
CSE396 Problem Set 2 Answer Key Spring 2021

(1) Using TopHat, the “Worksheet” titled S21 HW2 Online Part. There are 10 questions,
each worth 2 points, for 20 total. Answers given there.

(2) For each of the following languages A, write a regular expression r such that L(r) = A,
and then give an NFA Nr such that L(Nr) = A. Well, if you give a DFA, that counts as an
NFA, but in one or two cases you may find the NFA easier to build especially once you have r.
For part (b), note that a string can be broken uniquely into maximal “blocks” of consecutive
letters. For instance, in “Tennessee” the blocks are T , e, nn, e again, ss, and ee.

(a) The language of strings over {a, b} in which every b is followed immediately by at least
two a’s.

(b) The language of strings over {a, b} in which every a belongs to a “block” of at least 2
a’s and every b belongs to a block of at least 3 b’s.

(c) The language of strings over {a, b} with at least 3 characters, such that the last character
equals the third-from-last character. (6 + 6 + 12 = 24 pts.)

Answer: (a) The attempt a∗(baa)∗ gives the strings in which every b is followed by exactly
two a’s. To get “at least two a’s” it must be a∗(baaa∗)∗ or a∗(baa+)∗. Note that this allows
strings of only a’s, including the empty string, for which the condition “in which every b. . . ”
holds true by default. The NFA Na shown below transcribes this expression; it can also be
written without the ε-arc by using b to move off the start state, shown as N ′a.

(b) This is (aaa∗ ∪ bbbb∗)∗. If you like superscript-plus, you can write this as (aa+ ∪ bbb+)∗.
Note again that the empty string is allowed since with no blocks at all the condition holds by
default. The NFA Nb adds two loops to what you would use for (aa ∪ bbb)∗.

(c) Here there must be at least three characters—indeed, that would be the interpretation
even if the prose had omitted the clause “with at least 3 characters,” since “the third-from-last
character” is a positive mention. The “multiplied-out” regular expression is (a + b)∗(aaa +
aba + bab + bbb). You can also “factor” it as (a + b)∗(a(a + b)a + b(a + b)b). (Why did I
switch to writing + rather than ∪? To help visualize the factoring.) The NFA Nc starts by
imitating the design of the NFA for the “third-last-char-equals-1” language but has a branch
at that point. [The question did not ask to convert it to a DFA, but this is shown as a bonus
example.]
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The states qa and ra ”remember”
that an a was read at the fork out
of state s, while qb, rb remember b.
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(3) (a) Again over Σ = {a, b}, design a DFA M such that L(M) equals the language of
strings that begin with baa. Note that if you delete the dead state and the edges involving it,
you get what is technically an NFA with only 5 instructions.

(b) Now design an NFA N with only 5 instructions such that L(N) equals the language of
strings that end in aab. (As in part (a), a single edge or loop labeled with two chars counts
as two instructions.)

(c) Then show the conversion of N into an equivalent DFA, following the method in class.
Compare the number of instructions and states that you get between the two. (6+6+12 = 24
pts., for 68 total on the set)

Answers all in the picture:
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OK, writing it left-to-right and re-numbering the states before going to DFA:
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
δ a b
0 {0, 1} {0}
1 {2} ∅
2 ∅ {3}
3 ∅ ∅


∆({0}, a) = {0, 1}, ∆({0}, b) = {0}

S = {0}, F = ”anything with 3”
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The DFA has the same
number of states but 8
instructions instead of 5.
Its ”backbone” is the
same, however, and the
”design pattern” of tracking
progress toward the goal
would design it directly.

∆({0, 3}, a) = {0, 1}, ∆({0, 3}, b) = {0}. Done.
∆({0, 1, 2}, a) = {0, 1, 2}, ∆({0, 1, 2}, b) = {0, 3}
∆({0, 1}, a) = {0, 1, 2}, ∆({0, 1}, b) = {0}



Extra—this was not assigned but is a useful example. Here is the NFA-to-DFA
conversion for 2(c):
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

δ a b
s {s, 1} {s, 3}
1 {2} {2}
2 {f} ∅
3 {4} {4}
4 ∅ {f}
f ∅ ∅


S = {s}

∆(S, a) = {s, 1}, ∆(S, b) = {s, 3}
∆({s, 1}, a) = {s, 1, 2}, ∆({s, 1}, b) = {s, 2, 3}

∆({s, 3}, a) = {s, 1, 4}, ∆({s, 3}, b) = {s, 3, 4}

Ouch, we have four new states to expand. How bad will this get?

∆({s, 1, 2}, a) = {s, 1, 2, f}, ∆({s, 1, 2}, b) = {s, 2, 3}
∆({s, 2, 3}, a) = {s, 1, 4, f}, ∆({s, 2, 3}, b) = {s, 3, 4}
∆({s, 1, 4}, a) = {s, 1, 2}, ∆({s, 1, 4}, b) = {s, 2, 3, f}
∆({s, 3, 4}, a) = {s, 1, 4}, ∆({s, 3, 4}, b) = {s, 3, 4, f}
Answer was worse—four new states again. The end?

∆({s, 1, 2, f}, a) = {s, 1, 2, f}, ∆({s, 1, 2, f}, b) = {s, 2, 3}
∆({s, 2, 3, f}, a) = {s, 1, 4, f}, ∆({s, 2, 3, f}, b) = {s, 3, 4}

∆({s, 3, 4, f}, a) = {s, 1, 4}, ∆({s, 3, 4, f}, b) = {s, 3, 4, f}
∆({s, 1, 4, f}, a) = {s, 1, 2}, ∆({s, 1, 4, f}, b) = {s, 2, 3, f}
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DFA M at right. Like binary tree at first but gets twisty.


