CSE250, Fall 2009 Project 2 Due 11/23 & 12/4

Stock Market News Service Simulation
Groups of 2, online submission only---no hardcopy

This project has a “staggered due dates” policy similar to what was ultimately implemented for Project 1. The
main data-structure components are due Monday, Nov. 23, 11:59pm under terms previously stated. These
are a hash-table plus hash function-object from one team member; a heap-rebuilder, Stock class, and comparison
function objects from the other. The full application client, timing experiments, and final project report are due
Friday, Dec. 4, 11:59pm.

Reading
For Wednesday, read this project description, including parts of the text and online sources it references.
There will be a closed-book quiz in class period Wed. 11/11 on this reading.

Short Task Statement

Your software is to provide speedy recording of stock market transactions as they come over a simulated stock
ticker, and speedy reporting of certain market statistics requested by subscribers to your service. The requests
are for “Top-k” lists in certain categories. Both the ticker’s stock-trades and the requests are simulated by lines
in a text file.

Your project must store class objects for the stocks in a templated STL-conformant hash table, hashed ac-
cording to their ticker symbol, and pointers or “proxy objects” for the stock objects in templated heap containers
corresponding to the categories. For initial insertion into the hash table, the data files begin with lines such as

add? NCF 5000000s23.875
add? AAM 6203000s2.0

add? AIR 27181000s15.8125
add? RNT 19909000s13.9375

The add? is to help you process this as insert not £ind. Then follows the ticker symbol between spaces. Then
comes a relatively large integer giving the total number of shares that exist (called the capitalization), the letter s
for “shares’ as a divider, and finally a floating-point number representing a starting dollar price per share. Trades
have the same format without the add? token, e.g.:

ATR 100s15.7625

IHT 1400s26.262499

SRR 100s8.0625

KEG 400s9.2375

means 100 shares of AIR were traded at (about) $15.76, then 1400 shares of another stock THI were traded at
(about) $26.26, next 100 shares of SRR and 400 shares of KEG at the prices shown. The requests you must
provide for are the following—the final number “k” is arbitrary:

printTopByVolume? 30
printTopByPercentUp? 10
printTopByPercentDown? 50
printTopByPercentChange? 100
printTopByMomentum? 50
printTopByTrendTrades? 50

The volume is the total number of shares that have been traded thus far. Percent up and down are based on
the starting price when the initial inserts were done. Percentage down should have a negative sign, but percent-
change takes its absolute value (use std: :fabs) to compare with cases of percent-up. The momentum is defined
by

volume
m = (percentage change) ————.
capitalization
Finally, the trend is the latest sequence of trades during which the stock has either been rising or falling. A rising
trend is defined to begin with a trade in which the price rose, but is not stopped by trades at the same price
thereafter—it is stopped only by a trade in which the price falls. A falling trend is defined simlarly.! The query
printTopByTrendTrades? 50 asks to print the 50 stocks with the largest number of trades in their current trend,
whether rising or falling. For extra credit, you may implement the related query printTopByTrendShares?,
which adds up the volume of shares over the trades in the trend, rather than just count the trades—the extra

IWith reference to the similar concept of phrases with ascending/descending word lengths, a falling trend does not overlap the
end of the previous rising trend.

credit being specifically for maintaining this in O(1) time along lines of Assgt. 5, problem (1). Together with
momentum, the trend information is most sought after in stock market “technical analysis.”

Finally, there is the query
printAll?
which calls for printing out the current (or closing) prices of all the stocks sorted by ticker symbol. Note that
iterating through the hash table will first give you a haphazard “hash order,” so you will need either to put them
in a vector and call STL’s sort algorithm, or re-use your heap class on them as well (which == HeapSort), or
transfer them to a binary search tee, or even to your Valli container (“ValliSort”!). In addition you can/should
implement some commands to help you debug, and on the final part there will be pause? to help set timing code
(CentiTimer.h, optionally HiResTimer.h on timberlake only). This completes the required functionality.

How It Works

You will have one hash table, various heap objects organized according to the corresponding category, function
objects for the hash function and the category comparisons, and a Stock class. You may define and use additional
classes, such as a small “proxy” for the Stock class which the heaps can store without needing to swap entire
Stock objects. The proxy will (be or) store a pointer into the hash table’s record for the stock, so that the current
price and volume and other comparison information can be read on-the-fly. Thus the order of events is:

e To process a stock trade, look up the stock in the hash table and update its info. The heaps need not be
involved (i.e., you need not “fix them up” yet).

e To process a “top-k” query, re-make the corresponding heap, and extract the top k elements—putting them
back into the heaps after you’ve printed them.

e To print-all, iterate through the hash table to pull off the stock objects into a vector or etc., sort them,
and iterate again to print them in sorted order by ticker symbol.

The most delicate part is getting the stock-comparison function objects to work with the proxies in the heaps,
not just the Stock objects by-value. The proxies can just be Stock* pointers, so compared to the Phrase function
objects, you would have a pointer-dereference of variables such as “lhs” and “rhs” in the body. But since raw
pointers can be a debugging hazard, you may choose to make a proxy object that embeds and manages such a
pointer. Note that storing the Stock objects themselves in the heap(s) is impractical, because heaps do not offer
O(1) or even O(logn) time lookup.

Rules and Grading

One person is “Hasher,” the other “Heaper.” The Hasher must initially submit by 11/23 a file
ChainedHashMMM.h that implements a hash table with chaining, and with the same templated interface as on
Project 1 (hash-function object in place of LessThan). The Hasher may not obtain a hash table from the In-
ternet or any other third-party source—the regulation proof of originality is that this file has recognizably been
“morphed” from one of the team’s Valli files, with the hash-buckets chained together into one list. As tentative
shortcuts before the 11/23 first due date:

e erase need not be coded—this will be permanent.

e the integer argument for the constructor explicit ChainedHash(size_t sz) can be interpreted as a pre-
determined size, rather than a load-factor limit—with no refresh/rehash needed, and

e the “hole” with the iterator operator* will be left unfixed, even though it applies equally to a hash table
as to a sorted data structure.

The “Heaper” is responsible for HeapNNN.h, StockNNN.h, and various function-object classes (which need not
have initials, but need both teammates’ names inside). The Heap class must be templated and have a function-
object template parameter, so that the single Heap class can be re-used for each statistical category. The one
restriction is that the Heap class may not simply delegate to the STL’s priority_queue class, but must instead
have a vector field on which the STL <algorithm> header’s algorithms make heap and (technically optionally)
push_heap, pop-heap are applied. This is described in supplementary Mon. 11/9 lecture notes (posted also on
the course website), and at http://www.cppreference.com/wiki/stl/algorithm/start (click make heap etc.).
These components are likewise due 11/23, 11:59pm under terms previously stated, and we promise preliminary
testing of them over the Thanksgiving break.

Team members may of course collaborate on design decisions (method names and prototypes, etc.), but the
coding effort must be substantially as indicated. The client file, StockClientMMMNNN. cpp with both sets of initials,
and with answers to report-questions (to be specified) as a comment at the bottom, may be an unrestricted joint
effort. That, along with any needed fixes/revisions to components, is due Friday 12/4, 11:59pm. Grading points
are to be specified.

