

This *closed-book/closed-notes* quiz counts as 40 points toward assignments, as provided on the printed course syllabus. Each question is multiple choice and has a unique best answer worth 4 points. (If you have doubt between two answers, partial credit may be given for a written justification of your choice.) Please **circle** your chosen answer.

YOUR NAME+ID HERE:

(1) A *proposition* can be:

- (a) A statement like “this cat has nine lives.”
- (b) A variable like P or Q .
- (c) A compound statement like $P \vee (Q \rightarrow P)$.
- (d) A predicate $P(x)$ where x is replaced by a particular value.
- (e) All of the above.

(2) An implication $P \rightarrow Q$ is guaranteed to be true when:

- (a) P is true.
- (b) Q is true.
- (c) $Q \rightarrow P$ is true.
- (d) One of P or Q is false.

(3) A *formula* or *predicate* $F(x_1, \dots, x_n)$ with free variables $\vec{x} = x_1, \dots, x_n$ becomes a proposition (in lecture I preferred to say *sentence* or *propositional sentence*) when and only when:

- (a) Every variable is filled in by an instance element.
- (b) Every variable is quantified.
- (c) Every variable is either filled in or quantified.
- (d) It is always true, i.e., when $(\forall \vec{x})F(\vec{x})$ is true.

(4) If a Boolean formula F is true when all of its variables are false, then:

- (a) F is a tautology.
- (b) F is satisfiable.
- (c) F is unsatisfiable.
- (d) F is a contradiction-in-terms.

(5) An example of a Boolean formula that is true when all of its variables are false is:

- (a) $P \wedge Q$.
- (b) $P \vee Q$.
- (c) $P \rightarrow Q$.
- (d) $P \text{ xor } Q$.

(6) The Boolean formula $P \vee Q \rightarrow R \wedge S$ is read as:

- (a) $(P \vee (Q \rightarrow R)) \wedge S$.
- (b) $P \vee ((Q \rightarrow R) \wedge S)$.
- (c) $((P \vee Q) \rightarrow R) \wedge S$.
- (d) $(P \vee Q) \rightarrow (R \wedge S)$.

(7) The statement “ P if Q ” means:

- (a) $P \rightarrow Q$.
- (b) $Q \rightarrow P$.
- (c) Both (a) and (b).
- (d) Neither (a) nor (b).

(8) The formulas $P \text{ xor } Q$ and $\neg(P \leftrightarrow Q)$ are:

- (a) Tautologies.
- (b) Logically equivalent (in lecture I said “semantically equivalent”).
- (c) Both unsatisfiable.
- (d) Inconsistent with each other.

(9) The logical argument “Given $P \rightarrow Q$ and Q , we can conclude that P is true” is:

- (a) Valid.
- (b) A fallacy.
- (c) True by default.
- (d) OK if you make it before breakfast.

(10) The person who is most honored for making logic into a branch of mathematics, even named in the basic `true/false` type of programming languages such as Java, C, and C++, lived:

- (a) In ancient Greece.
- (b) In the Middle Ages or Renaissance.
- (c) In the 1800's.
- (d) Until a few years ago.