
4
n.

3. There are W1,W2 ∈ Γx with set(W1, x) ∩ set(W2, x) = ∅.

The proof in [Ajt99a] carries through because our definitions of Rx, R
′
x, Γx, and set(C, x)

are the same as in [Ajt99a] involving only the input registers, and only counting based on
the definitions is used. The counting does not care that the levels reading from y1, . . . , ym
act as “dead weight” here, the same as if they were “dummy reads” of x1. Any alteration of
constants that one could hope to obtain by taking this into account would be absorbed by the
freedom to choose σk arbitrarily small anyway.

Our critical juncture is the next lemma. We need to allow for all possibilities of when
values are written to the yj registers along a path Px, and which values are written. This is
on top of Ajtai’s idea of joining up pieces of paths between endpoints of successive intervals
of I: we may splice such pieces only when the written yj values also agree. What we count in
addition are all the different possibilities for functions g0 to apply at timesteps t via g0(t) =
wvals(state(t, x), Px). Note that given a set R of states along the path Px we can also
define g(R) = { wvals(u, Px) : u ∈ R }. Owing to the write-once condition, these sets must
“telescope” nicely (but in fact, our counting here does not need this).

Lemma 4.3 (cf. Lemma 6 of [Ajt99a], p13) For any k there exist σ, ε > 0 such that for
all large enough n and BPs M of size at most 2εn logn and depth kn, with a partition I of
short time intervals defined as above: there are a set H of inputs, sets W1,W2 ⊆ {1, · · · , n},
a value v ∈ {0, 1}, J1, J2 ⊆ I, and functions f1, f2, g1, g2 so that for all x ∈ H we have:

1. |H| ≥ 2−9kεn lognα(1−θ)n, where θ can be made arbitrarily small by choosing σ.

2. W1,W2 ∈ Γx

3. Ji = set(Wi, x) for i = 1, 2

4. If Ti = ∪I∈JiI then fi = rstates(Ti, x) and gi = wvals(fi, x).

5. J1 ∩ J2 = ∅ and W1 ∩W2 = ∅

6. outkn(x) = v.

Proof. As in [Ajt99a], since M outputs either 1 or 0, we start with H ′ chosen to be the larger
of the two sets M−1(0) or M−1(1). Assume that x ∈ H ′ is fixed. By the previous lemma there
exists W1,W2 ∈ Γx such that W1 ∩W2 = ∅. Let Ji = Wi, Ti = ∪I∈JiI, fi = rstates(Ti, x)
and gi = wvals(fi, x). We will upper bound the number of possible choices for the sequence
〈W1,W2, J1, J2, f1, f2, g1, g2〉.

The number of choices for the pair W1,W2 is at most 22n. The number of choices for
the pair J1, J2 is at most |I|4k. Since |I| ≤ σ−1k this gives an upper bound of σ−4kk4k. The
functions fi have domains that have at most 2k elements and ranges of size at most 2εn logn,
so the number of choices for the pair f1, f2 is at most 24kεn logn.

9

Finally, the gi have domains of size |Ti| ≤ 2kσn and range ({1, · · · ,m}∪{ ? })×Σ. That is,
at each time step in Ti we write at most one value. Even allowing for rewrites, the number of
possible such functions is ≤ (mα)4kσn. Let m = rα; then the above bound is ≤ 2(log r)4kσnα8kσn.
Thus there are at least 2−9kεn lognα(1−8kσ)n inputs for which this sequence is fixed. Picking H
to be this set completes the proof.

Lemmas 7 and 8 in [Ajt99a] are pure counting lemmas again that do not reference the
operation of branching programs and connect the counting estimates in the conclusions of
Lemma 6 with the hypotheses of Lemma 4. Looking at the difference between the above
lemma and Ajtai’s Lemma 6, the conclusions are the same except for the constant “9” and
the extra (1 − θ) in the exponents, with θ = 8kσ. However, the “9” can be absorbed into
the freedom to choose ε, and the (1 − θ) into the freedom to choose any α > nc granted in
[Ajt99a]. Hence we obtain conclusions of equivalent strength, and they can be plugged in to
complete the proof of the main theorem exactly as in pages 14–15 of [Ajt99a].

5 Conclusions and Open Problems

We have shown that Ajtai’s size requirement for linear-time branching programs solving his
Hamming-distance problem carries over to a model that is given much extra space “for free.”
Since TS = Ω(n2) or even TS = Ω(n log3 n) tradeoffs are impossible in this extended model,
we argue that the extensions of Ajtai’s arguments used in [BSSV00] to push T near n log.5 n
are getting close to a limit for such extensions. However, this may also point the way to
arguments that do break under the extensions, and which may exploit the “slack” we have
shown for stronger results.

The most immediate open problem is to get the element-distinctness result in the second
half of [Ajt99a] to carry over. This is the pre-requisite for carrying over the 2-way branching
program results of [Ajt99b]. The crux of our current state of this is in the difference between
core(T, x) and Icore(T, x). We believe we can fairly straightforwardly modify the more-
delicate counting lemmas in the second half of [Ajt99a], especially the pivotal Lemma 13
on page 26, to work when “core(T, x)” includes the registers y1, . . . , ym. However, a lower
bound on the size of core(T, x) then does not guarantee that a large-enough number of input
registers are included in this core. One needs the large number of input registers to obtain
enough places to modify inputs x. (Addendum 6/6/01: It now appears that we can solve this
by working directly with Icore and ignoring the concept of core for yj registers.)

We also advance the concept of a WORM-BP as worthy of study in its own right. Which
time-space tradeoffs hold for WORM-BPs? Insofar as WORM-BPs can be subsumed by
nondeterministic BPs, bounds for those carry over, but we look for bounds that exploit the
fact that the write-once registers are being written deterministically.

References

[Ajt99a] M. Ajtai. Determinism versus non-determinism for linear time RAMs with memory re-
strictions. Technical Report ECCC TR98-077, revision 1, Electronic Colloquium in Com-
putational Complexity, January 1999. A preliminary version appeared in the proceedings
of the 31st ACM STOC, 1999.

10

[Ajt99b] M. Ajtai. A non-linear time lower bound for Boolean branching programs. Technical
Report ECCC TR99-026, Electronic Colloquium in Computational Complexity, July 1999.
A preliminary version appeared in the proceedings of the 40th IEEE FOCS, 1999.

[AM88] N. Alon and W. Maass. Meanders and their application to lower bound arguments. J.
Comp. Sys. Sci., 37:118–129, 1988.

[BC82] A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential model
of computation. SIAM J. Comput., 11:287–297, 1982.

[Bea91] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20:270–277, 1991.

[BSSV00] P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear time-space tradeoff lower bounds
for randomized computation. Technical Report ECCC TR00-025, Electronic Colloquium
in Computational Complexity, May 2000.

[BST98] P. Beame, M. Saks, and J. Thathatchar. Time-space tradeoffs for branching programs.
Technical Report ECCC TR98-053, Electronic Colloquium in Computational Complexity,
September 1998. Corrected version. Also appeared in the proceedings of the 40th IEEE
FOCS, 1998, pages 254–263.

[Cob64] A. Cobham. The intrinsic computational difficulty of functions. In Proc. 1964 Congress
for Logic, Mathematics, and Philosophy of Science, pages 24–30, 1964.

[INR92] S. Irani, M. Naor, and R. Rubinfeld. On the time and space complexity of computation
using write-once memories, or Is pen really much worse than pencil? Math. Sys. Thy.,
25:141–159, 1992.

[MNT93] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing.
Theor. Comp. Sci., 107:121–133, 1993.

[PF79] N. Pippenger and M. Fischer. Relations among complexity measures. J. Assn. Comp.
Mach., 26:361–381, 1979.

11

