
CSE250, Fall 2009 Project 2 Timing Tests and Report Due Fri. 12/4, 11:59pm

online submission only---no hardcopy

Short Task Statement

Complete the client sketched in the file ParsingCodeBlocks.txt in the
∼regan/cse250/PROJECTS/PROJ2/ directory, calling it StockClientMMMNNN.cpp where MMM
and NNN are your initials (Hasher then Heaper). It is mainly an event loop being simulated by
reading lines from a file that has both data and commands, the latter distinguished by question
marks: add?, pause?, printTopByVolume? k where k is an integer. . . Among the data files in that
directory, the featured one for the report’s timing runs is Main100k-25.data.

Implement pause? to stop and read a timer that has been timing previous commands. Use this
to conduct timing runs of three competing implementations for processing the stock trades: (1) your
new ChainedHash class at sizes 1,024, 2,620, and 7,860, (2) your previous Valli class or one of
the provided ones with ratios 8 and 3, and (3) the provided BST class. Also time the processing
of commands to obtain top-k lists for the various statistical categories, using (a) your Heap class,
(b) the provided TopPQ class, and (for extra credit), (c) the provided BST class again! The times
in (a)–(c) can be the sum of getting the 6 lists at the end of the Main100k-25.data file (or 7
if you do the extra-credit one), i.e. you need not time each one individually. (The timing trials
(1)–(3) and (a)–(c) are logically separate—i.e., a combo such as “(2a)” has no meaning apart from
timing (2) and (a) separately–because the phases of doing stock trades and then compiling top-k
lists are separately represented and timed in the data files.) Repeat each of the five-or-six tests 10
times, both on your home machine (one per team is fine) with CentiTimer.h and on timberlake
with HiResTimer.h, and report the average times over the 10 trials. The files mentioned in this
paragraph are in ∼regan/cse250/PROJECTS/F09BASE/.

Team members may work jointly on the client, and may conduct trials on timberlake and a
home machine jointly—or if none, on a different CSE machine (e.g. nickelback or metallica).
Then answer the report questions below—note that some are individual to Hasher and Heaper,
while others are joint. Various extra-credit options are also specified, and marked individual/joint
as-appropriate. An expanded description of the client and timing runs, with options for making
them easier to do, follows below.

What To Submit

The only required names are those specified on the initial project description: ChainedHashMMM.h,
HeapNNN.h, StockNNN.h, and StockClientMMMNNN.cpp. Putting method bodies into StockNNN.cpp
and/or supplying a makefile StockClient.make is optional . Any other files you include–such
as StringExtra.{h,cpp}, BST.h, function-object classes (though putting them in StockNNN.h
is sensible), Cardbox.h, any of the Sifter adapters—must also be submitted. Your
StockClientMMMNNN.cpp file must be submitted in a form that (a) uses your ChainedHash and
Heap classes as implementations, (b) has no screen-interaction lines (such as getline(cin,line);),
and (c) implements all commands listed on the original project description (including printAll?,
plus now typeout?, but not necessarily including e.g. printDS? or whisper? which were options to
possibly aid your debugging). Your answers to the report questions below should go at the bottom
of your client file, as previously stated.



How the Client and Timers Work

The client and data files give a rudimentary text-based simulation of an event handler. The “events”
are either stock-trades or commands. All commands begin with a single space-free alpha-word
followed by a question mark, than a space, then an argument. The “event loop” is a while-loop that
reads a single line from the data/command-file, parses it, and feeds into a big if-else construct with
blocks that process the various commands. The required commands are those described on the initial
project spec, plus we have made typeout?—which simply echoes the following text to the screen so
you can see what stage you’re on—required for the timing runs. (Find the space after the ?, then
copy the remaining string to cout followed by endl—note that getline does not already include
the carriage-return.) Output is manually buffered into a string result rather than displayed after
each operation, to minimize the interference caused by screen or file output in measuring processing
time.

Directions for filling in the blocks to handle the add? command for inserting, the printTopBy---?
k commands for calling make heap and extracting a “Top-k” list—are as described in the original spec
and ParsingCodeBlocks.txt file. It remains to describe the timer and means of handling pause?.
The block for pause? should begin by reading the timer, and end by resetting/restarting the timer
(if necessary). Optionally, one may pause processing so you can print and see the timing, and/or
print out the accumulated result string (resetting it to the empty string for the next iteration).

Both the CentiTimer and HiResTimer classes have public methods void reset(), double
elapsedTime(), and double timeSinceReset(), plus constructors (which include a final reset)
and string getUnits() const. CentiTimer defaults to units of milliseconds, HiResTimer to mi-
croseconds. Since they use the same interface, a single line typedef CentiTimer StockTimer; atop
the client file can control which one is used. As previously stated, HiResTimer will probably not
compile on your home machine, and requires a final -lrt option to compile on timberlake with
g++ (or Sun CC, for that matter). CentiTimer gives only 1/100 sec. resolution on timberlake, but
gives high resolution (after all!) on Macintosh g++, and may do likewise on your home machine. The
elapsedTime() method records the time since the previous call to elapsedTime() or reset(), while
timeSinceReset allows you to accumulate time through several elapsedTime() readings. This is
like a stopwatch that can record both the time since the beginning of a race and the time since the
last quarter-pole. However, using screen interaction makes any accumulated-time reading meaning-
less, so if you use something like getline(cin,---) in your pause? block, then you should end it
with a call to reset.

The point of this organization is to minimize the editing of code needed to do the various tests
and trials—or even simply debug. The next section describes various options.

Ways to Change Implementations for the Timing Tests

The latter two of these three ways are more “software-engineering correct,” but the first is not
onerous and hence is AOK.

1. Refer to your ChainedHash and Heap classes directly in the client, changing the former to
Valli and BST, the latter to TopPQ, and recompiling for the comparison runs.

2. Use the Cardbox and/or Sifter “façade classes” to switch the implementations. This still
requires re-compiling, but may involve fewer edits with easier handling than modifying the
client.

3. Move the event loop from main into a generic function above main, of the kind exemplified
in several testing clients. Then main itself can be short and simply call the function for the
various combinations. This avoids re-compilation but requires re-reading the data-file lines.



It is obviously horrible to reduplicate the hundred-line event-loop in main, hence goes-without-saying
forbidden. If you use option 3., a possible header is

template <class ARG, class CARDBOX, class SIFTER>
void processFile(CARDBOX& cont, SIFTER& heap, [other args?]) { ...

Note the & to avoid copying the containers, and they are not const-references because they do get
modified. Depending on your compiler, you might-or-might-not have to use angle-brackets also in
the call, as in [for example—you may have Stock* or StockProxy in relevant places]:

processFile<Stock, ChainedHash<Stock,StockHash,StockMatch>, Heap<Stock> >
(table, heap, [other?]);

Or just processFile(table,heap,...); might work. This is only relevant for option 3., since the
“Adapter” idea 2. (demo’ed in lecture) already involves this kind of generic step and lets the client
see only one table-concept (and heap-concept) at a time. (Ideas 2. and 3. figure into lecture coverage
of K-W chapters 9–10 anyway, and will be referenced on the last “Assignment 8,” so choosing option
1. (as originally allowed) and ignoring “Cardbox/Sifter” does not circumvent them entirely.)

The report questions below apply to any of these three methods equally. Completing the client is
30 pts. to each, and the two regular-credit report questions are 49 pts. to each, bringing the total
regular-credit points to each to 150 + 50 + 21 (quiz) + 30 + 49 = 300.

YMMV / Not-YMMV Notes

We believe we’ve narrowed the tasks and testing-specifics to give meaningful results on a variety
of PC/mainframe platforms, depsite the way high CPU speeds mask issues that were felt more
obviously in previous decades. [For a case in point, the provided Sifter class, when switched to
a BST implementation to get the top-k lists, has to avoid using BST for the initial inserts. This is
because it is using your statistical function objects rather than a less-than on ticker symbols for
its comparisons, but initially the stats are all zeroed out, so the tree winds up doing the horrible
just-like-a-singly-linked-list thing talked about in lecture. How horrible, actually? With the full
slate of 7,860 stocks, what used to be a big part of an hour is now under a minute, and on the
smallest data files—just a blip. Holding the items initially in a vector makes the initial heap-inserts
almost-instantaneous. We can say, however, that if your runs don’t finish within a few seconds even
on the largest data file, there is something markedly non-optimal in your hash-table or heap design.]

The timer classes do not distinguish between CPU-time and overall system-process time, as the
“Stopwatch” class used in previous years did; I have not found a portable way to do this. However,
timberlake is multi-core enough that system overheads seem not to interfere with results, at least
when it’s not being strained. That said, if you get “0.000” as timing readings with CentiTimer on
timberlake from your Heap class, even on the largest data files, it’s probably not a bug! At least the
provided TopPQ text-like implementation does not give zeroes on the larger files, even when compiled
with highest optimization on timberlake via g++ -O5 (dash-Oh-five). That said also, there doesn’t
seem to be much point anymore to the smaller files for timing testing—old tradeoff points are hard
to spot. Hence only the one largest file is “official.” Note also that upping k from 25 (or 30) to
100 or beyond might only obscure rather than enhance the difference, because it is involved only
in the “k log(N)” part of the running time of extracting the top-k items. The main issue, running
“heapify,” (STL make heap, “buildHeap” in the notes from Weiss’ text) depends only on “N” which
is here the number of stocks, and the allstocks files already include all ones that were traded on
US exchanges. In future we may have to widen the slate of stocks by including overseas exchanges,
but the essential points do remain valid this year, even under low timing resolution albeit barely. . .



Report Questions

The first two are separate checklists for “Hasher” and “Heaper,” and count for 24 pts. separate credit.
They might influence you to change implementation choices after (or for) the Monday 11/23 initial
submission, and there is nothing wrong with that. . . All answers go in comments at the bottom of
your client-file.

(1A) (8 × 3 = 24 pts. individual credit) For “Hasher”:

(a) Does your hash table intend to store values (I data; in the bucket nodes), or pointers
(I* data;)? Or proxies?

(b) How did you initialize the hash table to a specified size sz? Did you allocate up-front
sz-many nodes, one per bucket?

(c) Did you employ dummy nodes? Did they have a Boolean field marking them dummies, or
did you rely on identifying the dummy default-constructed object I() by itemMatch to a
stored dummy (similar to the text’s handling of “deleted”)? Or if you used I* pointers,
was having data == NULL your way of testing-for and skipping over dummies?

(d) Did you try to “recycle” a dummy node by assigning the first item hashed into its bucket
to it? Or did dummies stay dummies throughout?

(e) Was your iterator ever allowed to stop on a dummy node? How did you handle the node
(if any) for end()?

(f) How did you test items for equality, especially in the find method? Did your hash table
accept a general function object for matching, or did it explicitly rely on operator==
for the string class? (Ultimately you applied operator== to the stocks’ ticker symbols
somewhere—the question is where?)

(g) Did you add any extra functionality to the iterator class compared to Valli? (Such
as coding operator-> to return a pointer to the current cell’s data field, which would
enable the client to store itr.operator->() rather than do &(*itr) to get a pointer to
the data field.)

(h) Did any CLASS INVs (for any of your ChainedHash, Cell, or iterator classes) help make
your code simpler and/or faster?

(1B) For “Heaper”:

(a) Does your heap class store pointers, or proxy objects?

(b) Does it #include your partner’s hash-table class file in order to find statistical informa-
tion via the ticker symbol, or does it fetch the information more directly?

(c) Was your heap always a heap at any point in time?

(d) Did your function-objects take arguments of type const Stock&, const Stock*, or some-
thing else?

(e) Did your Stock class friend the various function objects, or did the function objects use
only public (getter) methods of your Stock class?

(f) How did your Stock class process a transaction? Does Stock itself try to parse a string
transction line into a number-of-shares and price, or assume the client will do it?

(g) Does your Stock class store all previous transactions in order to figure out the number of
trades in the current upward or downward trend? Or does it maintain fields to do so?



(h) Did you consider (allowing “Hasher” to talk you into) computing the hash code of the
ticker symbol at construction time and storing it in a hashCode field, rather than re-
computing the hash function every time it is accessed? (Then the actual passed-in hash-
function object would just be a getter for this field.) Is this an application where you
could get away with that?

(2) (Joint answer, 25 pts.) Conduct the timing trials stated at the outset, on your home ma-
chine(s) and on timberlake. Absolute times do not matter (so long as each is a matter of
seconds at most), but be consistent with optimization—i.e. if you use the -O5 option for one
trial on timberlake, do so for all. The trials on each machine, each with the lone data file
Main100k-25.data, are:

– Time to process the 100,000 stock trades with your team’s ChainedHash class, at target
sizes 1,024, 2,620, and 7,860 (load factors of almost-8, 3, and 1 respectively).

– Time to process the 100,000 stock trades with one of your Valli classes, or a provided
one, ratios 8 and 3.

– Time to process 100,000 stock trades with the provided BST class—coding and passing-in
a lessThan on the ticker symbols.

– Time to compile the “Top-25” lists with your Heap class.

– Time to compile the lists with the provided TopPQ class.

– (extra credit) Time to compile the lists by instantiating BST with your pointers-or-proxies,
passing in your statistical function-object comparisons rather than lessThan on ticker
symbols.

Report each result as an average of 10 trials. Then answer:

(a) Did the theoretical “O(1) vs. O(log n)” per-find advantage of a hash table manifest itself,
compared to Valli and BST?

(b) What difference did increasing the table-size (i.e. the size of the buckets array, not the
number of items) make? Suppose we figure that a doubling of table size is worthwhile
if it saves 25% off the time—thus a 2a increase in table-size should make the new time
less than (3/4)a of the old time. Was the increase from 1,024 to 2,620 worthwhile? From
2,620 to 7,860?

(c) Did the theoretical “O(n+ k log n)vs.O(n log n+ k)” advantage of make heap versus the
priority-queue implementation come out in your results?

(d) Are your relative comparisons similar on the home machine(s) versus timberlake?

Extra-Credit Options

These can be joint-efforts, counting for each even if you split up the work—though if you split up
work, work done individually must be close-to-balanced. Please make clear in your report section
which one(s) you have attempted, if any.

(a) The BST-for-heap option in (2) above is worth 24 pts., more because it really requires using
one of the provided Sifter classes to make the adaptation tolerable. Also answer: assuming
that the trees stayed reasonably well-balanced, making “BST-Sort” O(n log n) in theory, do
you see evidence of a markedly higher principal constant compared to the heaps? [Note: If
you use pointers rather than proxy-objects for heaping, technically putting the pointers in
the BST violates its REQ of a member-str() function. However, you will not get a compile



error provided you don’t actually try to print out the tree via its own str() method. This
shows incidentally that C++ uses a more laid-back type-enforcement mechanism than Java’s
interface-checking; C++ creator Bjarne Stroustrup even calls it “Duck Typing.” This is a
major issue in the recent postponement/axing of the “Concepts” type-checking feature for
C++.]

(b) Implementing printTopByTrendShares? with a full O(1)-time analysis a-la Assignment 5,
problem (1), is 18 pts. extra.

(c) For 24 pts. extra, implement both void erase(iterator itr) and rehash(size t forSize)
in the hash table—this can be a joint effort. Test it by implementing a delist? SYMBOL
command in the client, figuratively to remove a stock from the stock exchange. (Since erasing
by marking a node a dummy is “too easy,” and the savings are realized only if/when you
rehash, these are bundled.)

(d) Bring the STL red-black tree into the timing comparisons by adapting your client to run
with any of set, multiset, map, or multimap. [Because its find method returns a
const iterator, you may have problems with const. . . in which case the 3-pts.-per-fix-that-
doesn’t-cast (up to max of 9 extra-extra points) policy applies too.] Does your hash table beat
the “official” tree? when code is optimized? (30 pts.)


