
CSE250, Spring 2013 Prelim II Apr. 15, 2013

Closed book, closed-notes-except-for-1-sheet, closed neighbors, 48 minutes. Do all three questions
on the exam pages themselves. Please show all your work ; this may help for partial credit. The
exam totals 67 pts., subdivided as shown.

(1) (6 + 4 + 4 + 4 + 6 + 4 = 28 pts. total)
First, let us employ the simple hash function h that adds up the index-numbers of all letters in

alpha-order a = 1, b = 2, c = 3, etc. For instance, h(“bud”) = 2+21+4 = 27, which gives 3 mod 8.

(a) For a hash table with chaining of size 8 that is behaving like a set, insert the four words bad
bed bid dad in that order.

(b) Now iterate thru the hash table from bucket 0 down to 7, and reinsert the items in that order
into a hash table of size 4.

(c) Take the same iteration in (b) and insert the words into a binary search tree, using alphabetical
order as the comparison function.

(d) This time show the BST that results from the insertion sequence bad bed bid dad as in (a).

(e) Now show the steps and result of forming a heap out of the length-4 vector bad bed bid dad,
keeping the maximum word in alphabetical order on top. You may use either the technique of
inserting the words in that order into an initially empty heap, or the generally-faster results of
calling make heap on the vector as given.

(f) Comparing your answers to (c) and (d), and thinking of all the data structures in this problem,
suppose you had a longer vector in sorted order like bad bed bid dad did eat fat goose...
How would you try to make a well-balanced binary search tree out of that vector?

1



(2) (9 × 3 = 27 pts. total)
For each task below labeled 1.–10., say which of the following best describes its running time:

(a) Guaranteed O(1) time.

(b) Amortized O(1) time.

(c) Usually O(1) time.

(d) Guaranteed O(log n) time.

(e) Usually O(log n) time.

(f) Guaranteed O(n) time.

In all cases n denotes the number of items currently in the underlying data structure, and any other
parameters are stated. The variable vec stands for a vector, dlist for a doubly-linked list (not
necessarily sorted), valli for a “Valli” data structure, bst for a BST—i.e. a general binary search
tree, itr for an iterator of the appropriate kind, and item for a typical item in the data structure.
Justifications are not required, but might help for partial credit. The tasks are:

1. For a BST iterator itr, the call itr++;

2. dlist.push back(item); (equivalently, dlist.insert(dlist.end(),item);)

3. vec.push back(item);

4. dlist.erase(itr);

5. vec.erase(itr); where itr points in the middle of vec.

6. For a Valli iterator itr, the call itr++;

7. valli.find(item);, assuming valli just refreshed with ratio r = log2(n).

8. bst.find(item);

9. Preorder traversal of a BST.

2



(3) (12 pts.)
Suppose Project 1 had been changed to make you create a set of words that do not remain

words when “turned inside out.” That is, suppose you have the following containers:

vector<string> words;
Valli<string> turnedWords;
...
//assume you’ve already run code that reads the dictionary file into words
//and for every read word, inserts wordTurn(word) into the Valli container.
...
set<string> unturnables; //initially the empty set
...
//your code on this problem goes here.

Write code with iterators that inserts into unturnables every word that is not in turnedWords—
that is, not equal to the turning of itself or some other word. End of Exam

3


