Efficient Memoization For Approximate Function
Evaluation Over Sequence Arguments

Tamal Biswas and Kenneth W. Regan

Department of CSE
University at Buffalo
Ambherst, NY 14260 USA
{tamaltan,regan} @buffalo.edu

Abstract. This paper proposes a universal strategy for maintaining a database
of computational results of functions f on sequence arguments @, where « is
sorted in non-decreasing order and f(x) has greatest dependence on the first
few terms of a. This scenario applies also to symmetric functions f, where
the partial derivatives approach zero as the corresponding component value in-
creases. The goal is to pre-compute exact values f(u) on a tight enough net of
sequence arguments, so that given any other sequence «, a neighboring sequence
w in the net giving a close approximation can be efficiently found. Our scheme
avoids pre-computing the more-numerous partial-derivative values. It employs
a new data structure that combines ideas of a trie and an array implementation
of a heap, representing grid values compactly in the array, yet still allowing ac-
cess by a single index lookup rather than pointer jumping. We demonstrate good
size/approximation performance in a natural application.

Key words. Memoization, sequences, metrics, topology, machine learning, cloud
computing.

1 Introduction

In many computational tasks, we need to evaluate a function on many different argu-
ments, in applications such as aggregation where we can tolerate approximation. Each
evaluation f(z) may be expensive enough to demand memoization of pre-computed
values, creating a fine enough grid of argument-value pairs to enable approximating
f(x) via one or more neighboring pairs (u, f(u)). In this paper we limit ourselves to
external memoization, here meaning building the complete grid in advance. Such appli-
cations of grids in high-dimensional real spaces R’ are well known (see history in [1]).
What distinguishes this paper is a different kind of space in which the arguments are
homogeneous sequences not just arbitrary vectors, where f and the space obey certain
large-scale structural properties.

To explain our setting and ideas, consider first the natural grid strategy in R’ of
employing the Taylor expansion to approximate f(x) via a nearby gridpoint u:

Fla) = S0+ D=) g) + 5 3o =)o =) G+

i=1 ,J

If we make the grid fine enough, and assume that f is reasonably smooth, we can ignore
the terms with second and higher partials, since (z; — w;)(x; — u;) is quadratically
small in the grid size. Doing this still requires knowledge of the gradient of f on the
gridpoints, however. Memoizing—that is, precomputing and storing—all the partials
on the gridpoints might be ¢ times as expensive as memoizing the values f(u). Hence,
depending on the application, one may employ an approximation to the gradient or a
recursive estimation of the partials.

In our setting, we are given a different kind of structure with a little more knowledge.
Here we need to compute functions f on sequence arguments x = (x1,Z2,Zs3,...)
under the following circumstances.

(a) The sequence entries and function values belong to [0, 1].

(b) Foralli < jand @, 0f/0x; > 0f/0x; at .

(c) The sequences are non-decreasing, and for all 4, 9 f /Ox; becomes small as x; ap-
proaches 1.

(d) While exact computation of f(x) is expensive, moderate precision suffices, espe-
cially when there is no bias in the approximations.

Part (b) says that the initial terms have the highest influence on the result, while (c)
together with (b) implies that as the sequence approaches its ceiling, terms lose their
influence. Part (c) also allows us to assume all sequences have the same length /, using
1.0 values as trailing padding if needed. Applications obeying (d) include calculation
of means and percentiles and other aggregate statistics, as are typical for streamnig
algorithms [2], and various tasks in curve fitting, machine learning, complex function
evaluation, and Monte Carlo simulations (see [3]).

For further intuition, note that this setting applies to any function f that is symmet-
ric, that is whose value is independent of the order of the arguments. Such a function
really depends on the values of the arguments in a ranking structure. We may without
loss of generality restrict the arguments to be sequenced by rank. Then (b) says that
the first-ranked arguments matter most, while (c) says that elements with not only poor
rank but also poor underlying scores have negligible marginal influence.

The goal is to build a data structure U of arguments and values f(w) with the prop-
erties:

1. Coding: For all argument sequences x there exists w € U such that | f(u)— f(x)| <
€.

2. Size: |U] is not too large, as a function of e.

3. Efficiency: A good neighbor or small set of neighbors u can be found in time
proportional to the length of the sequence, with only O(1) further computation
needed to retrieve the value f(u).

4. Only a “black box” memo table of values f(u) is needed, with the remainder of
the approximation algorithm staying (essentially) independent of f.

Our main contribution is the construction of a family G of grid structures U and a
simple memoizing algorithm A that employs the following “universal gradient” (index-
ing the components 7 from 1):

1
wi(x) = = (1 — x;). (1)

2

The intuition is that the first ¢ elements have size no larger than u;, which is to say equal
or higher rank and influence on f(u) to u;. If they were all equal, then each would have
a share 1/i of their total influence. The multiplier (1—u;) aims to moderate the influence
as the argument component u; itself increases. It is also the simplest multiplier that goes
to zero as u; goes to 1. Our algorithm A uses the w; as weights in a balancing strategy
that reflects the other sequence elements x;, not only for j < ¢ but also j > .

We report success on a fairly general range of functions f that arise from a natural
application in which probabilities are estimated. Some of the f represent salient basic
mathematical problems in their own right. Key features of our data structure, algorithm,
and overall strategy are:

The grid is not regular but “warped”: it starts fine but becomes coarse as ¢ increases,
eventually padding with nonce 1 values.

The grid has an efficient compact mapping to an array, like a “warped” array im-
plementation of a heap, so that values f(u) can be looked up by one index rather
than pointer jumping.

The actual gradient of f is replaced by the universal substitute (1), which reflects
properties (b) and (c) above.

The algorithm to find a good grid neighbor w to the given argument x uses the
weights w; to balance rounding, exploiting the decreasing size of w; to obtain rea-
sonable approximation to a Knapsack-type problem.

The algorithm preserves monotonicity of u by working from both ends, in what we
call a “meet in the middle” strategy. This and the coarseness help keep the overall
grid size manageable even when ¢ is large.

This seems like a “cookbook’ approach, but our point is that we have more structure
to work with, before the steps of the recipe that have f as a particular ingredient need
to be acted on. In our application there is no connection between the weights w; and
the functions f except for the axiomatic properties (b) and (c) and lack of unusual
pathology in f. We demonstrate performance that is almost ten times faster than without
memoization, and with four-place accuracy from a grid that starts with only two-place
fineness. We also compare with a “non-warped” grid that has a sharp index-: cutoff
instead, beyond which it pads with 1s. First we describe the application.

2 Estimating Probabilities and Means

Although our application comes from the chess decision-making model of [4], the
present computational task is simple and general and can be described without ref-
erence to chess. The main model-design parameter is a real function &, and varying h
implicitly defines the functions f treated in this paper. The argument is a non-increasing
sequence of /-many real numbers a; beginning with a; = 1. The goal is to fit /-many
probability values p; according to the equations

= a;; 0<p; <1, Zpi:

In modeling our grid, we transform x; = 1 — a; so that the most influential values
x; as those closest to 0. The function value f(x) is just the first probability, p;. This
is hence a fairly broad setting of curve-fitting. Our application further involves data
with myriad sequences a, for which we need to compute sums M = 3" f(x) over
sampled subsets .S of the data, which when divided by |S| become means. When S is
moderately large, it suffices to have good approximation for f provided it is unbiased.
Again this is highly typical in computational applications.
When £ is the identity function id, we can solve for f in closed form:

B 1 B 1
721"11'7 76_22'35%‘.

For other functions h, however, we know only iterative techniques to compute f(x) =
p1, and from p; the other probabilities, to desired precision. These iterations are expen-
sive, so we seek to save them. When £ is the logarithm function—more precisely the
function h(p) = 1/log(1/p)—we obtain the equations:

fia(a) so fia(x)

log(1/p1) 1/a;

T =i, SO pi=pi .

log(1/pi) !
Viewing b; = 1/a; as a general non-decreasing sequence, not necessarily beginning at
1, defines the following mathematical problem: Given y and real numbers b1, .. ., by,

find a real number p such that

y=p" +p" 4™

When ¢ = 1 so there is just one number b, then p = y'/?, so this is just the problem
of root-finding. Hence we think of this problem as computing “vectorized roots” ¥/y.
Above we have the case y = 1 and also b; = 1.

The model of [4] uses the resulting vector-root function f,,. because f;4 performs
extremely poorly. Other functions h such as h.(p) = p/log(1/p) or the (inverted) hy-
perbolic arc-secant function h,s(p) = 1/log(1l/x + /1/x — 1) may possibly work
better, but they seem to lack even the nice format of f,,- and to make iteratively com-
puting the resulting f. or f,s even more expensive. These are the main functions we
address. In general we have p; = h~*(a;h(p1)), so the task of inverting is also on the
table.

To restore some of the intuition from chess, the x; values are the perceived differ-
ences of various chess moves m; in a chess position from the optimal move m;. These
are obtained from the differences A(m1,m;) given by analysis from a strong computer
chess program, after factoring in model parameters representing the skill of a particular
chess player P. The p; are estimates for the probabilities that P will choose the re-
spective moves, and in particular p; is the probability of finding the move the computer
thinks is best. The value M becomes the expected number of agreements with the com-
puter on the set .S of moves. We imagine that for testing a small set of a few hundred
moves one might pay the time for exact computation, but for training the model on sets
of many tens of thousands, using sequences of values from 10-20 different levels of
analysis on each move, explains the need for memoization. The better moves have z;

close to zero. If there are k such moves, then p; will be order-of 1/k, and so a (k + 1)st
good move will have influence only at most about 1/(k + 1). Moves with x; close to
1 are “blunders,” and the exact value of a blunder matters little in the phenomenon of
player choice that we are modeling. Hence the axiomatic properties in the Introduction
are fulfilled in an intuitive sense based on chess, but our point here is that they flow
originally from a quite general mathematical system of equations.

3 The Grid Data Structure

When working with sequences, it is natural first to think of a #rie data structure, that is
a tree whose root branches to the possible first sequence elements (often restricted to
those actually used), each of those nodes to possible second elements, and so on. When
presented with a new sequence x, upon replacing entries z; by ones in the domain if
needed, one follows tree links until reaching a node for which x is known to be the
unique sequence through it, whereupon f(x) can be stored at that node, or the node is
deep enough to store a good approximation. The main advantage of tries is flexibility
to add new sequences and values dynamically and compactly, but this comes with high
use of main memory and cache misses with pointer jumps.

We sacrifice the dynamism to store pre-computed values. This brings, however, the
need to cover all possible next elements, not just those present in the dynamically built
data. Since chess positions can have 50 or more legal moves we regard £ = 50, so to
store the result for all possible & with 2-decimal-place accuracy would involve powers
of 101 that bust the information capacity of the universe. Hence our first task is to
finalize the ordered vector s such that u; € s for all w € U where ¢ belong to [1, ¢].
Keeping in mind the constraint that, u; < u; <= 4 < j if we construct a grid, the
resulting grid would be a self-similar tapered tree.

Definition 1. A self-similar tapered tree is a tree where every node has a branching
label b, which is also its number of children. Its children have branches labeled b, b —
1,...,1 going from left to right.

One more definition is useful in this context:

Definition 2. The branching factor of the grid is the maximum number of children any
node can have at any depth. The branching factor of any depth is maximum number of
children any node can have at that particular depth.

The braching factor of the root is the same as that of the grid which is |s| in our case.
The choice of elements in s and its size are implementation dependent, though we start
with compact branches and later space out the gaps as the argument entries approach
the ceiling 1.0.

Because the grid grows exponentially in size with increasing depth, we need to use
at least one of the two compromises:

— Truncate: cut off the depth of the grid at some depth dy < /.
— Warp: reduce the branching factor geometrically as the rank index ¢ increases.

To demonstrate the ideas, we develop two schemes. The first idea is utilized by
both of our schemes. For best exposition we implement the first before introducing
the second. After choosing a fixed spacing vector s, we parameterize our first scheme
by depth D and a fixed branching factor B at every depth. In other words, at every
depth, the left most node has branching level B. Our improved scheme replaces B
by a specifier G of a rounded geometric progression to define the family G of grids
U = U(d, G), in which the omission of “¢” as a parameter is deliberate.

For our first scheme, once we finalize the branching factor b, the depth D and the
spacing vector s, we can generate all the sequences, where the root always contains the
value 0.0. Of all the sequences, (0.0,0.0,0.0,...) is the infimum (in which all moves
have equal value) and (0.0, 1.0) = (0.0, 1.0,1.0,1.0,...) is the supremum. All other
monotone sequences are totally ordered between them by prefix lexicographical order.
We evaluate f(u) for each of the sequences in the same order and store the output in a
file,array or any sequential data structure that supports random access.

For our second implementation, we add the idea of “warping”. The grid is built in
such a way that, at every subsequent depth, the branching factor gets reduced by half.
If the branching factor for the root is 2" + 1, then the maximum depth possible for such
a grid is n + 2. The leaf nodes will contain values u(and Ups|—1-

We compute evaluations of the function f only once and then store it in file. We can
store the generated file in the secondary memory, or the Web where space is abundant.
Later, whenever we need to evaluate the function for any vector ¢ = (c1, ..., ¢p), we
can random access the file and fetch the stored approximate evaluation of f(c). Here
m does not necessarily agree with d. If m > d, we simply discard cq44; to ¢,,, and if
m < d, we append wu;, d — m times with c. Next, we replace each value of ¢ with the
nearest neighbor from set s. As both ¢ and set s is ordered, mapping c to any vector
u € U takes O(1) time. At this point, we know, the evaluation for new c is somewhere
in the file. We now need to find its exact index in the file and fetch the value.

It is easy to generate all the sequences in increasing order, evaluate the function and
just store the evaluations in file. The real complication is calculating the location/index
where the evaluation for the given vector is stored in the file.

Lemma 1. For the grid with fixed branching factor B at every depth, given any vector
u = (uy,ua,...,up) where depth D > 0, we can find the index of w in O(D) time.

Proof. For performing the indexing, we first need to create a table. The table holds
Va,p.the number of nodes at any depth d for any core branch b. core branches are
branches generated from the root. d and b represents corresponding row and column
of the table respectively. The constructed table has D rows and B column. The entries
for the table for the first implementation can be generated using the equation 2.

0 ifd=1
Vap =41 ifd=2 ?)
Z;ib Vi—1,; otherwise

or

0 ifd=1

1 ifd=2
Vap = .

Va-1p+Vaptr ifb< B

Va—1p otherwise,

where d ranges from (1, D). All the elements in V3 5 is 0 and V2, is 1. The creation of
the table, which is a one-time event, takes O(BD) time. After creation of the table, for
calculating the index for the vector w = (u1,...,up), we first calculate the position of
u; where i € (0, D) in the table. We can define a mapping function h : u; — m; where
m,; is the corresponding column in the grid for u;. Then the index would be:

D—1h(ujt1)—1

index =Y > Vpiiij 3)

=1 j=h(u:)

Calculating the index requires summing O(BD) terms. By generating a second table
which stores sub-sum Z?:o Va,; for every b and d, we can perform the inner sum
operation in constant time, which is nothing but the subtraction of two values. This
makes the whole indexing to take O(D) time.

Example 1. The example we illustrates uses a grid with branching factor 17, and the
selection of branches are shown in Table 1. we generate the table 2 using equation 2.

Table 1: Core Branches

,—
)
w
N
)

6 |7|8|910(11(12(13{14|15|16{17
0/0.01{0.02{0.03|0.04|0.05|.06|0.10.2|0.3| .4 |.5|.6|.7|.8].9| 1

Table 2: Fixed Branching Factor

[Column[1 [2[3[4[5]6]7]8]09 [10][11[12[13[14[15[16]17]

Depth1{ 0 OO | O0O|0O]|O|O0O|0O|0|0|0/0]|0[0|0]0]|O
Depth2) 1 (1 (1 (1|1 |1 |11 |11 |1(1|1|1|1|1]1
Depth3{ 17 (16 |15 |14 |13 |12 |11]|10| 9 | 8 |7|6|5]|4|3|2|1
Depth 4{153(136(120(105| 91 | 78 | 66 | 55| 45 | 36 |28|21|15|10|6 |3 | 1
Depth 5969 (816|680|560|455|364|286|220(165|120|84(56|35|20(10| 4 | 1

For example, after interpolation, for an arbitrary vector if we get © =
(0,0,0.02.0.04, 0.8) then, mapping function 2 maps u to index vector m which is
corresponding column for « in table 1. The generated mapping is shown in table 3

Table 3: Mapping from Value to Index

Value(u;) |Index (f (us) = m;)
0 1
0 1
.02 3
.04 5
.8 15

Table 4: Calculation of Index

Depth |Table Row |From|To Sum
1 5 1 |1 0
2 4 1 |3 153+136
3 3 3 15 15+14
4 2 5 [IS|T+14+1+1+14+1+1+14+1+1
lSumTotal[[[[328 (zero based index) ‘

Now using Table 2 for lookup, we can calculate the index using equation 3
From Table 4, our algorithm evaluates the index to 328 (0 based indexing). Seeking
the 328, element from the file gives the evaluation of the vector.

The fixed branching factor algorithm is well suited for most of the application. But
in cases where precision of evaluation of function f is crucial for the initial values of
the vector u, we can introduce the concept of ‘warping’. A warped grid of depth n has
branching factor of 2" 4 1. We assume at every depth, branching factor gets reduced by
half. The model can be extended to other reducing factors without loss of generality.

Lemma 2. For a grid with exponentially reducing branching factor B, given any vector
u = (u1,ua,...,up) and depth D > 0, we can find the index of the sequence in O(D)
time.

Proof. Just like grid for fixed branching, for preforming indexing we need to generate
a table. The constructed table has D rows and B column. The entries for the table for
the second implementation can be generated using the equation 3.

0 ifd=1
1 ifd=2

Vap = . d—2
Vdfl)b + Vd,b+2d*2 if b + 2 S B
Va—1p otherwise,

where d ranges from (1, D). Va b is the number of nodes at depth d and for core branch
index b. All the elements in V7 ; is 0 and V5 5, is 1. The creation of the table again takes
O(BD) time.

The indexing for this scheme is different than that of our first scheme. If the mapping
function is g : (u;, d) — m; ¢4 we can evaluate m; 4 using equation 3.

0 if (h(u;) — 1) mod 2471 # 0

Mi,d = .
¢ D — (h(u;) — 1)/2971) otherwise,

Function h is the mapping function used for fixed branched grid and m; 4 = 0

indicates the corresponding u; is not present for the particular depth. This information

can be stored for future lookup. A illustration of the mapping is provided in the example.
Finally, the revamped indexing function for this reduced brached grid is:

D—1g(uiy1,i)—1

index = Z Z Vbti1-ij 4)

=1 j=g(usi)

Again, by the same procedure as described for fixed branching, we can calculate the
index in O(D) time.

Example 2. We again construct the table for the grid, but this time with exponentially
reducing branching factor. The construed table for branching factor B equal to 17 and
depth D equal to 5 is shown in table 5.

Table 5: Exponential Reduction in Branch

|Column| 1[2[3[4]5[6]7[8]9][10[11]12]13]14]1
Depth 1[0]0[0[0[0[0[0]0[0]O
Depth2[1| 1[1[1|1[1[1]1]1
Depth3[9|8[8[7|7[6]6]5]5
Depth 4|25[20]20[16]16[12]12[9 | 9
Depth 5[35|26]26]20|20[14]14]10[10

(9]

[E—
=

(S
=l

AN\~ —| O

0]0
11
33
44
414

o B —
R~ o
R~ o

Table 6: Mapping from (value, depth) to Index

1213|456 |7|89(10]|11|12]13] 14 |15]16/17
Depth 1{0/0.01/0.02|0.03{0.04/0.05/.06/0.1/0.2| 03| 4 |.5]|.6| .7 |.8].9]|1
Depth 2 0 10.02/0.04/.06/0.2| 4 | .6|.8|1
Depth 3 0 10.04/0.2]| .6 | 1
Depth 4 010.2]1
Depth 5 011

Table 6 gives an example of a mapping function illustrated in this example. The first
row represents the core branches of the grid, and subsequent rows represents branches

possible at different depth. The column number for any value at any depth represents
the mapped index, for exampleg(0.04, 3) = 14.

We are illustrating an example of this approach for a vector ¢ =
(0.0,0.03,0.4,0.6, 1) after interpolation from any arbitrary vector. Table 6 represents
the mapping function g where Table 7 shows specific mapping for our example. Finally
by means of eqation 4 we can calculate the index. The breakdown of the calculation is
shown in Table 8.

Table 7: Example of Mapping

Depth|From Value(c;)|From Index (g(u;, i) = m;)|To Value(cy+1)|To Index (g(wit1,1) = mit1)
1 0.0 1 0.03 4
2 0.03 11 0.4 14
3 4 16 0.6 16
4 .6 17 1 17

The final calculation of the index returns 101. This indicates that the 101" entry in
the corresponding file contains the value for this specific vector.

Table 8: Calculation of Index

Depth |Table Row |From|To Sum
1 5 1 |4 35 +26 +26
2 4 11 |14 6+4+4
3 3 16 |16 0
4 2 17 |17 0
SumTotal [[[101 (zero based index)l

4 Interpolation Algorithm

Although the members of U are totally ordered lexicographically, the values f(u)
are generally not monotone in this ordering, and this makes the neighborhood topol-
ogy play havoc when given a non-grid sequence x. For instance, if the spacing starts
0.00,0.02,0.04, ... in the first few index places ¢ > 2, then the sequence

x = 0.00,0.01, 0.20, 0.40, 0.60,0.80,1.0.. ..

has as its lower neighbor the sequence 0.00,0.00,1.0,1.0..., which generally gives
much higher p1, and its upper neighbor the sequence 0.00,0.02,0.02,0.02,0.02...
in which all moves are close to equal and p; has nearly its mimimum possible value,
which is 1/¢. Thus attempting to use the neighbors in the rie structure of the sequences

is bad. Instead, given (any) x, we define its component-wise bounds x and z~. In this
case, assuming the spacing continues . .., 0.20,0.35,0.50,0.75, 1.0, we get:

™ = 0.00,0.02,0.20,0.50,0.75,1.0, 1.0.. ..
= = 0.00,0.00,0.20, 0.35, 0.50, 0.75, 1.0 . ..

Since these are members of U, it is plausible to output some weighted average of f(z™)
and f(x™). We mix this idea with interpolating to find a better argument u between ™
and x~. Here is where the oblivious weights

are employed in place of the actual partial derivatives of f at x;. To define u; for each
1, we have the chose to “round up” to :c;r, or “round down” to x; . The choice depends
not merely on which is closer, but also on balancing an accumulated “credit” value.
For this purpose we utilized the spacing vector s, which contains all possible points in
ascending order.

Algorithm 1 Interpolation Algorithm
procedure INTERPOLATE(x, s, d, u)
c+ 0
j«2
for i < 1toddo
w <+ (1 — [d])
if (x[f] *x w + ¢) > s[j] then
j—J+1
else
uli] + s[j — 1]
¢ 4 ¢+ xfi] * w — ul]
end if
end for
end procedure

end

The procedure in algorithm 1 for interpolation takes a vector « for which we want
to evaluate the function, spacing vector s, output vector u and its size d which usually
represents the the depth of the grid as input. In the procedure w and c represent the
weight of current element and the accumulated credit respectively. The algorithm takes
O(d) time. This procedure converts a vector & to a vector u € U.

5 Experimental Results

We implemented both of the schemes in c++ and the code was compiled with highest
optimization enable. We ran the code on a shared Red Hat Enterprise Linux Server
release 5.7 (Tikanga) (64-bit) system with 32 gB ram which is configured for non-
interactive, CPU-intensive and long-running processes. For both the scheme, we used

vector-root f,, (see section 2) as the function f. The core branches for the fixed
brached grid is shown in table 5. For this scheme, we set the branching factor to 16 and
the depth to 15. we generated the evaluation for every possible vector using the core
branches values, and stored the evaluation in a file. The generated file had a total of
77,558, 760 entries, starting from the evaluation for a vector of all 0’s to the entry for
vector (0, 1).

Index| 1|2 |3 |4 | 5|6 |7 |8|9|1011|14|13|14|15]16
Value|0.0{0.05]0.10{0.15{0.20]0.25{0.30|0.35|0.40|0.45|0.50|0.60(0.70(0.80{0.90{1.0

For testing the performance of our scheme, we used 8000 random vectors. The
length of the vectors were fixed to 50 where the values in the vectors are ordered and
ranged between 0 and 1. To make sure the vector size is sufficiently large for any prac-
tical application before it reaches 1 , we generate the vectors with bias which also
replicates evaluation of chess moves for a particular position more realistically.

For each of the entries, we first calculated the exact vector-root using newton’s
method and then calculated the closest neighbor of that vector using our interpolation
algorithm(refer section 4) and found the corresponding index for that vector. Finally
we accessed the file to fetch the evaluation at that location.

For interpolation, we tested with various mapping function, for example, nearest
neighbor, nearest neighbor based on progressive credit, lower bound for the vector,
upper bound of the vector, and the mean of the lower and upper bound of the vector.
The “progressive credit” strategy—that is knapsack strategy— gives the best accuracy.
Figure 1 shows a scatter plot of the deviations from the true value of the vector root
function.

Beside giving 2 decimal point accuracy in approximation, we have logged a sub-
stantial improvement over the time it requires to provide the result. We ran 20 iterations
of 1,000, 000 random vectors completion timing analysis for both our grid implementa-
tion and naive vector-root implementation. The performance is consolidated in Figure 2.
From our experiments we found, using averages of 20 runs, that the knapsack-based
grid calculation was 8.668 times faster than conventional vector-root calculation using
Newtons method.

We tested similar experiment with the reduced-branching-factor implementation.
The branching factor of the grid was set to 257, where each branches were equally
spaced between 0 and 1, and the the depth of the grid was 10.For interpolation we
mapped the vector to the nearest neighbor in the grid. We tested the implementation
with 8,000 iterations. Figure 3 shows the closeness of fit. The average deviation for the
scheme from the vector-root was —0.0008 where standard deviation was 0.0052. On an
average, The execution time is 9.6056 times faster over real-time vector-root evaluation.

Fig. 1: Performance Analysis for fixed branched Grid

0.015

Deviation from Accurate

200000
1B0000
160000
140000
120000
100000
BOOOD
60000
40000
20000
0

6 Future Work

The model can be extended for distributed computing . Index calculation at each depth
is independent of other depths, thus it is possible to compute those in parallel. We are
working on a more complex model where this concept can be further extended to allow
selective reduced branching at various depth ,i.e. reduction of the depth can occur at
particular depth instead of each depth. This allows going to higher depth than n + 2, but
still keeping the branching factor 2" 4-1. We are currently working on to fix a branching
factor and depth which guarantees the closeness of the evaluation to a threshold for a

particular funciton.

Approximation based on Weighted Credit
T T T

L L L
4000 5000 6000 7000

Sample #

L L L
1000 2000 3000 8000

Fig. 2: Timing Analysis

Il

Timing Analysis

I

7 8B 9 10 11 12 153 14 15 16 17 18 19 20

mGridMap mReal Time

Fig. 3: Approximation Performance Analysis for Reduced Branched Grid

Approximation based on Nearest Neighbor Mapping
0.02 T T T T

0.015F -

0.005

Deviation from Accurate
o

-0.005

-0.015+

° : L L L M L N L L -
0 1000 2000 3000 4000 5000 6000 7000 8000
Sample #

7 Conclusion

In this paper we have developed a special purpose data structure for storing sample
points of a function f so that the values of f at other points can be interpolated ef-
ficiently.This data structure can be used to store the result of computation intensive
function values. This data structure can be used for faster remote computing. As the
function is not evaluated at real time, this suits the requirement of embeded system,
where both the processing power and convervation of energy is vital [5]. Along with
these benefits, this data structure provides alomst tenfold performance enhancement
beside good approximation.

References

1. Campbell-Kelly, M., Croarken, M., Flood, R., Robson, E.: The History of Mathematical
Tables. Oxford University Press, USA (2003)

2. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers (2005)

3. Liang, F.: Stochastic approximation monte carlo for mlp learning. In: Encyclopedia of Artifi-
cial Intelligence. Wiley (2009) 1482-1489

4. Regan, K., Haworth, G.: Intrinsic chess ratings. In: Proceedings of AAAI 2011, San Francisco.
(2011)

5. Alidina, M., Monteiro, J.C., Devadas, S., Ghosh, A., Papaefthymiou, M.C.: Precomputation-
based sequential logic optimization for low power. IEEE Trans. VLSI Syst. 2 (1994) 426-436

