
CSE250, Fall 2009 Project 1 Due Fri. 10/30, 11:59pm

A Vector–Linked List Tandem With Iterator
online submission only---no hardcopy

Reading
For Monday, read this project description, (re-)read the parts of the text it cites, (re-)read

Section 7.3 on binary search, and also read Chapter 5, skim/skipping the “Case Studies” on
pp320–324 and 333–350. For later in the week, read Chapter 6, skim/skipping pp381–397. (The
other case studies, on palindromes and queue-maintenance, are good to read.)

Short Task Statement and Motivation
Program a templated data structure class Valli<I> that combines a vector and linked-list

with iterator. The argument type for I may be assumed to already implement operator< and
the list must be kept sorted by that operation (see text, pp285–291). (You may also assume I

has a public zero-parameter constructor and implements a public str() method to write items
as strings.) The Valli constructor takes an integer argument r (or call it ratio) and builds
a vector whose intent is to provide a direct link to every r-th cell of the list. This allows a
standard insert or find method to do a binary search over the array to find the direct link
closest to where the new item should go (or to where a matching item may be found), and
then take at most r more steps down the list, for a running time of O(log(n/r) + r) that vastly
improves on the “O(n)” for linked lists alone. Moreover, inserts and removals can be done in a
further O(1) time without the “O(n)” overhead for splicing a vector. However , many inserts in
the same spot will degrade the “r steps” guarantee, and so the class requires a sporadic refresh

of the direct links to be every r-th cell again, adding links to the vector as needed. You should
also program a str() method to facilitate outputting the linked list’s items.

The nested Valli<I>::iterator class only needs to provide the functionality of a
forward iterator, and so the list is allowed to be only singly linked (though double-links
may make your code easier to write). In addition to the above-mentioned constructor you must
provide a destructor ~Valli<I>() that deletes the cells, but you are allowed to disable the
copy-constructor and operator= by declaring them private with empty bodies. The sortedness
requirement implies that you may not assign an arbitrary item to an iterator location, and also
limits your options on insertion. In all other respects the spec parallels the text’s “Programming
Project 2.” on page 309, which references its Project 1. A full checklist of the public interface
this implies is below. No client task is specified, and there is no separate project report—though
logic-comments are expected at important junctures and are part of the grading scheme as on
Assignment 3, and various testing clients for you to adapt will be provided.

What to Submit
Because this is a template class, there will not be a separate .cpp file. We disagree with the

text’s practice of putting the nested iterator class in a separate .h file and #include-ing it in
the middle of the code, and we “punt” on the text’s practice (not mentioned until p328 in Ch. 5)
of putting template bodies in a separate “.tc” file. Thus we expect all of your implementation
code to be in one file, ValliNNN.h where NNN are your initials as before. You may write all
bodies inside the class braces (a-la Java), or put them outside the braces but in the same file
(giving the exact same syntax and result as if you did the “.tc” thing). You must still call the
class just Valli with no initials—unlike in Java this need not match the file name.

Submit ValliNNN.h, and submit a makefile, client file with main, and a .h, .cpp pair for
a template argument class that implements the < operator. This is the same number and kind
of files referenced by LinkMain.make, which you are welcome to modify (with -Wall enabled).



Your argument class and client need not be fully or even halfway original—as a bargain-basement
option you can just add an operator< to the StringWrap.{h,cpp} files, coded outside the class.
However you may not use just string (as in Valli<string>) or any other predefined C++
type—it must be a used-defined class.

Rules and Grading
You are welcome to adapt code from the text, particularly the iterator code on pp279–281

and some of the methods before and after it. (See also “Tips” below.) You are also welcome
to rummage around in ~regan/cse250/PROJECTS/S00BASE/ for code blocks to examine and/or
adapt. (Most notably its ISR sub-folder has a singly-linked list class SList with a somewhat-
different interface based on an older text, and in particular you may adapt its toString() body
for your str() method even if you use a doubly-linked list.) Having said that, individual-work
rules of academic integrity are in effect for your Valli code. This is not a group-work assignment,
except as may be provided in recitations only. You may discuss among you templates and iterator
syntax, vis-a-vis Chapter 4 (plus 5–6) and lecture notes, and (!) may share argument classes and
testing clients, but you may not share code bodies in Valli. Put another way, treat Valli as
black-box testing (p149). Logic comments you write must be your own. The “Minimal Coding
Guidelines” on the course webpage are now mandated, and you may not put using namespace

std; in any file other than the one with main, after all includes—in other .h and .cpp files you
must have separate using statements like using std::vector; for any items you wish to use
without the std:: prefix. Throwing exceptions as the text shows is optional, and in any event
you need not catch them (the text doesn’t).

Grading is 120 pts. for Valli.h, 18 for logic comments, and 12 for the makefile, argument
class, and client with some (additional) original lines by which you’ve tested your code (on
timberlake, not just trusting another’s client and your home system), for 150 pts. total.

The STL-based Public Interface
Except for the constructors and refresh, the following names and type signatures conform to

the ANSI C++ Standard Template Library, specifically for the multiset container—as shown
in the “Member map” table at http://cplusplus.com/reference/stl. The “multi” means
that we do not forbid storing duplicate items—which in particular simplifies the return type of
insert compared to the ones for set or map. The main difference from the text is that insert

standardly returns an iterator that fingers the just-inserted item, rather than be void. Otherwise
this parallels what the text indicates in Chapter 4, Project 2. Note that the text’s Item Type can
be simply I in your code, and we are not making the methods or even the destructor virtual.

In Valli<I>:

Name and Signature Required Behavior
explicit Valli<I>(size t ratio) Build empty container, save ratio.
Valli<I>() Default constructor, you choose default ratio.
~Valli<I>() Destructor. (OK to omit <I> within class.)
iterator insert(const I& item) Add item, preserving sortedness. Also return an

iterator on the just-inserted item.
iterator find(const I& item) const Return iterator on item, end() if not found.
void erase(iterator itr) Remove cell fingered by itr.
iterator begin() [const?] Return iterator on first (least) item.
iterator end() [const?] Return iterator one place past last item.
size t size() const Number of stored elements.
bool empty() const Equivalent to size() == 0,

and to begin() == end().



Extra, non-STL methods:
void refresh(size_t newRatio = this->ratio)

string str() const assume item.str(), separate items by newlines.

In Valli<I>::iterator: (which == just iterator inside class braces)
Name and Signature Required Behavior
[private constructor(s)!—client must ask container to generate one]
[destructor?] good design may not need one.
[iterator(const iterator& other)? ditto.
iterator& operator=(const iterator& rhs)? ditto.
I& operator*() const [see Note] Return item the iterator is on.
iterator& operator++() Advance, return new self.
iterator operator++(int) Advance, return copy of old self.
bool operator==(const iterator& rhs) [const?] true iff on same cell.
bool operator!=(const iterator& rhs) [const?] (this must be coded too!)

You are not required to implement all the iterator functionality the text shows for a sorted list
on pages 279–281; it is OK to skip decrement and operator->. You are not required to provide
a const iterator either. The STL allows begin() and end() to be non-const with a regular
iterator for technical reasons not in our scope. It is OK for you to make them const because
there is a general principle that appending const to a method prototype never makes the method
less usable! (Adding const to a return type is a different story. . . and of course you can’t declare
a method const if it does modify a top-level field (unless that field is excepted as mutable).) To
avoid a “template friend gotcha” we are following the text by coding operator== and operator!=

inside the class as members, but then there is no standard to mandate that these members be
const, and the text omits that on pp280–281. On the same principle, you should make your
begin(), end(), operator==, and operator!= all const. [Note: The I& return of operator* is
hence a “hole,” whose standard fix is to make a const iterator returning const I&, but per
above we’re postponing that, and rather than return I by value, we stick with I& operator* for
now.]

As on pp279–281 you will need some friend-ing and field(s) in your nested iterator class by
which it can access the current cell it’s attached to. You may also need to keep a reference to the
vector or the head node or to the enclosing Valli<I> object as a whole. One important difference
from Java is that a C++ nested class cannot see members of the enclosing class directly—the
technical term for this is that C++ has only what Java calls static inner classes. You will also
need to write one-or-more iterator constructors that are kept private. If you use singly-linked
cells then you will likely need to require a pointer to the cell before the one the iterator is formally
“on,” adding a dummy cell above the first item for this purpose. Any cell class or other class
need not be nested but goes in the same file.

You need not provide the multiple versions of the constructors and several methods that the
STL actually gives. You may add private fields and methods at-will, and one private method in
Valli is tantamount to being required:

void insert(const iterator& pos, const I& item): insert item before the cell that the
iterator pos is formally “on”; append item to the end if pos == end().

This is exactly what the insert at the bottom of page 308 becomes when you do the change in
“Programming Project 2.” Why is it private? This is because of the sortedness requirement.
Unrestricted public use of this method would allow users to break that class invariant, and
then the speedup of binary search would be kissed goodbye. Doing this insert as a private



overloaded method will help break up your public insert method body into manageable pieces.
The same may be said of the binary-search routine, which will be used by your public find as
well. Finally, disabling the Valli copy-constructor and operator= (by declaring them private
with empty bodies) is not only well-motivated but saves work!

Implementation Options and Tips
As mentioned above, you may choose to make a singly or doubly linked list. The latter involves

managing an extra prev field but makes it easier not to paint oneself into a corner with pointers.
The iterator for a singly-linked list needs to keep track of the cell before the cell you mean it to be
“on.” With either option you may choose to have a “dummy cell” at the end and/or start—then
the standard assumption that the argument for I has a zero-parameter constructor comes into
play. An adventurous third option is to try to “wrap” std::list as the text does for its own
Ordered List class.

The other main option concerns the vector of “milepost” entries. The simplest and naturally-
expected idea is to make it a vector<Cell*> of ordinary pointers to the cells. The alternative,
once you’ve coded the iterator class, is to make it a vector of iterators, i.e. “smart pointers.”
The latter would feel like a savings especially if you’ve used a singly-linked list, as your iterator
class will already have dealt with the “cell before” issue, and you wouldn’t need to wrestle with
it directly again while coding. Either way, a key issue is to avoid the erase method munging one
of the “mileposts” when deleting a cell. You may move the milepost forward or backward—but if
two mileposts wind up on the same cell, that’s a time to call refresh. Coding your binary search
as a private method that returns the milepost before the place you’re looking for is therefore
recommended.

The final issue is how to manage the milepost vector and when else to call refresh. Initially
for an empty container it should have just the two entries standing for head and tail—or for
begin and end if you use iterators—and one or both may be null or point to a dummy cell. Keep
track of the number n of entries as a private field—then your size() method can simply return
it. Given an initial value of r, you should wait until r = n + 1 before calling refresh in a way
that will automatically add a third middle entry. (Alternatively, you may wait until n = 2r so
that it goes exactly in the middle.) Note that you can call clear() on the vector and push back

entries to rebuild it—then you will want to maintain a separate head field in the Valli class
for the first linked-list node after all (and if you have a “dummy head” you’ll have the issue of
whether the first vector entry should go to it or to the first “real” cell). Theoretically r should
grow as log n in order to “balance” the O(log n) time for binary search and the extra up-to-r
steps for subsequently finding the exact cell needed. However, if you choose an initial value like
r = 20—as suggested by the tradeoff points shown in class for “simple” versus “asymptotically
best” code—that’s good for n up to a million!

Relevance: This is the simplest data structure I know that does any one of the following three,
let alone all three: (a) covers the important points in Chapter 4 and Chapter 7 (section 7.3), (b)
competes with the advanced standard containers in all operations, and (c) still(?) doesn’t have
C++ answer code readily available on the Internet. Regarding (c), if you find some please let me
know privately, and I’ll adjust accordingly. Based on my experience, however, such code as there
is would be more work to adapt than the code already in our textbook—which you are expressly
welcome to use sans-citation. You may not publicly post your answers. Some motivation for
competing with the standard containers is given in the article “Why you shouldn’t use set. . . ”
by Matt Austern (http://lafstern.org/matt/col1.pdf), which describes binary search on a
sorted vector without the list and mileposts.


