
CSE250, Spring 2014 Assignment 8 Due Friday 4/18

hardcopy only, in-class submission

Prelim II will be in class period on Friday, Apr. 25, covering the text through Chapter 8 and
assignments through this one. It will have the same terms as Prelim I: closed book, closed-notes
except for 1 notes sheet.

For next week, Finish Chapter 8 and read Chapter 9. The “Phone Directory Case Study” will
not be covered in detail but is recommended; the Huffman Code completion may be skipped. Also
look ahead to Chapter 10, aspects of which we’ve already touched on—skip the more esoteric sorting
algorithms, namely “Bubble Sort” and “Shell Sort,” but notice especially the use of generic code
with template variables standing for kinds of iterator. Read section 10.11 mainly as an example
of issues with indices versus magnitudes and “off-by-1” errors, harking all the way back to early
assignments. Text tweaks: p518 middle—the text describes just one of the three actual STL erase
functions for multiset. We have been referencing the erase that takes an iterator argument and
erases just that one element. And regarding pp535–536, the proposed hash-table additions to the
STL, such as unordered map (can Google that), will of course provide iterators to traverse the hash
tables, but the text is right insofar as the resulting “hash order” is haphazard.

Project 2 will be due on the last day of classes (5/9) and will have teams of 2. On your Problem
Set 8 submission, please rank (at least) three possible project partners. Not everyone will get his/her
first choice, and preference will be given to partners who have signed in to the same recitation session
(or can at least attend it).

(1) Say two strings x and y have “edit distance 1.5” if one can be obtained from the other by
one character deletion and one character change. Using iterator-based code (or pointer-based since
they have the same syntax), write on paper a function ed15 that tests whether two strings have edit
distance 1.5. You may optionally accept if they have edit distance 1 or less, but note that “transpose”
does not necessarily imply “ed1.5.” Your code must run in O(n) time, where n is the length of the
longer string. Be sure to write comments in your code sketch that explain the strategy and prove the
running time. (For a hint, since “iterators are cheap” you may freely use multiple copies of them.
18 pts.—this is the “missing piece” of Assignment 5 but updated to use iterators.)

(2) Draw the binary search tree that results from inserting the words of this sentence in the order
given, allowing duplicate keys. Use alphabetical order of lowercased words with the lower words at
left. Then show the results of deleting all three occurrences of the word ”the”, one at a time. (It
is OK to use either the inorder successor or predecessor for deletion, and putting an equal key left
or right, but please show each step separately on the relevant part of the tree—you do not have to
re-draw the whole tree each time. 12 + 9 = 21 pts.)

(3)
For each task below labeled 1.–10., say which of the following best describes its running time:

(a) Guaranteed O(1) time.

(b) Amortized O(1) time.

(c) Usually O(1) time.

(d) Guaranteed O(log n) time.

(e) Usually O(log n) time.



(f) Guaranteed O(n) time.

In all cases n denotes the number of items currently in the underlying data structure, and any other
parameters are stated. The variable vec stands for a vector, dlist for a doubly-linked list (not
necessarily sorted), valli for a “Valli” data structure, bst for a BST—i.e. a general binary search
tree, itr for an iterator of the appropriate kind, comp for a typical comparison function-object, and
item for a typical item in the data structure. Justifications are not required, but might help for
partial credit. The tasks are:

1. For a BST iterator itr, the call itr++;

2. make heap(vec.begin(), vec.end(), comp);

3. dlist.push back(item); (equivalently, dlist.insert(dlist.end(),item);)

4. vec.push back(item);

5. dlist.erase(itr);

6. vec.erase(itr); where itr points in the middle of vec.

7. For a Valli iterator itr, the call itr++;

8. valli.find(item);, assuming valli just refreshed with ratio r = log2(n).

9. bst.find(item);

10. Preorder traversal of a BST.

(10× 3 = 30 pts., for 69 total on the set)


