CSE250, Fall 2010 Prelim II Dec. 1, 2010

Closed book, closed-notes-except-for-1-sheet, closed neighbors, 48 minutes. This question paper has
TWO problems. Please do both in the exam books provided. The first problem is True/False with
justifications. The exam totals 67 pts., subdivided as shown.

The term FlexArray refers to a data structure consisting of a doubly-linked list of nodes, where
each node holds an array of up to some number ¢ of elements. The data structure has the same
public operations as vector (plus the extra versions of insert and erase with an index argument),
and provides an iterator that is at least bi-directional. If and when a node’s array hits (or exceeds)
size ¢, the node is split into two nodes, each with ¢/2 elements give-or-take one. Foo and Bar are the
usual generic filler names for classes or other types.

(1) (10 x 4 = 40 pts.)
True/False with justifications: Write out the word true or false in full, and then write a
brief but topical justification. The justification is worth 2 of the 4 pts. for each question.

1. In a FlexArray data structure with n > c elements, in which only inserts and no erasures have
been performed, each node always has at least ¢/2 — 1 elements.

2. Same question as 1., but now allowing erasures.

3. 99912 + 99n + 9 = o(n?3).

4. If f(n) = O(t(n)) and g(n) = O(t(n)), then f(n)+ g(n) = O(t(n)).

5. If a class Foo has a field Bar* p, then the destructor ~Foo() should always include the line
delete p;

6. If a class Foo has a field vector<Bar*> elements; then the default assignment operator will
copy the vector’s pointers, but will not copy the Bar objects they point to.

7. If itr is a bi-directional iterator (on any data structure that can support it), then the lines

*¥itr++ = x;
*¥itr = y;
return *(--itr);

always return the value of x.

8. The middle element in an array with an odd number of elements can always be accessed in
O(1) time.

9. The middle element in a doubly-linked list with an odd number of elements can always be
accessed in O(1) time.

10. The middle element in a FlexArray with an odd number of elements can always be accessed
in O(1) time.

Problem (2) is overleaf .



(2) (64+9+3+9 = 27 pts.)

(a)

A FlexArray can pop its rear element by calling its erase(size t i) method with argument
size() - 1. In particular, the Deque2Flex adapter provided for Project 1 translated a call to
popRear () using the line

myImpl->erase(myImpl->size() - 1);

Explain, however, why this fails to provide an implementation of a deque data structure in
which each deque operation can be completed in O(1) time. (This assumes one has coded this
version of erase using the while-loop through nodes that was exemplified on Assignment 6 for
the at method; if you coded it differently you may answer based on your code’s strategy.)

Show how you would code a T popRear() method directly into the FlexArray class so that
it runs in O(1) time. Here T is the template parameter. Write the code in C++4, assuming
the class has a pointer endNode to a dummy end node. In your code you may ignore the
requirement to de-allocate a node if its size falls to zero.

Is the O(1) time in (b) always true, even if the pop makes the last node become empty? Or
is it true only in an “amortized” sense because in a long sequence of successive pops, the
empty-node case happens fairly rarely? Justify your answer briefly.

Now suppose we can use the other version of the erase method, namely iterator
erase(iterator me), whose argument is an iterator not an index. Write code for T popRear ()
that runs in O(1) time using only the public functionality of FlexArray—i.e. without ac-
cess to the private fields of the class—so that it could go in the Deque2Flex adapter (or the
Deque2F1lexI version with iterators).

END OF ExAM



