

Open notes but not text or Internet access, closed neighbors, 170 minutes. Please do ALL TEN problems in the exam booklets provided. Please *show all your work*; this may help for partial credit. The exam totals 240 pts., subdivided as shown.

The difference of sets A and B can be written either $A - B$ as in the text, or $A \setminus B$ as in lectures. The symmetric difference is $A \oplus B$ as in the text; although in other sources you may have seen the notation $A \Delta B$ for it.

(1) (5 × 6 = 30 pts. total)

Note that $P \longleftrightarrow Q$ and $P \oplus Q$ each have 2 true and 2 false cases, whereas $P \wedge Q$, $P \vee Q$, $P \rightarrow Q$, and $P \text{ NAND } Q$ (among some others) are split 3–1: either one true and 3 false cases, or one false and 3 true cases. And the trivial functions giving always-true and always-false are split 4–0. Call propositions of the \longleftrightarrow and \oplus and trivial kind “even,” and call the others “odd.”

Each of the following assertions has two propositional variables and/or predicates (or one of each) expressed in prose, possibly negated. For each one, write it more symbolically, *eliminating negations if you can*, and classify it as “even” or “odd.” For example, “Anyone who can’t stand the heat must get out of the kitchen” can be rewritten using the contrapositive as

$$(\forall x): \text{InKitchen}(x) \rightarrow \text{CanStandHeat}(x),$$

and is odd. If you add the clause, “and anyone who can stand the heat must stay,” then it becomes an equivalence, which is even. The assertions are:

- (a) Don’t both eat ice cream and drink whiskey.
- (b) $P \vee Q$ and $(\neg Q) \vee (\neg P)$.
- (c) A function $f : X \rightarrow Y$ fails to be 1–1 exactly when its reversal is not a function.
- (d) He can run but he can’t hide.
- (e) If the quarterback can’t stay in the pocket, the team won’t win.

Note: You may perceive multiple ways to interpret one of these, but before asking a question, please see if the two ways give the same even/odd answer. In any event, *please show your reasoning in the exam booklet(s) provided*.

(2) (12 + 27 = 39 pts.)

Consider the following five premises:

1. A naive person does not understand schemers.
2. All persons who share their leads on anyone are naive.
3. All good detectives understand schemers.
4. Only a good detective could have caught Moriarty.
5. Sherlock Holmes caught Moriarty, after another detective shared his leads.

In addition, here are some premises which the original author of a similar exercise took for granted. They are written in a formal style which suggests how you can formalize the above:

- $(\forall X): \text{detective}(X) \rightarrow \text{person}(X)$.
- $(\forall X, Y, M): \text{caught}(X, M) \wedge \text{sharedLeadsOn}(Y, M) \rightarrow Y \neq X$.

First write the above five numbered premises symbolically. Then for each of the following propositions, say whether it follows from the above premises. If so, give a proof using symbolic logic rules. If not, give a reason why not.

- (a) Sherlock Holmes was naive
- (b) Some other detective was naive.
- (c) Sherlock Holmes was not naive.

(3) (24 pts. total)

For each of the following assertions about sets A, B, C , say whether it is always true. If so, give a truth table for the corresponding logical formula; if not, give a Venn diagram where it is false. Recall that \oplus stands for symmetric difference.

- (a) $A \oplus B \subseteq A \cup B$.
- (b) $C \subseteq A \wedge C \subseteq B \rightarrow C \subseteq A \oplus B$.
- (c) $A \cup (B \cap C) = (A \cup B) \cap C$.

(4) ($4 \times 3 \times 2 = 24$ pts.)

For each of the following functions of real numbers, and for each of the properties of (i) being defined on all of \mathbb{R} , (ii) being 1–1 on its domain, and (iii) being onto \mathbb{R} , say whether the property is

- True,
- Almost True—that is, true except for 1 or 2 real numbers, or
- Really False—that is, false and not “almost true.”

You should have a grid of answers with 5 rows and 3 columns, and entries “True,” “Almost True,” or “Really False.” Here $|x|$ means the absolute value of the number x .

(a) $f(x) = 3x$.

(b) $f(x) = |x|/x^2$.

(c) $f(x) = \ln x$.

(d) $f(x) = \frac{x-3}{2x-3}$.

(5) (18 pts.)

Use the Euclidean algorithm to prove that the integers 28 and 45 are relatively prime. Then work backwards from its output to find integers s and t such that $28s + 45t = 1$.

(6) (24 pts. total)

How many different ways are there to choose two integers, each of absolute value at most n , such that either both numbers are negative or both are non-negative? It does not matter which integer comes first. Is the number of ways a perfect square? Prove your answer.

(7) (24 pts.)

Consider the recurrence relation $r(n) = 3r(n-1) + 2^{n-1}$ with initial conditions $r(0) = 0$, $r(1) = 1$. Prove by induction that for all n , $r(n) = 3^n - 2^n$.

(8) (24 pts. total)

Let V be the power set of $\{a, b, c\}$. Define a directed graph $G = (V, E)$ by drawing an edge from a subset A of $\{a, b, c\}$ to a subset B if there is an element $i \in B$ such that $A = B \setminus \{i\}$. To get you started, the node for \emptyset has three out-arrows, to the nodes for $\{a\}$, $\{b\}$, and $\{c\}$.

- (a) Draw the graph. For labels on the vertices, even better than giving the subsets, give the corresponding binary bit-string representations.
- (b) What does the in-degree of each node equal?
- (c) Now consider the undirected graph $G' = (V, E')$ made by ignoring the arrows on the edges. Describe it, including saying what the degrees of the nodes are now.
- (d) Does the directed graph G have any cycles? How about the undirected graph G' ? Is G' connected?
- (e) In G' , show that for every node A there is a node A' such that the neighborhoods of A and A' do not overlap. Put another way, every path between A and A' has length at least 3. Can you say what A' “is” in terms of A ?

(9) (15 pts. total)

This time define $V = \{2, 3, 4, 5, 6\}$. Define a graph $G = (V, E)$ by putting (i, j) into E if and only if neither i nor j divides the other evenly.

- (a) Give an adjacency matrix for G . Is G directed or undirected? You are welcome to draw G .
- (b) Is there any node whose neighborhood is all of G ?
- (c) Show that G is not bipartite, by finding a 3-cycle in G (that is, a triangle).
- (d) If you delete node 5 and all the edges into it, is the resulting graph connected?

(10) (6 × 3 = 24 pts.) *True/False:* No justifications are asked for, though they could help for partial credit. Please write **true** or **false** in full.

- (a) For all sets A and B , the symmetric difference $A \oplus B$ equals A if and only if $B = A$.
- (b) There is no bijection between \mathbb{N}^+ and \mathbb{N} .
- (c) It is technically false but essentially true that Cartesian product of sets is associative.
- (d) If $f : \mathbb{R} \rightarrow \mathbb{R}$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ are 1-1 functions, then the sum function $h(x) = f(x) + g(x)$ is 1-1.
- (e) If $f : \mathbb{R} \rightarrow \mathbb{R}$ and $g : \mathbb{R} \rightarrow \mathbb{R}$ are onto \mathbb{R} , then the sum function $h(x) = f(x) + g(x)$ is onto \mathbb{R} .
- (f) With all quantifiers over the same domain, if $(\exists x)P(x)$ is true and $(\exists x)Q(x)$ is true, then $(\exists x)[P(x) \wedge Q(x)]$ is true.

END OF EXAM