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1 Introduction

In the previous two chapters, we have

• Introduced the basic complexity classes,

• Summarized the known relationships between these classes, and

• Seen how reducibility and completeness can be used to establish tight links between natural
computational problems and complexity classes.

Some natural problems seem not to be complete for any of the complexity classes we have seen
so far. For example, consider the problem of taking as input a graph G and a number k, and
deciding whether k is exactly the length of the shortest traveling salesperson’s tour. This is clearly
related to the TSP problem discussed in Chapter 28, but in contrast to TSP, it seems not to belong
to NP, and also seems not to belong to co-NP.

To classify and understand this and other problems, we will introduce a few more complexity
classes. We cannot discuss all of the classes that have been studied—there are further pointers to
the literature at the end of this chapter. Our goal is to describe some of the most important classes,
such as those defined by probabilistic and interactive computation.

A common theme is that the new classes arise from the interaction of complexity theory with
other fields, such as randomized algorithms, quantum mechanics, formal logic, combinatorial opti-
mization, and matrix algebra. Complexity theory provides a common formal language for analyzing
computational performance in these areas. Other examples can be found in other chapters of this
Handbook .

2 The Polynomial Hierarchy

Recall from Theorem 27.9(b) in Chapter 27 that PSPACE is equal to the class of languages that can
be recognized in polynomial time on an alternating Turing machine, and that NP corresponds to
polynomial time on a nondeterministic Turing machine, which is just an alternating Turing machine
that uses only existential states. Thus, in some sense, NP sits near the very “bottom” of PSPACE,
and as we allow more use of the power of alternation, we slowly climb up toward PSPACE.
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Many natural and important problems reside near the bottom of PSPACE in this sense, but
are neither known nor believed to be in NP. (We shall see some examples later in this chapter.)
Most of these problems can be accepted quickly by alternating Turing machines that make only
two or three alternations between existential and universal states. This observation motivates the
definition in the next paragraph.

With reference to Chapter 24, define a k-alternating Turing machine to be a machine such
that on every computation path, the number of changes from an existential state to universal state,
or from a universal state to an existential state, is at most k − 1. Thus, a nondeterministic Turing
machine, which stays in existential states, is a 1-alternating Turing machine.

It turns out that the class of languages recognized in polynomial time by 2-alternating Turing
machines that start out in existential states is precisely NPSAT. This is a manifestation of something
more general, and it leads us to the following definitions.

Let C be a class of languages. Define

• NPC =
⋃
A∈C NPA,

• ΣP
0 = ΠP

0 = P;

and for k ≥ 0, define

• ΣP
k+1 = NPΣPk ,

• ΠP
k+1 = co-ΣP

k+1.

Observe that ΣP
1 = NPP = NP, because each of polynomially many queries to an oracle lan-

guage in P can be answered directly by a (nondeterministic) Turing machine in polynomial time.
Consequently, ΠP

1 = co-NP. For each k, ΣP
k ⊆ ΣP

k+1, and ΠP
k ⊆ ΣP

k+1, but these inclusions are not
known to be strict. See Figure 1.

The classes ΣP
k and ΠP

k constitute the polynomial hierarchy. Define

PH =
⋃
k≥0

ΣP
k .

It is straightforward to prove that PH ⊆ PSPACE, but it is not known whether the inclusion is strict.
In fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, i.e., PH = ΣP

m for
some m.

We have already hinted that the levels of the polynomial hierarchy correspond to k-alternating
Turing machines. The next theorem makes this correspondence explicit, and also gives us a third
equivalent characterization.

Theorem 1. For any language A, the following are equivalent:

1. A ∈ ΣP
k .

2. A is decided in polynomial time by a k-alternating Turing machine that starts in an existential
state.

3. There exists a language B ∈ P and a polynomial p such that for all x, x ∈ A if and only if

(∃y1 : |y1| ≤ p(|x|)) (∀y2 : |y2| ≤ p(|x|)) · · · (Qyk : |yk| ≤ p(|x|)) [(x, y1, . . . , yk) ∈ B] ,

where the quantifier Q is ∃ if k is odd, ∀ if k is even.
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Figure 1: The polynomial hierarchy.
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In Chapter 28, Section 28.9, we discussed some of the startling consequences that would follow
if NP were included in P/poly, but observed that this inclusion was not known to imply P = NP.
It is known, however, that if NP ⊆ P/poly, then PH collapses to its second level, ΣP

2 [43]. It is
generally considered likely that PH does not collapse to any level, and hence that all of its levels
are distinct. Hence this result is considered strong evidence that NP is not a subset of P/poly.

Also inside the polynomial hierarchy is the important class BPP of problems that can be solved
efficiently and reliably by probabilistic algorithms, to which we now turn.

3 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see
Chapter 15), complexity theorists have placed randomized algorithms on a firm intellectual foun-
dation. In this section, we outline some basic concepts in this area.

A probabilistic Turing machine M can be formalized as a nondeterministic Turing machine
with exactly two choices at each step. During a computation, M chooses each possible next step
with independent probability 1/2. Intuitively, at each step, M flips a fair coin to decide what to
do next. The probability of a computation path of t steps is 1/2t. The probability that M accepts
an input string x, denoted by pM (x), is the sum of the probabilities of the accepting computation
paths.

Throughout this section we consider only machines whose time complexity t(n) is time-construc-
tible. Without loss of generality, we may assume that every computation path of such a machine
halts in exactly t steps.

Let A be a language. A probabilistic Turing machine M decides A with

for all x ∈ A for all x 6∈ A
unbounded two-sided error if pM (x) > 1/2 pM (x) ≤ 1/2
bounded two-sided error if pM (x) > 1/2 + ε pM (x) < 1/2− ε

for some constant ε
one-sided error if pM (x) > 1/2 pM (x) = 0

Many practical and important probabilistic algorithms make one-sided errors. For example,
in the Solovay–Strassen primality testing algorithm covered in Chapter 39, when the input x is a
prime number, the algorithm always says “prime;” when x is composite, the algorithm usually says
“composite,” but may occasionally say “prime.” Using the definitions above, this means that the
Solovay–Strassen algorithm is a one-sided error algorithm for the set A of composite numbers. It
also is a bounded two-sided error algorithm for A, the set of prime numbers.

These three kinds of errors suggest three complexity classes:

• PP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with unbounded two-sided error.

• BPP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with bounded two-sided error.

• RP is the class of languages decided by probabilistic Turing machines of polynomial time
complexity with one-sided error.

In the literature, RP is sometimes also called R.
A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-

machine) if M has polynomial time complexity, and M decides with two-sided error (bounded
two-sided error, one-sided error).
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Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and RP-
machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem
implies that RP ⊆ BPP.)

Theorem 2. If L ∈ BPP, then for every polynomial q(n), there exists a BPP-machine M such that
pM (x) > 1− 1/2q(n) for every x ∈ L, and pM (x) < 1/2q(n) for every x 6∈ L.

If L ∈ RP, then for every polynomial q(n), there exists an RP-machine M such that pM (x) >
1− 1/2q(n) for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin
flips are truly random). If the probability of error is less than 1/25000, then it is less likely that the
algorithm produces an incorrect answer than that the computer will be struck by a meteor. An
algorithm whose probability of error is 1/25000 is essentially as good as an algorithm that makes
no errors. For this reason, many computer scientists consider BPP to be the class of practically
feasible computational problems.

Next, we define a class of problems that have probabilistic algorithms that make no errors.
Define

• ZPP = RP ∩ co-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A ∈ ZPP.
Here is an algorithm that checks membership in A. Let M be an RP-machine that decides A, and
let M ′ be an RP-machine that decides A. For an input string x, alternately run M and M ′ on x,
repeatedly, until a computation path of one machine accepts x. If M accepts x, then accept x; if
M ′ accepts x, then reject x. This algorithm works correctly because when an RP-machine accepts
its input, it does not make a mistake. This algorithm might not terminate, but with very high
probability, the algorithm terminates after a few iterations.

The next theorem expresses some known relationships between probabilistic complexity classes
and other complexity classes, such as classes in the polynomial hierarchy (see Section 2).

Theorem 3.

(a) P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP ⊆ PSPACE.

(b) RP ⊆ NP ⊆ PP.

(c) BPP ⊆ ΣP
2 ∩ΠP

2 .

(d) PH ⊆ PPP.

(e) TC0 ⊂ PP.

(Note that the last inclusion is strict! TC0 is not known to be different from NP, but it is a proper
subset of PP.) Figure 2 illustrates many of these relationships. PP is not considered to be a feasible
class because it contains NP.

Whether various inexpensive sources of coin-flip bits for probabilistic algorithms meet the ran-
domness conditions for these classes is still controversial, but efficient pseudo-random generators
(PRGs) of the kind covered in Chapter 43 seem to work well in practice. Using such a PRG converts
a probabilistic algorithm into a similarly-efficient deterministic one, and is said to de-randomize
both the algorithm and the problem it solves.

There is a simple sense in which any probabilistic algorithm with small error probability can
be de-randomized. If the error probability is brought below 1/2n, then there is one sequence rn of
coin flips that gives the right answer on all inputs of length n, and rn can be hard-wired into the
algorithm to yield a deterministic (but nonuniform) circuit family. More formally:
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Figure 2: Probabilistic complexity classes. Many researchers believe BPP = P.

Theorem 4. BPP ⊆ P/poly.

This does not imply BPP = P because rn may not be constructible in polynomial time. However, if
there is any problem in the exponential time class E that requires circuits of size 2Ω(n), a hypothesis
supported by many researchers, then BPP = P follows [41].

Another important way in which BPP,RP, and ZPP differ from PP, NP, and most other com-
plexity classes discussed thus far is that they are not known to have any complete languages. The
standard approach to construct a complete set for BPP fails because there is no computable way
to weed out those polynomial-time probabilistic Turing machines that are not BPP-machines from
those that are. The same goes for RP and ZPP—for discussion see [7, 60]. However, if BPP = P
then all of these classes have the same complete sets that P has.

Log-space analogues of these probabilistic classes have also been studied, of which the most
important is RL, defined by probabilistic TMs with one-sided error that run in log space and may
use polynomially many random bits in any computation. For a quarter-century, the problem of
testing whether an undirected graph is connected was an important example of a problem in RL
that was not known to be in L. In another watershed for de-randomization, this problem was shown
to be in L [57], and many people now conjecture that RL = L.

4 Quantum Computation

A probabilistic computer enables one to sample efficiently over exponentially many possible com-
putation paths. However, only one path is active at a time, it is unclear whether true random
sampling can be achieved, and if BPP = P then the added capability may be too weak to matter
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anyway. A quantum computer , however, can harness parallelism and randomness in ways that
appear theoretically to be much more powerful, ways that are able to solve problems believed not
to lie in BPP. A key difference is that by quantum interference, opening up new computation
paths may cause the probabilities of some other paths to vanish, whereas for a BPP-machine those
probabilities would remain positive.

A quantum computer controls some number m of qubits, and is able to maintain up to 2m-many
basis states in superposition. Subject to mathematical limitations from the theory of quantum
mechanics, and practical obstacles to maintaining coherence of the superposition, the machine
gives effects that are explainable as results of running up to 2m-many computations in parallel, all
while taking sequential time that is polynomial in m. An observation of the system then yields
a basis state with a probability distribution that depends on the answer to the problem. From
enough observations the answer can be inferred, with small error probability (and in some cases
with certainty).

• BQP is the class of languages decided by quantum machines of polynomial time complexity
with bounded two-sided error.

A prime motivation for studying BQP is that it includes language versions of the integer factor-
ing and discrete logarithm problems, which are defined in Section 7.1 of this chapter and further
detailed in Chapter 41. The public-key cryptosystems in common use today rely on the pre-
sumed intractability of these problems, and are theoretically breakable by eavesdroppers armed
with quantum computers. This is one of several reasons why the interplay of quantum mechanics
and computational complexity is important to cryptographers.

In terms of the complexity classes depicted in Figure 2, the only inclusions that are known
involving BQP are

BPP ⊆ BQP ⊆ PP.

In particular, it is important to emphasize that it is not generally believed that quantum com-
puters can solve NP-complete problems quickly. Chapter 41 gives further details on how quantum
computers work and connections to cryptography.

5 Formal Logic and Complexity Classes

There is a surprisingly close connection between important complexity classes and natural notions
that arise in the study of formal logic. This connection has led to important applications of
complexity theory to logic, and vice-versa. Below, we present some basic notions from formal logic,
and then we show some of the connections between logic and complexity theory.

Descriptive complexity refers to the ability to describe and characterize individual problems
and whole complexity classes by certain kinds of formulas in formal logic. These descriptions
do not depend on an underlying machine model—they are machine-independent. Furthermore,
computational problems can be described in terms of their native data structures, rather than
under ad hoc string encodings.

A relational structure consists of a set V (called the universe), a tuple E1, . . . , Ek of relations
on V , and a tuple c1, . . . , c` of elements of V (k, ` ≥ 0). Its type τ is given by the tuple (a1, . . . , ak) of
arities of the respective relations, together with `. In this chapter, V is always finite. For example,
directed graphs G = (V,E) are relational structures with the one binary relation E, and their
type has k = 1, a1 = 2, and ` = 0, the last since there are no distinguished vertices. For another
example, instances of the Graph Accessibility Problem (GAP) from Chapter 28, Section 28.5
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consist of a directed graph G = (V,E) along with two distinguished vertices s, t ∈ V , so they have
` = 2.

An ordinary binary string x can be regarded as a structure (V,X,≤), where ≤ is a total order
on V that sequences the bits, and for all i (1 ≤ i ≤ |x|), xi = 1 if and only if X(ui) holds. Here
ui is the ith element of V under the total order, and xi is the ith bit of x. It is often desirable to
regard the ordering ≤ as fixed, and focus attention on the single unary relation X(·) as the essence
of the string.

5.1 Systems of Logic

For our purposes, a system of logic (or logic language) L consists of the following:

1. A tuple (E1, . . . ,Ek) of relation symbols, with corresponding arities a1, . . . , ak ≥ 1, and a
tuple (c1, . . . , c`) of constant symbols (k, ` ≥ 0). These symbols constitute the vocabulary of
L, and can be identified with the corresponding type τ of relational structures.

2. Optionally, a further finite collection of relation and constant symbols whose interpretations
are fixed in all universes V under consideration. By default this collection contains the symbol
=, which is interpreted as the equality relation on V .

3. An unbounded supply of variable symbols u, v, w, . . . ranging over elements of V , and option-
ally, an unbounded supply of variable relation symbols R1, R2, R3, . . ., each with an associated
arity and ranging over relations on V .

4. A complete set of Boolean connectives, for which we use ∧, ∨, ¬,→, and↔, and the quantifiers
∀, ∃. Additional kinds of operators for building up formulas are discussed later.

The well-formed formulas of L, and the free, bound , positive, and negative occurrences of
symbols in a formula, are defined in the usual inductive manner. A sentence is a formula φ with
no free variables. A formula, or a whole system, is called first-order if it has no relation variables
Ri; otherwise it is second-order.

Just as machines of a particular type define complexity classes, so also do logical formulas of a
particular type define important classes of languages. The most common nomenclature for these
classes begins with a prefix such as FO or F1 for first-order systems, and SO or F2 for second-order.
SO∃ denotes systems whose second-order formulas are restricted to the form (∃R1)(∃R2) . . . (∃Rk)ψ
with ψ first-order. After this prefix, in parentheses, we list the vocabulary, and any extra fixed-
interpretation symbols or additions to formulas. For instance, SO∃(Graphs, ≤) stands for the
second-order existential theory of graphs whose nodes are labeled and ordered. (The predicate
= is always available in the logics we study, and thus it is not explicitly listed with the other
fixed-interpretation symbols such as ≤.)

The fixed-interpretation symbols deserve special mention. Many authorities treat them as part
of the vocabulary. A finite universe V may without loss of generality be identified with the set
{ 1, . . . , n }, where n ∈ N. Important fixed-interpretation symbols for these sets, besides = and ≤,
are suc, +, and ∗, respectively standing for the successor, addition, and multiplication relations.
(Here +(i, j, k) stands for i + j = k, etc.) Insofar as they deal with the numeric coding of V and
do not depend on any structures that are being built on V , such fixed-interpretation symbols are
commonly called numerical predicates.
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5.2 Languages, Logics, and Complexity Classes

Let us see how a logical formula describes a language, just as a Turing machine or a program does.
A formal inductive definition of the following key notion, and much further information on systems
of logic, may be found in the standard text [23].

Definition 1. Let φ be a sentence in a system L with vocabulary τ . A relational structure R of
type τ satisfies (or models) φ, written R |= φ, if φ becomes a true statement about R when the
elements of R are substituted for the corresponding vocabulary symbols of φ. The language of φ
is Lφ = {R : R |= φ }.

We say that φ describes Lφ, or describes the property of belonging to Lφ. Finally, given a
system L of vocabulary τ , L itself stands for the class of structures of type τ that are described
by formulas in L. If τ is the vocabulary Strings of binary strings, then Lφ is a language in the
familiar sense of a subset of { 0, 1 }∗, and systems L over τ define ordinary classes of languages.
Thus defining sets of structures over τ generalizes the notion of defining languages over an alphabet.

For example, the formula (∀u)X(u), using the bit-predicate X over binary strings, describes
the language 1∗, while (∀v, w)[v 6= w ↔ E(v, w)] defines complete (loop-free) graphs. The formula

Undir = (∀v, w)[E(v, w)→ E(w, v)] ∧ (∀u)¬E(u, u)

describes the property of being an undirected simple graph, treating an undirected edge as a pair of
directed edges, and ruling out “self-loops.” Given unary relation symbols X1, . . . , Xk, the formula

UniqX1,...,Xk
= (∀v)

 ∨
1≤i≤k

Xi(v) ∧
∧

1≤i<j≤k
¬ (Xi(v) ∧Xj(v))


expresses that every element v is assigned exactly one i such that Xi(v) holds. Given an arbitrary
finite alphabet Σ = { c1, . . . , ck }, the vocabulary {X1, . . . , Xk }, together with this formula, enables
us to define languages of strings over Σ. (Since the presence of Uniq does not affect any of the
syntactic characterizations that follow, we may now regard Strings as a vocabulary over any Σ.)
Given a unary relation symbol R and the numerical predicate suc on V , the formula

AltsR = (∃s, t)(∀u, v)[¬Suc(u, s) ∧ ¬Suc(t, u) ∧R(s) ∧ ¬R(t) ∧ (Suc(u, v)→ (R(u)↔ ¬R(v))]

says that R is true of the first element s, false of the last element t, and alternates true and false
in-between. This requires |V | to be even. The following examples are used again below.

(1) The regular language (10)∗ is described by the first-order formula φ1 = AltsX .

(2) (11)∗ is described by the second-order formula φ2 = (∃R)(∀u)[X(u) ∧AltsR].

(3) Graph Three-Colorability:

φ3 = Undir ∧ (∃R1, R2, R3)

UniqR1,R2,R3
∧ (∀v, w)(E(v, w)→

∨
1≤i≤3

Ri(v) ∧ ¬Ri(w))

 .
(4) GAP (i.e., s-t connectivity for directed graphs):

φ4 = (∀R)¬(∀u, v)[R(s) ∧ ¬R(t) ∧ (R(u) ∧ E(u, v)→ R(v))] .

9



Formula φ4 says that there is no set R ⊆ V that is closed under the edge relation and contains
s but doesn’t contain t, and this is equivalent to the existence of a path from s to t. Much trickier
is the fact that deleting “UniqR1,R2,R3

” from φ3 leaves a formula that still defines exactly the set
of undirected 3-colorable graphs. This fact hints at the delicacy of complexity issues in logic.

Much of this study originated in research on database systems, because data base query lan-
guages correspond to logics. First-order logic is notoriously limited in expressive power, and this
limitation has motivated the study of extensions of first-order logic, such as the following first-order
operators.

Definition 2.

(a) Transitive closure (TC): Let φ be a formula in which the first-order variables u1, . . . , uk and
v1, . . . , vk occur freely, and regard φ as implicitly defining a binary relation S on V k. That
is, S is the set of pairs (~u,~v) such that φ(~u,~v) holds. Then TC(u1,...,uk,v1,...,vk) φ is a formula,
and its semantics is the reflexive-transitive closure of S.

(b) Least fixed point (LFP): Let φ be a formula with free first-order variables u1, . . . , uk and a free
k-ary relation symbol R that occurs only positively in φ. In this case, for any relational struc-
ture R and S ⊆ V k, the mapping fφ(S) = { (e1, . . . , ek) : R |= φ(S, e1, . . . , ek) } is monotone.
That is, if S ⊆ T , then for every tuple of domain elements (e1, . . . , ek), if φ(R, u1, . . . , uk)
evaluates to true when R is set to S and each ui is set to ei, then φ also evaluates to true
when R is set to T , because R appears positively. Thus the mapping fφ has a least fixed
point in V k. Then LFP(R,u1,...,uk) φ is a formula, and its semantics is the least fixed point of
fφ, i.e., the smallest S such that fφ(S) = S.

(c) Partial fixed point (PFP): Even if fφ above is not monotone, PFP(R,u1,...,uk) φ is a formula
whose semantics is the first fixed point found in the sequence fφ(∅), fφ(fφ(∅)), . . ., if it exists,
∅ otherwise.

The first-order variables u1, . . . , uk remain free in these formulas. The relation symbol R is bound
in LFP(R,u1,...,uk) φ, but since this formula is fixing R uniquely rather than quantifying over it, the
formula LFP(R,u1,...,uk) φ is still regarded as first-order (provided φ is first-order).

A somewhat less natural but still useful operation is the “deterministic transitive closure”
operator. We write “DTC” for the restriction of (a) above to cases where the implicitly defined
binary relation S is a partial function. The DTC restriction is enforcible syntactically by replacing
any (sub)-formula φ to which TC is applied by φ′′ = φ∧ (∀w1, . . . , wk)[φ′ → ∧ki=1vi = wi], where φ′

is the result of replacing each vi in φ by wi, 1 ≤ i ≤ k.
For example, s-t connectivity is definable by the FO(TC) and FO(LFP) formulas

φ′4 = (∃u, v)
[
u = s ∧ v = t ∧ TC(u,v)E(u, v)

]
,

φ′′4 = (∃u, v)
[
u = s ∧ v = t ∧ LFP(R,u,v) ψ

]
,

where ψ = (u = v ∨E(u, v)∨ (∃w)[R(u,w)∧R(w, v)]). To understand how φ′′4 works, starting with
S as the empty binary relation and substituting the current S for R at each turn, the first iteration
yields S = { (u, v) : u = v ∨ E(u, v) }, the second iteration gives pairs of vertices connected by a
path of length at most 2, then 4, . . . , and the fixed-point is the reflexive-transitive closure E∗ of E.
Then φ′′4 is read as if it were (∃u, v)(u = s∧ v = t∧E∗(u, v)), or more simply, as if it were E∗(s, t).

Note however, that writing DTC . . . in place of TC . . . in φ′4 changes the property defined by
restricting it to directed graphs in which each non-sink vertex has out-degree 1. It is not known
whether s-t connectivity can be expressed using the DTC operator. This question is equivalent to
whether L = NL.
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5.3 Logical Characterizations of Complexity Classes

As discussed by [25], there is a uniform encoding method Enc such that for any vocabulary τ and
(finite) relational structure R of type τ , Enc(R) is a standard string encoding of R. For instance
with τ = Graphs, an n-vertex graph becomes the size-n2 binary string that lists the entries of its
adjacency matrix in row-major order. Thus one can say that a language Lφ over any vocabulary
belongs to a complexity class C if the string language Enc(Lφ) = {Enc(R) : R |= φ } is in C.

The following theorems of the form “C = L” all hold in the following strong sense: for every
vocabulary τ and L(τ)-formula φ, Enc(Lφ) ∈ C; and for every language A ∈ C, there is a L(Strings)-
formula φ such that Lφ = A. Although going to strings via Enc may seem counter to the motivation
expressed in the first paragraph of this whole section, the generality and strength of these results
has a powerful impact in the desired direction: they define the right notion of complexity class C
for any vocabulary τ . Hence we omit the vocabulary τ in the following statements.

Theorem 5.

(a) PSPACE = FO(PFP,≤).

(b) PH = SO.

(c) (Fagin’s Theorem) NP = SO∃.

(d) P = FO(LFP,≤).

(e) NL = FO(TC,≤).

(f) L = FO(DTC,≤).

(g) AC0 = FO(+, ∗).

One other result should be mentioned with the above. Define the spectrum of a formula φ by
Sφ = {n : for some R with n elements, R |= φ }. Jones and Selman [42] proved that a language
A belongs to NE if and only if there is a vocabulary τ and a sentence φ ∈ FO(τ) such that A = Sφ
(identifying numbers and strings). Thus spectra characterize NE.

The ordering ≤ is needed in results (a), (d), (e), and (f). Chandra and Harel [17] proved
that FO(LFP) without ≤ cannot even define (11)∗ (and their proof works also for FO(PFP)). Put
another way, without an (ad-hoc) ordering on the full database, one cannot express queries of the
kind “Is the number of widgets in Toledo even?” even in the powerful system of first-order logic
with PFP. Note that, as a consequence of what we know about complexity classes, it follows that
FO(PFP,≤) is more expressive than FO(TC,≤). This result is an example of an application of
complexity theory to logic. In contrast, when the ordering is not present, it is much easier to
show directly that FO(PFP) is more powerful than FO(TC) than to use the tools of complexity
theory. Furthermore, the hypotheses FO(LFP) = FO(PFP) and FO(LFP,≤) = FO(PFP,≤) are
both equivalent to P = PSPACE [2]. This shows how logic can apply to complexity theory.

5.4 A Short Digression: Logic and Formal Languages

There are two more logical characterizations that seem at first to have little to do with complexity
theory. Characterizations such as these have been important in circuit complexity, but those
considerations are beyond the scope of this chapter.
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Let SF stand for the class of star-free regular languages, which are defined by regular expressions
without Kleene stars, but with ∅ as an atom and complementation (∼) as an operator. For example,
(10)∗ ∈ SF via the equivalent expression ∼ [(∼∅)(00 + 11)(∼∅) + 0(∼∅) + (∼∅)1].

A formula is monadic if each of its relation symbols is unary. A second-order system is monadic
if every relation variable is unary. Let mSO denote the monadic second-order formulas. The formula
φ2 above defines (11)∗ in mSO∃(suc). The following results are specific to the vocabulary of strings.

Theorem 6.

(a) REG = mSO(Strings, ≤) = mSO∃(Strings,suc).

(b) SF = FO(Strings, ≤).

Theorem 6, combined with Theorem 5 (b) and (c), shows that SO is much more expressive than
mSO, and SO∃(≤) is similarly more expressive than mSO∃(≤). A seemingly smaller change to mSO∃
also results in a leap of expressiveness from the regular languages to the level of NP. Lynch [51]
showed that if we consider mSO∃(+) instead of mSO∃(≤) (for strings), then the resulting class
contains NTIME[n], and hence contains many NP-complete languages, such as Graph Three-

Colorability.

6 Interactive Models and Complexity Classes

6.1 Interactive Proofs

In Chapter 27, Section 27.2, we characterized NP as the set of languages whose membership proofs
can be checked quickly, by a deterministic Turing machine M of polynomial time complexity. A
different notion of proof involves interaction between two parties, a prover P and a verifier V ,
who exchange messages. In an interactive proof system, the prover is an all-powerful machine,
with unlimited computational resources, analogous to a teacher. The verifier is a computationally
limited machine, analogous to a student. Interactive proof systems are also called “Arthur–Merlin
games:” the wizard Merlin corresponds to P , and the impatient Arthur corresponds to V .

Formally, an interactive proof system comprises the following:

• A read-only input tape on which an input string x is written.

• A prover P , whose behavior is not restricted.

• A verifier V , which is a probabilistic Turing machine augmented with the capability to send
and receive messages. The running time of V is bounded by a polynomial in |x|.

• A tape on which V writes messages to send to P , and a tape on which P writes messages to
send to V . The length of every message is bounded by a polynomial in |x|.

A computation of an interactive proof system (P, V ) proceeds in rounds, as follows. For j = 1, 2, . . .,
in round j, V performs some steps, writes a message mj , and temporarily stops. Then P reads mj

and responds with a message m′j , which V reads in round j+1. An interactive proof system (P, V )
accepts an input string x if the probability of acceptance by V satisfies pV (x) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement
without exhibiting an entire proof, as the following example illustrates.
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Example 3. Consider the graph non-isomorphism problem: the input consists of two graphs G and
H, and the decision is “yes” if and only if G is not isomorphic to H. Although there is a short proof
that two graphs are isomorphic (namely: the proof consists of the isomorphism mapping G onto H),
nobody has found a general way of proving that two graphs are not isomorphic that is significantly
shorter than listing all n! permutations and showing that each fails to be an isomorphism. (That
is, the graph non-isomorphism problem is in co-NP, but is not known to be in NP.) In contrast,
the verifier V in an interactive proof system is able to take statistical evidence into account, and
determine “beyond all reasonable doubt” that two graphs are non-isomorphic, using the following
protocol.

In each round, V randomly chooses either G or H with equal probability; if V chooses G, then
V computes a random permutation G′ of G, presents G′ to P , and asks P whether G′ came from
G or from H (and similarly if V chooses H). If P gave an erroneous answer on the first round,
and G is isomorphic to H, then after k subsequent rounds, the probability that P answers all the
subsequent queries correctly is 1/2k. (To see this, it is important to understand that the prover P
does not see the coins that V flips in making its random choices; P sees only the graphs G′ and
H ′ that V sends as messages.) V accepts the interaction with P as “proof” that G and H are
non-isomorphic if P is able to pick the correct graph for 100 consecutive rounds. Note that V has
ample grounds to accept this as a convincing demonstration: if the graphs are indeed isomorphic,
the prover P would have to have an incredible streak of luck to fool V .

The complexity class IP comprises the languages A for which there exists a verifier V and an ε
such that

• There exists a prover P̂ such that for all x in A, the interactive proof system (P̂ , V ) accepts
x with probability greater than 1/2 + ε; and

• For every prover P and every x 6∈ A, the interactive proof system (P, V ) rejects x with
probability greater than 1/2 + ε.

It is straightforward to show that IP ⊆ PSPACE. It was originally believed likely that IP was a
small subclass of PSPACE. Evidence supporting this belief was the construction by Fortnow and
Sipser [29] of an oracle language B for which co-NPB − IPB 6= ∅, so that IPB is strictly included in
PSPACEB. Using a proof technique that does not relativize, however, Shamir [59] (building on the
work of Lund et al. [49]) proved that in fact, IP and PSPACE are the same class.

Theorem 7. IP = PSPACE.

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 7 says that interactive
proof systems can decide a larger class of languages than NP.

Notice that in the interactive proof for graph non-isomorphism, if the input graphs G and H are
isomorphic, then the verifier V learns only the fact of isomorphism; V gains no additional knowledge
about the relationship between G and H. This property of the proof is called zero-knowledge;
we define the property formally below. The zero-knowledge property is particularly useful for
authentication. A user might wish to convince a server that he is authorized to use its service
by proving that he has the correct password, but he does not want to reveal the password to the
server. A zero-knowledge proof would authenticate the user but provide no additional knowledge
to the server. Zero-knowledge proofs can also be applied to secret sharing between two parties who
do not initially trust each other to follow a secure communication protocol. Instead of asking a
trusted third party to confirm that they are following the protocol, the two parties could use a
zero-knowledge proof to convince each other that they are complying with the protocol.
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Consider a k-round interactive proof with messages m1,m
′
1,m2, . . . ,m

′
k as described above,

and for each j, let βj be the binary sequence of random choices by V during its computation
in round j. Define the history h to be the concatenation of the messages and binary sequences,
i.e., h = m1m

′
1 · · ·m′kβ1 · · ·βk. Each interactive proof system (P, V ) generates for each input x a

probability distribution DP,V,x on the histories, so that DP,V,x(h) is the probability that h occurs.
A probabilistic Turing machine M (with output) also generates a probability distribution: for each
input x, let D′M,x(y) be the probability that M on input x produces output y. An interactive
proof system (P, V ) has the perfect zero-knowledge property if there exists a polynomial-time
probabilistic Turing machine M that on each input x generates a probability distribution D′M,x

that is identical to DP,V,x. This definition captures the meaning of zero-knowledge because the
verifier V gains no new ability to compute something beyond what it could already have computed
(represented by M). From an information-theoretic point of view, every history h provides no
new information to V because the probability of h could have been determined a-priori. Weaker
but practical versions of the zero-knowledge property include statistical indistinguishability and
computational indistinguishability [31].

6.2 Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become
convinced about the membership of a word in a language, but uses random choices to query parts
of a proof that the prover may know. This interpretation inspired another notion of “proof”: a
proof consists of a (potentially) large amount of information that the verifier need only inspect in
a few places in order to become convinced. The following definition makes this idea more precise.

A language L has a probabilistically checkable proof if there exists an oracle BPP-machine
M such that

• For all x ∈ L, there is an oracle language Bx such that MBx accepts x.

• For all x 6∈ L, and for every language B, machine MB rejects x.

Intuitively, the oracle language Bx represents a proof of membership of x in L. Notice that Bx
can be finite since the length of each possible query during a computation of MBx on x is bounded
by the running time of M . The oracle language takes the role of the prover in an interactive
proof system—but in contrast to an interactive proof system, the prover cannot change strategy
adaptively in response to the questions that the verifier poses. This change results in a potentially
stronger system, since a machine M that has bounded error probability relative to all languages B
might not have bounded error probability relative to some adaptive prover. Although this change
to the proof system framework may seem modest, it leads to a characterization of a class that seems
to be much larger than PSPACE.

Theorem 8. A has a probabilistically checkable proof if and only if A ∈ NEXP.

Although the notion of probabilistically checkable proofs seems to lead us away from feasible
complexity classes, by considering natural restrictions on how the proof is accessed, we can obtain
important insights into familiar complexity classes.

Let PCP[r(n), q(n)] denote the class of languages with probabilistically checkable proofs in which
the probabilistic oracle Turing machine M makes r(n) random binary choices, and queries its oracle
q(n) times. (For this definition, we assume that M has either one or two choices for each step.) It
follows from the definitions that BPP = PCP[nO(1), 0], and NP = PCP[0, nO(1)].

Theorem 9. NP = PCP[O(log n), O(1)].
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Theorem 9 asserts that for every language L in NP, a proof that x ∈ L can be encoded so that
the verifier can be convinced of the correctness of the proof (or detect an incorrect proof) by using
only O(log n) random choices, and inspecting only a constant number of bits of the proof!

This surprising characterization of NP has important applications to the complexity of finding
approximate solutions to optimization problems, as discussed in the next section.

7 Classifying the Complexity of Functions

Up to now we have considered only complexity for languages and decision problems, for which the
output is “yes” or “no,” nothing else. Most of the functions that we actually compute are functions
that produce more than one bit of output. For example, instead of merely deciding whether a
graph has a clique of size m, we often want to find such a clique, if one exists. Problems in NP are
naturally associated with this kind of search problem.

One reason for emphasis on languages is that search problems can be reduced to decision
problems in several ways. Given a function f , define the languages:

Af = { 〈x, i〉 : 1 ≤ i ≤ |f(x)| ∧ bit i of f(x) is a 1 }
Gf = { 〈x,w〉 : w is an initial substring of f(x) }.

Say f is polynomially length bounded if there is a polynomial p such that for all x, |f(x)| ≤ p(|x|).
If so, then f ≤pT Af and f ≤pT Gf , making both languages equivalent to f under Cook reductions.
However, several kinds of problems embrace aspects of functions not well captured by these as-
sociated decision problems: inversion, optimization, approximation, and counting . In turning to
these, we define classes and notions of reductions specific to functions themselves, beginning with
the class that corresponds to P for languages.

• FP is the set of functions computable in polynomial time by deterministic Turing machines.

In an analogous way, we define FL, FNCk, etc., to be the set of functions computable by deterministic
log-space machines, by NCk circuits, etc. We also define FPSPACE to be the class of polynomial
length-bounded functions f computable by deterministic machines in polynomial space.

To study functions that appear to be difficult to compute, we again use the notions of re-
ducibility and completeness. Analogous to Cook reducibility to oracle languages, we consider Cook
reducibility to a function given as an oracle. For a polynomial length-bounded function f , we say
that a language A is Cook reducible to f if there is a polynomial-time oracle Turing machine M
that accepts A, where the oracle is accessed as follows: M writes a string y on the query tape, and
in the next step y is replaced by f(y). As usual, we let Pf and FPf denote the class of languages
and functions computable in polynomial time with oracle f , respectively.

Let C be a class of functions. When C is at least as big as FP, then we will use Cook reducibility
to define completeness. That is, a function f is C-complete, if f is in C and C ⊆ FPf . When we are
discussing classes C within FP, for which polynomial-time is too powerful to give a meaningful notion
of reducibility), we refer to hardness and completeness under AC0-Turing reducibility, which was
defined in Chapter 28, Section 28.6. Although many other kinds of reducibility have been studied
for functions just as with languages, these two suffice for our purposes in this chapter.

7.1 Inversion and One-Way Functions

Say that a program D inverts a function f if for all y ∈ Ran(f), D(y) outputs x such that f(x) = y.
The behavior of D(y) for y /∈ Ran(f) need not be specified, and f need not be 1-1. We presume
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that f is polynomially honest, meaning that for some polynomial p and all x, p(|f(x)|) ≥ |x|.
This ensures that any solution x can be written down in time polynomial in |y|.

• A polynomial-time computable function is weakly one-way if no polynomial-time determin-
istic Turing machine inverts f .

For cryptographic purposes one needs assurance that prospective inverters fail on most inputs,
not just some. A function f is s(n)-hard to invert if for all sufficiently large n, and all s(n)-sized
circuits Dn,

Probx∈Σn [Dn(f(x)) inverts f(x)] ≤ 1/s(n).

• A polynomial-time computable function is one-way if it is nk-hard to invert for all k, and
strongly one-way if it is 2n

ε
-hard to invert, for some ε > 0.

Strongly one-way functions are conjectured to exist, in particular ones based on the suspected
hardness of integer factoring or the discrete logarithm problem, which are covered in Chapters 39
and 42. Here we observe that a complexity class of languages captures some aspects of these
problems.

• A language A belongs to UP if there is a polynomial-time nondeterministic Turing machine
N such that L(N) = A, and for all x ∈ A, N(x) has exactly one accepting computation path.

The “U” stands for “unique,” and one may also think of a polynomial-time decidable witness
predicate R for A, such that whenever y ∈ A, there is a unique z such that R(y, z) holds. Clearly
P ⊆ UP ⊆ NP. An important example of a language in UP is

Gfact = { 〈n,w〉 : w is an initial substring of the prime factorization of n }.

Note that the prime factorization can be written in a unique way, and verified in polynomial
time even with n in binary notation. The complement of Gfact also belongs to UP. Thus by the
above remarks on search reducing to decision, integer factorization Cook-reduces to a language in
UP ∩ co-UP. In all we have:

Theorem 10. (a) Weakly one-way functions exist if and only if P 6= NP.

(b) Weakly one-way functions that are 1-1 exist if and only if P 6= UP.

(c) Weakly one-way permutations of Σ∗ exist if and only if UP ∩ co-UP 6= P.

(d) Integer factorization is NP-hard only if NP = UP = co-UP = co-NP.

Since cracking the RSA public-key cryptosystem reduces to factoring, Part (d) is evidence that
this problem is not NP-hard. Nevertheless, belief that the deterministic time or circuit complexity
of factoring is 2n

ε
for some ε > 0 (the current best-known upper bound has ε approaching 1/3) has

remained steady for thirty years. For more on these topics, see Chapters 39 and 42.
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8 Optimization Classes

Given an optimization (minimization) problem, we most often study the following associated deci-
sion problem:

“Is the optimal value at most k”?

Alternatively, we could formulate the decision problem as the following:

“Is the optimal value exactly k?”

For example, consider the Traveling Salesperson problem (TSP) again. TSP asks whether the
length of the optimal tour is at most d0. Define Exact TSP to be the decision problem that asks
whether the length of the optimal tour is exactly d0. It is not clear that Exact TSP is in NP or
in co-NP, but Exact TSP can be expressed as the intersection of TSP and its complement TSP:
the length of the optimal tour is d0 if there is a tour whose length is at most d0, and no tour whose
length is at most d0 − 1. Similar remarks apply to the optimization problem Max Clique: given
an undirected graph G, find the maximum size of a clique in G.

Exact versions of many optimization problems can be expressed as the intersection of a language
in NP and a language in co-NP. This observation motivates the definition of a new complexity class:

• DP is the class of languages A such that A = A1 ∩ A2 for some languages A1 in NP and A2

in co-NP.

The letter D in DP means difference: A ∈ DP if and only if A is the difference of two languages in
NP, i.e., A = A1 −A3 for some A1, A3 ∈ NP.

Not only is Exact TSP in DP , but also Exact TSP is DP -complete. Exact versions of many
other NP-complete problems, including Clique, are also DP -complete [54].

Although it is not known whether DP is contained in NP, it is straightforward to prove that

NP ⊆ DP ⊆ PNP ⊆ ΣP
2 ∩ΠP

2 .

Thus, DP lies between the first two levels of the polynomial hierarchy.
We have characterized the complexity of computing the optimal value of an instance of an

optimization problem, but we have not yet characterized the complexity of computing the optimal
solution itself. An optimization algorithm produces not only a “yes” or “no” answer, but also,
when feasible solutions exist, an optimal solution.

First, for a maximization problem, suppose that we have a subroutine that solves the decision
problem “Is the optimal value at least k?” Sometimes, with repeated calls to the subroutine, we
can construct an optimal solution. For example, suppose subroutine S solves the Clique problem;
for an input graph G and integer k, the subroutine outputs “yes” if G has a clique of k (or more)
vertices. To construct the largest clique in an input graph, first, determine the size K of the largest
clique by binary search on { 1, . . . , n } with log2 n calls to S. Next, for each vertex v, in sequence,
determine whether deleting v produces a graph whose largest clique has size K by calling S. If so,
then delete v and continue with the remaining graph. If not, then look for a clique of size K − 1
among the neighbors of v.

The method outlined in the last paragraph uses S in the same way as an oracle Turing machine
queries an oracle language in NP. With this observation, we define the following classes:

• FPNP is the set of functions computable in polynomial time by deterministic oracle Turing
machines with oracle languages in NP.
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• FPNP[logn] is the set of functions computable in polynomial time by deterministic oracle Turing
machines with oracle languages in NP that make O(log n) queries during computations on
inputs of length n

FPNP and FPNP[logn] contain many well-studied optimization problems [44]. The problem of
producing the optimal tour in the Traveling Salesperson problem is FPNP-complete. The
problem of determining the size of the largest clique subgraph in a graph is FPNP[logn]-complete.

9 Approximability and Complexity

As discussed in Chapter 34, because polynomial-time algorithms for NP-hard optimization problems
are unlikely to exist, we ask whether a polynomial-time algorithm can produce a feasible solution
that is close to optimal.

Fix an optimization problem Π with a positive integer-valued objective function g. For each
problem instance x, let OPT(x) be the optimal value, that is, g(z), where z is a feasible solution
to x that achieves the best possible value of g. Let M be a deterministic Turing machine that on
input x produces as output a feasible solution M(x) for Π. We say M is an ε-approximation
algorithm if for all x,

|g(M(x))− OPT(x)|
max{ g(M(x)),OPT(x) }

≤ ε .

(This definition handles both minimization and maximization problems.) The problem Π has a
polynomial-time approximation scheme if for every fixed ε, there is a polynomial-time ε-
approximation algorithm. Although the running time is polynomial in |x|, the time could be
exponential in 1/ε.

Several NP-complete problems, including Knapsack, have polynomial-time approximation
schemes. It is natural to ask whether all NP-complete optimization problems have polynomial-
time approximation schemes. We define an important class of optimization problems, MAX-SNP,
whose complete problems apparently do not.

First, we define a reducibility between optimization problems that preserves the quality of
solutions. Let Π1 and Π2 be optimization problems with objective functions g1 and g2, respectively.
An L-reduction from Π1 to Π2 is defined by a pair of polynomial-time computable functions f
and f ′ that satisfy the following properties:

1. If x is an instance of Π1 with optimal value OPT(x), then f(x) is an instance of Π2 whose
optimal value satisfies OPT(f(x)) ≤ c · OPT(x) for some constant c.

2. If z is a feasible solution of f(x), then f ′(z) is a feasible solution of x, such that∣∣OPT(x)− g1(f ′(z))
∣∣ ≤ c′ |OPT(f(x))− g2(z)|

for some constant c′.

The second property implies that if z is an optimal solution to f(x), then f ′(z) is an optimal solution
to x. From the definitions, it follows that if there is an L-reduction from Π1 to Π2, and there is
a polynomial-time approximation scheme for Π2, then there is a polynomial-time approximation
scheme for Π1.

To define MAX-SNP, it will help to recall the characterization of NP as SO∃ in Section refDC.
This characterization says that for any A in NP, there is a first-order formula ψ such that x ∈ A if
and only if

∃S1 . . .∃Sl ψ(x, S1, . . . , Sl) .
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For many important NP-complete problems, it is sufficient to consider having only a single second-
order variable S, and to consider formulas ψ having only universal quantifiers. Thus, for such a
language A we have a quantifier-free formula φ such that x ∈ A if and only if

∃S∀u1 . . .∀uk φ (S, u1, . . . , uk) .

Now define MAX-SNP0 to be the class of optimization problems mapping input x to

max
S
|{(y1, . . . , yk) : φ (S, y1, . . . , yk)}| .

For example, we can express in this form the Max Cut problem, the problem of finding the largest
cut in an input graph G = (V,E) with vertex set V and edge set E. A set of vertices S is the
optimal solution if it maximizes

|{ (v, w) : E(v, w) ∧ S(v) ∧ ¬S(w) }| .

That is, the optimal solution S maximizes the number of edges (v, w) between vertices v in S and
vertices w in V − S.

Define MAX-SNP to be the class of all optimization problems that are L-reducible to a problem
in MAX-SNP0. MAX-SNP contains many natural optimization problems. Max Cut is MAX-SNP-
complete, and Max Clique is MAX-SNP-hard, under L-reductions.

A surprising connection between the existence of probabilistically checkable proofs (Section 6)
and the existence of approximation algorithms comes out in the next major theorem.

Theorem 11. If there is a polynomial-time approximation scheme for some MAX-SNP-hard prob-
lem, then P = NP.

In particular, unless P = NP, there is no polynomial-time approximation scheme for Max Cut

or Max Clique. To prove this theorem, all we need to do is show its statement for a particular
problem that is MAX-SNP-complete under L-reductions. However, we prefer to show the idea of
the proof for the Max Clique problem, which although MAX-SNP-hard is not known to belong
to MAX-SNP. It gives a strikingly different kind of reduction from an arbitrary language A in NP
to Clique over the reduction from A to SAT to Clique in Section 28.4, and its discovery by Feige
et al. [26] stimulated the whole area.

Proof. Let A ∈ NP. By Theorem 9, namely NP = PCP[O(log n), O(1)], there is a probabilistic
oracle Turing machine M constrained to use r(n) = O(log n) random bits and make at most a
constant number ` of queries in any computation path, such that

• For all x ∈ A, there exists an oracle language Bx such that Probs∈{ 0,1 }r(n) [MBx(x, s) = 1] >
3/4;

• For all x /∈ A, and for every language B, Probs∈{ 0,1 }r(n) [MB(x, s) = 1] < 1/4.

Now define a transcript of M on input x to consist of a string s ∈ { 0, 1 }r(n) together with a
sequence of ` pairs (wi, ai), where wi is an oracle query and ai ∈ { 0, 1 } is a possible yes/no answer.
In addition, a transcript must be valid , meaning that for all i, 0 ≤ i < `, on input x with random
bits s, having made queries w1, . . . , wi to its (unspecified) oracle and received answers a1, . . . , ai,
machine M writes wi+1 as its next query string. Thus a transcript provides enough information
to determine a full computation path of M on input x, and the transcript is accepting if and only
if this computation path accepts. Finally, call two transcripts consistent if whenever a string w
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appears as “wi” in one transcript and “wj” in the other, the corresponding answer bits ai and aj
are the same.

Construction: Let Gx be the undirected graph whose node set Vx is the set of all accepting
transcripts, and whose edges connect pairs of transcripts that are consistent.

Complexity: Since r(n) + ` = O(log n), there are only polynomially many transcripts, and since
consistency is easy to check, Gx is constructed in polynomial time.

Correctness: If x ∈ A, then take the oracle Bx specified above and let C be the set of accepting
transcripts whose answer bits are given by Bx. These transcripts are consistent with each other,
and there are at least (3/4)2r(n) such accepting transcripts, so C forms a clique of size at least
(3/4)2r(n) in Gx. Now suppose x /∈ A, and suppose C ′ is a clique of size greater than (1/4)2r(n)

in Gx. Because the transcripts in C ′ are mutually consistent, there exists a single oracle B that
produces all the answer bits to queries in transcripts in C ′. But then Probs[MB(x, s) = 1] > 1/4,
contradicting the PCP condition on M .

Thus we have proved the statement of the theorem for Max Clique. The proof of the general
statement is similar.

Note that the cases x ∈ A and x /∈ A in this proof lead to a “(3/4,1/4) gap” in the maximum
clique size ω of Gx. If there were a polynomial-time algorithm guaranteed to determine ω within a
factor better than 3, then this algorithm could tell the “3/4” case apart from the “1/4” case, and
hence decide whether x ∈ A. Since Gx can be constructed in polynomial time (in particular, Gx
has size at most 2r(n)+` = nO(1)), P = NP would follow. Hence we can say that Clique is NP-hard
to approximate within a factor of 3 . A long sequence of improvements to this basic construction
has pushed the hardness-of-approximation not only to any fixed constant factor, but also to factors
that increase with n. Moreover, approximation-preserving reductions have extended this kind of
hardness result to many other optimization problems.

10 Counting

Two other important classes of functions deserve special mention:

• #P is the class of functions f such that there exists a nondeterministic polynomial-time Turing
machine M with the property that f(x) is the number of accepting computation paths of M
on input x.

• #L is the class of functions f such that there exists a nondeterministic log-space Turing
machine M with the property that f(x) is the number of accepting computation paths of M
on input x.

Some functions in #P are clearly at least as difficult to compute as some NP-complete problems
are to decide. For instance, consider the following problem.

Number of Satisfying Assignments to a 3CNF Formula (#3CNF)

Instance: A Boolean formula in conjunctive normal form with at most three variables per clause.
Output: The number of distinct assignments to the variables that cause the formula to evaluate

to true.

Note that #3CNF is in #P, and note also that the NP-complete problem of determining whether
x ∈ 3SAT is merely the question of whether #3CNF(x) = 0.

In apparent contrast to #P, all functions in #L can be computed by NC circuits.
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Theorem 12. Relationships between counting classes.

• FP ⊆ #P ⊆ FPSPACE,

• PPP = P#P (and thus also FPNP ⊆ FP#P),

• FL ⊆ #L ⊆ FNC2.

It is not surprising that #P and #L capture the complexity of various functions that involve
counting, but as the following examples illustrate, it sometimes is surprising which functions are
difficult to compute.

The proof of the Cook-Levin Theorem that appears in Chapter 28 also proves that #3CNF
is complete for #P, because it shows that for every nondeterministic polynomial-time machine M
and every input x, one can efficiently construct a formula with the property that each accepting
computation of M on input x corresponds to a distinct satisfying assignment, and vice versa.
Thus the number of satisfying assignments equals the number of accepting computation paths. A
reduction with this property is called parsimonious.

Most NP-complete languages that one encounters in practice are known to be complete under
parsimonious reductions. (The reader may wish to check which of the reductions presented in Chap-
ter 28 are parsimonious.) For any such complete language, it is clear how to define a corresponding
complete function in #P.

Similarly, for the Graph Accessibility Problem (GAP), which is complete for NL, we can
define the function that counts the number of paths from the start vertex s to the terminal vertex t.
For reasons that will become clear soon, we consider two versions of this problem: one for general
directed graphs, and one for directed acyclic graphs. (The restriction of GAP to acyclic graphs
remains NL-complete.)

Number of Paths in a Graph (#Paths)
Instance: A directed graph on n vertices, with two distinguished vertices s and t.
Output: The number of simple paths from s to t. (A path is a simple path if it visits no vertex

more than once.)

Number of Paths in a Directed Acyclic Graph (#DAG-Paths)
Instance: A directed acyclic graph on n vertices, with two distinguished vertices s and t.
Output: The number of paths from s to t. (In an acyclic graph, all paths are simple.)

As one might expect, the function #DAG-Paths is complete for #L, but it may come as a
surprise that #Paths is complete for #P [67]! That is, although it is easy to decide whether there
is a path between two vertices, it seems quite difficult to count the number of distinct paths, unless
the underlying graph is acyclic.

As another example of this phenomenon, consider the problem 2SAT, which is the same as
3SAT except that each clause has at most two literals. Then 2SAT is complete for NL, but the
problem of counting the number of satisfying assignments for these formulas is complete for #P.

A striking illustration of the relationship between #P and #L is provided by the following two
important problems from linear algebra. Recall that the determinant and permanent of a matrix
M with entries Mi,j are respectively given by

∑
π

sign(π)
n∏
i=1

Mi,π(i) and
∑
π

n∏
i=1

Mi,π(i) ,

where the sum is over all permutations π on { 1, . . . , n }, sign(π) is −1 if π can be written as the
composition of an odd number of transpositions, and sign(π) is 1 otherwise.
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Determinant

Instance: An integer matrix.
Output: The determinant of the matrix.

Permanent

Instance: An integer matrix.
Output: The permanent of the matrix.

The reader is probably familiar with the determinant function, which can be computed efficiently
by Gaussian elimination. The permanent may be less familiar, although its definition is formally
simpler. Nobody has ever found an efficient way to compute the permanent, however. If M is the
adjacency matrix of a bipartite graph G with two sets of nodes of equal size, then the permanent
of M is the number of perfect matchings in G.

We need to introduce slight modification of our function classes to classify these problems,
however, because #P and #L consist of functions that take only non-negative values, whereas both
the permanent and determinant can be negative.

Define GapL to be the class of functions that can be expressed as the difference of two #L
functions, and define GapP to be the difference of two #P functions.

Theorem 13. (a) Permanent is complete for GapP.

(b) Determinant is complete for GapL

The class of problems that are AC0-Turing reducible to Determinant is one of the most
important subclasses of NC, and in fact contains most of the natural problems for which NC
algorithms are known.

11 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space
used by Turing machines. Kolmogorov complexity is a static complexity measure that captures
the difficulty of describing a string. For example, the string consisting of three million zeroes
can be described with fewer than three million symbols (as in this sentence). In contrast, for a
string consisting of three million randomly generated bits, with high probability there is no shorter
description than the string itself.

Let U be a universal Turing machine (see Section 26.2 of Chapter 26). Let ε denote the empty
string. The Kolmogorov complexity of a binary string y with respect to U , denoted by KU (y),
is the length of the shortest binary string i such that on input 〈i, ε〉, machine U outputs y. In
essence, i is a description of y, for it tells U how to generate y.

The next theorem states that different choices for the universal Turing machine affect the
definition of Kolmogorov complexity in only a small way.

Theorem 14. (Invariance Theorem) There exists a universal Turing machine U such that for
every universal Turing machine U ′, there is a constant c such that for all y, KU (y) ≤ KU ′(y) + c.

Henceforth, let K be defined by the universal Turing machine of Theorem 14. For every integer
n and every binary string y of length n, because y can be described by giving itself explicitly,
K(y) ≤ n + c′ for a constant c′. Call y incompressible if K(y) ≥ n. Since there are 2n binary
strings of length n, and only 2n − 1 possible shorter descriptions, there exists an incompressible
string for every length n.
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Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “ran-
domness.” If someone flips a coin fifty times and it comes up “heads” each time, then intuitively,
the sequence of flips is not random—although from the standpoint of probability theory the all-
heads sequence is precisely as likely as any other sequence. Probability theory does not provide the
tools for calling one sequence “more random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments.
For example, when one wants to prove that an object with some property P exists, then it is
sufficient to show that any object that does not have property P has a short description; thus
any incompressible (or “random”) object must have property P . This sort of argument has been
useful in proving lower bounds in complexity theory. For example, Dietzfelbinger et al. [19] use
Kolmogorov complexity to show that no Turing machine with a single worktape can compute the
transpose of a matrix in less than time Ω(n3/2/

√
log n).

12 Research Issues and Summary

As stated in the introduction to Chapter 27, the goals of complexity theory are (1) to ascertain
the amount of computational resources required to solve important computational problems, and
(2) to classify problems according to their difficulty. The preceding two chapters have explained
how complexity theory has devised a classification scheme in order to meet the second goal. The
present chapter has presented a few of the additional notions of complexity that have been devised
in order to capture more problems in this scheme. Progress toward the first goal, namely proving
lower bounds, depends on knowing that levels in this classification scheme are in fact distinct. Thus
the core research questions in complexity theory are expressed in terms of separating complexity
classes:

• Is L different from NL?

• Is P different from RP, or from BPP?

• Is P different from BQP, or from NP?

• Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power
of nondeterminism, randomization, and interaction. In these studies, researchers have gone well
beyond the theory presented in Chapters 27, 28, and 29:

• Beyond Turing machines and Boolean circuits, to restricted and specialized models in which
nontrivial lower bounds on complexity can be proved;

• Beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and
refined versions of the reducibilities considered here;

• Beyond worst-case complexity, to average-case complexity.

We have illustrated how research in complexity theory has had direct applications to other areas
of computer science and mathematics. Probabilistically checkable proofs were used to show that
obtaining approximate solutions to some optimization problems is as difficult as solving them ex-
actly. Complexity theory provides new tools for studying questions in finite model theory, a branch
of mathematical logic. NP-completeness and related notions of computational intractability have
proved to be very useful in physics, chemistry, economics, and other fields. Fundamental questions
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in complexity theory are intimately linked to practical questions about the use of cryptography
for computer security, such as the existence of one-way functions and the strength of public key
cryptosystems.

This last point illustrates the urgent practical need for progress in computational complexity
theory. Many popular cryptographic systems in current use are based on unproven assumptions
about the difficulty of certain computational tasks, such as integer factoring and computing discrete
logarithms—see Chapters 38 through 44 of this Handbook for more background on cryptography.
All of these systems are thus based on wishful thinking and conjecture. The need to resolve these
open questions and replace conjecture with mathematical certainty should be self-evident. In the
brief history of complexity theory, we have learned that many popular expectations, such as co-NL
being different from NL or co-NP not having efficient interactive proofs, turn out to be incorrect.

With precisely defined models and mathematically rigorous proofs, research in complexity the-
ory will continue to provide sound insights into the difficulty of solving real computational problems.

13 Defining Terms

Descriptive complexity: The study of classes of languages described by formulas in certain
systems of logic.

Incompressible string: A string whose Kolmogorov complexity equals its length, so that it
has no shorter encodings.

Interactive proof system: A protocol in which one or more provers try to convince another party
called the verifier that the prover(s) possess certain true knowledge, such as the membership
of a string x in a given language, often with the goal of revealing no further details about
this knowledge. The prover(s) and verifier are formally defined as probabilistic Turing
machines with special “interaction tapes” for exchanging messages.

Kolmogorov complexity: The minimum number of bits into which a string can be compressed
without losing information. This is defined with respect to a fixed but universal decompression
scheme, given by a universal Turing machine.

L-reduction: A Karp reduction that preserves approximation properties of optimization problems.

One-way function: A polynomial-time computable function f for which given y in the range of f ,
it is difficult to find x in the domain of f such that f(x) = y. This property has implications
for cryptography.

Optimization problem: A computational problem in which the object is not to decide some
yes/no property, as with a decision problem, but to find the best solution in those “yes” cases
where a solution exists.

Polynomial hierarchy: The collection of classes of languages accepted by k-alternating Turing
machines, over all k ≥ 0 and with initial state existential or universal. The bottom level
(k = 0) is the class P, and the next level (k = 1) comprises NP and co-NP.

Polynomial time approximation scheme (PTAS): A meta-algorithm that for every ε > 0
produces a polynomial time ε-approximation algorithm for a given optimization problem.

Probabilistic Turing machine: A Turing machine in which some transitions are random choices
among finitely many alternatives.
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Probabilistically checkable proof: An interactive proof system in which provers follow a fixed
strategy, one not affected by any messages from the verifier. The prover’s strategy for a given
instance x of a decision problem can be represented by a finite oracle language Bx, which
constitutes a proof of the correct answer for x.

Relational structure: The counterpart in formal logic of a data structure or class instance in the
object-oriented sense. Examples are strings, directed graphs, and undirected graphs. Sets of
relational structures generalize the notion of languages as sets of strings.
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Further Information

Primary sources for major theorems presented in this chapter include Theorem 1 [18, 64, 72]; The-
orem 3(a,b) [30], (c) [46, 61], (d) [66], (e) [5]; Theorem 4 [3]; Theorem 5(a) [1], (b) [64], (c) [24],
(d,e,f) [39], (g) ([48], cf. [13]); Theorem 6(a) [16], (b) [52, 58]; Theorem 7 [59]; Theorem 8 [11]; The-
orem 9 [8] (see also [20]; Theorem 10 various including [32, 38]; Theorem 11 [9]; Theorem 13(a) [67],
(b) [69]. The operators in Definition 2 are from [39] and [1]. Interactive proof systems were defined
by Goldwasser et al. [31], and in the “Arthur-Merlin” formulation, by Babai and Moran [10]. A
large compendium of optimization problems and hardness results collected By P. Crescenzi and V.
Kann is available at:

http://www.nada.kth.se/~viggo/problemlist/compendium.html

The class #P was introduced by Valiant [67], and #L by Alvarez and Jenner [6]. Li and Vitányi
[47] give a far-reaching and comprehensive scholarly treatment of Kolmogorov complexity, with
many applications, as well as the source of Theorem 14.

Readers seeking more information on quantum computing can consult survey articles such
as [4, 14, 27, 36, 56] or texts such as [37, 53] (among others). Some people have proposed DNA
computing as a quite different source of massive parallelism; for a survey, see [45].

Five contemporary textbooks on complexity theory are [12], [15], [22], [35], and [55]. Wagner
and Wechsung [70] provide is an exhaustive survey of complexity theory that covers work published
before 1986. Another perspective of some of the issues covered in these three chapters may be found
in the survey [65].

A good general reference is the Handbook of Theoretical Computer Science [68], volume A. The
following chapters in the Handbook are particularly relevant: “Machine Models and Simulations,”
by P. van Emde Boas, pp. 1–66; “A Catalog of Complexity Classes,” by D.S. Johnson, pp. 67–161;
“Machine-Independent Complexity Theory,” by J.I. Seiferas, pp. 163–186; “Kolmogorov Complex-
ity and Its Applications,” by M. Li and P.M.B. Vitányi, pp. 187–254; and “The Complexity of
Finite Functions,” by R.B. Boppana and M. Sipser, pp. 757–804, which covers circuit complexity.

A collection of articles edited by Hartmanis [33] includes an overview of complexity theory,
and chapters on sparse complete languages, on relativizations, on interactive proof systems, and
on applications of complexity theory to cryptography. For historical perspectives on complexity
theory, see [34], [62], and [63].

There are many areas of complexity theory that we have not been able to cover in these chapters.
Some of them cross-pollinate with other fields of computer science and are reflected in other chapters
of this Handbook . Three others are average-case complexity , resource-bounded measure theory , and
parameterized complexity . Surveys on the first two are by Lutz [50] and Wang [71], while the third
stems from Downey and Fellows [21] (see also the recent textbook [28]).

An excellent on-line resource for complexity theory is the Electronic Colloquium on Computa-
tional Complexity:

http://eccc.hpi-web.de/eccc/

Here you can find recent research papers, as well as pointers to books, lecture notes, and surveys
that are available on-line. Additional material can be found on Wikipedia, and in the “Complexity
Zoo,” which is a guide to the bewildering menagerie of complexity classes:

http://qwiki.caltech.edu/wiki/Complexity_Zoo
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Research papers on complexity theory are presented at several annual conferences, including
the annual ACM Symposium on Theory of Computing; the annual International Colloquium on
Automata, Languages, and Programming, sponsored by the European Association for Theoretical
Computer Science (EATCS); and the annual Symposium on Foundations of Computer Science,
sponsored by the IEEE. The annual Conference on Computational Complexity (formerly Struc-
ture in Complexity Theory), also sponsored by the IEEE, is entirely devoted to complexity theory.
Research articles on complexity theory regularly appear in the following journals, among others:
Chicago Journal on Theoretical Computer Science, Computational Complexity, Information and
Computation, Journal of the ACM, Journal of Computer and System Sciences, SIAM Journal on
Computing, Theoretical Computer Science, and Theory of Computing Systems (formerly Mathe-
matical Systems Theory). Each issue of ACM SIGACT News and Bulletin of the EATCS contains
a column on complexity theory.
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