CSE250, Spring 2014 Prelim II Name:
Apr. 25, 2014 St.ID#:

Closed book, closed-notes-except-for-1-sheet, closed neighbors, 48 minutes. This question paper has
TWO problems. Please do both in the exam books provided. The first problem is True/False with
justifications. The exam totals 67 pts., subdivided as shown.

The term FlexArray refers to a data structure consisting of a doubly-linked list of nodes, where
each node holds an array of up to some number ¢ of elements. The data structure has the same
public operations as vector (plus the extra versions of insert and erase with an index argument),
and provides an iterator that is at least bi-directional. If and when a node’s array hits (or exceeds)
size ¢, the node is split into two nodes, each with ¢/2 elements give-or-take one. Foo and Bar are the
usual generic filler names for classes or other types.

(1) (94343 = 15 pts.)
(a) Show the result of inserting the words bad bed bid bud act beg bet dog in that order into
a binary search tree, using alphabetical order from ‘a’ at left to ‘z’ at right/

(b) Now show the result of erasing bid. You may use either the predecessor or successor node to
move in its place, but should say which.

(¢) Show the preorder transversal of the tree—which won’t be alphabetical order.



(2) (7 x 4 = 28 pts.)
True/False with justifications: Write out the word true or false in full, and then write a
brief but topical justification. The justification is worth 2 of the 4 pts. for each question.

1. In a FlexArray data structure with n > c elements, in which only inserts and no erasures have
been performed, each node always has at least ¢/2 — 1 elements.

2. Same question as 1., but now allowing erasures.

3. In a FlexArray that has just been built with no erasures, the next insertion is guaranteed to
run in O(y/n) time, even if it causes a node to split.

4. The default copy constructor in a class Foo will copy a Bar object that is held by the field Barx*
element ;—for example, Foo could be the ChunkNode class and Bar is vector<T>.

5. The middle element in a vector with an odd number of elements can always be accessed in
O(1) time.

6. The middle element in a FlexArray with an odd number of elements can usually be accessed
in O(1) time.

7. A step in the postorder transversal of a binary search tree runs in amortized O(1) time.



(3) 24 pts. total

Suppose we have a word chain in which one word x is related to the previous word w by a
character change (so hd1(w,x) holds), and the next word y is obtained by inserting or erasing a
character, which we’ll call id1(x,y) for “insertion distance one.” Examples are the sequences rain
raid rid and rain raid rabid. We could also have this in reverse with the insertion-or-erasure
first, as in want ant act or bake baker biker. In either case, if you erase the middle word x,
the remaining two words are still related by one-change-plus-one-insert/erase. That is, ed15(w,y)
still holds, with reference to the “edit-distance 1.5” concept on Assignment 8, and vice-versa: if
ed15(w,y) holds then we must have one of these two cases.

Write a routine void reduce(F& chain) that iterates through the chain and erases such words
x. What is F? It could be FlexArray<StringWrap> like on Project 1, but it could be a different
container—all you know is that it has an iterator F::iterator which obeys the same standard
interface for an iterator. For some help, if you have an iterator nit on a word w, then the lines

F::iterator pit = nit++;
F::iterator it = nit++;

will leave you with the iterator it on word x, the iterator pit on what you now think of as the
previous word w, and nit has done a post-increment advance twice to end up on the next word
y—unless w was too near the end, that is. One final helpful rule—even if you erase x and the word
z after y leaves w y z as a sequence where y too could be erased, don’t—you may consider y to be
the next “previous word w” to consider. (This plus the above lines and the standard way erase(it)
returns an iterator on the next word enable you to avoid having to move an iterator backwards.)
Your answer must involve only iterator code—no peekIndex or other stuff that would be too specific
in the data structure—but of course you may write calls to ed15(...) and hd1l,id1 assuming they
have already been coded since this is client code. END OF EXAM.



