

(1) Using *TopHat*, the “Worksheet” titled *S21 HW2 Online Part*. There are 10 questions, each worth 2 points, for 20 total. *Answers given there*.

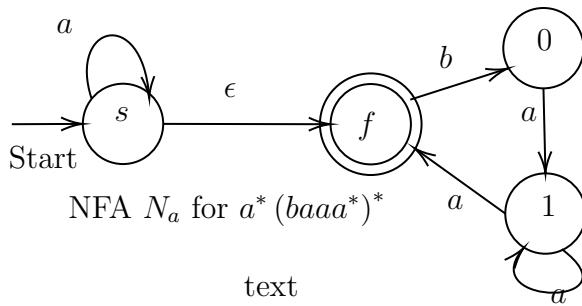
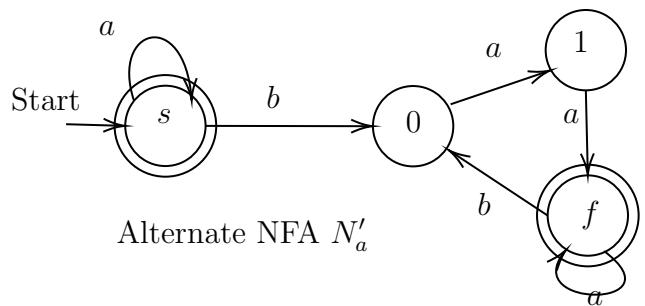
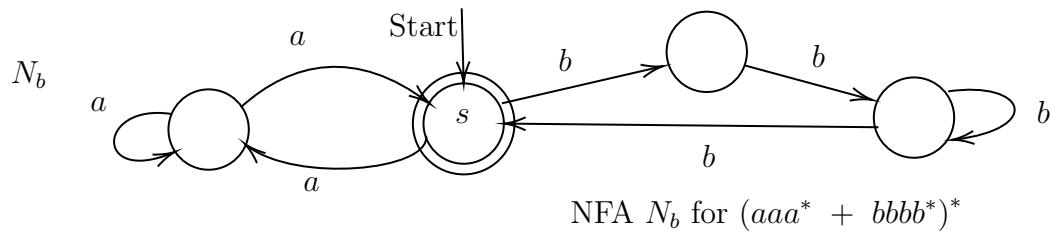
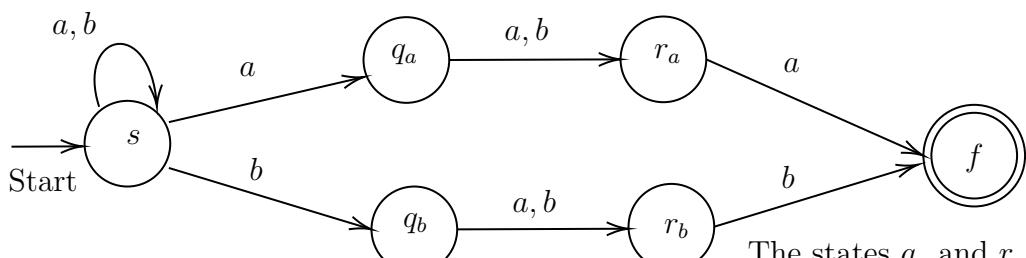
(2) For each of the following languages A , write a regular expression r such that $L(r) = A$, and then give an NFA N_r such that $L(N_r) = A$. Well, if you give a DFA, that counts as an NFA, but in one or two cases you may find the NFA easier to build especially once you have r . For part (b), note that a string can be broken uniquely into maximal “blocks” of consecutive letters. For instance, in “Tennessee” the blocks are T , e , nn , e again, ss , and ee .

- (a) The language of strings over $\{a, b\}$ in which every b is followed immediately by at least two a ’s.
- (b) The language of strings over $\{a, b\}$ in which every a belongs to a “block” of at least 2 a ’s and every b belongs to a block of at least 3 b ’s.
- (c) The language of strings over $\{a, b\}$ with at least 3 characters, such that the last character equals the third-from-last character. ($6 + 6 + 12 = 24$ pts.)

Answer: (a) The attempt $a^*(baa)^*$ gives the strings in which every b is followed by exactly two a ’s. To get “at least two a ’s” it must be $a^*(baaa^*)^*$ or $a^*(baa^+)^*$. Note that this allows strings of only a ’s, including the empty string, for which the condition “in which every $b\dots$ ” holds true by default. The NFA N_a shown below transcribes this expression; it can also be written without the ϵ -arc by using b to move off the start state, shown as N'_a .

(b) This is $(aaa^* \cup bbbb^*)^*$. If you like superscript-plus, you can write this as $(aa^+ \cup bbb^+)^*$. Note again that the empty string is allowed since with no blocks at all the condition holds by default. The NFA N_b adds two loops to what you would use for $(aa \cup bbb)^*$.

(c) Here there must be at least three characters—indeed, that would be the interpretation even if the prose had omitted the clause “with at least 3 characters,” since “the third-from-last character” is a positive mention. The “multiplied-out” regular expression is $(a + b)^*(aaa + aba + bab + bbb)$. You can also “factor” it as $(a + b)^*(a(a + b)a + b(a + b)b)$. (Why did I switch to writing $+$ rather than \cup ? To help visualize the factoring.) The NFA N_c starts by imitating the design of the NFA for the “third-last-char-equals-1” language but has a branch at that point. [The question did not ask to convert it to a DFA, but this is shown as a bonus example.]

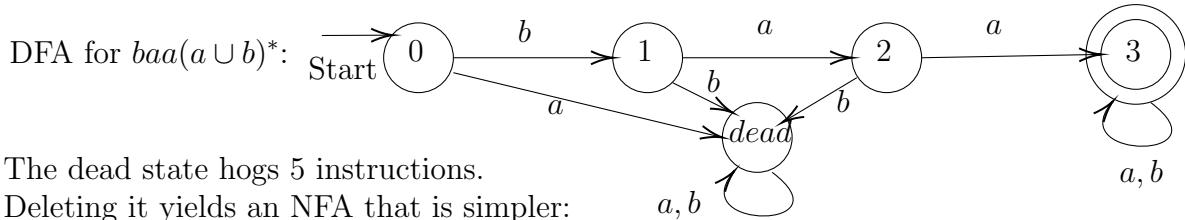
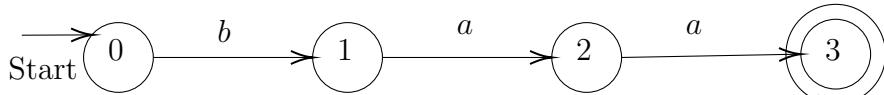


(3) (a) Again over $\Sigma = \{a, b\}$, design a DFA M such that $L(M)$ equals the language of strings that begin with baa . Note that if you delete the dead state and the edges involving it, you get what is technically an NFA with only 5 instructions.

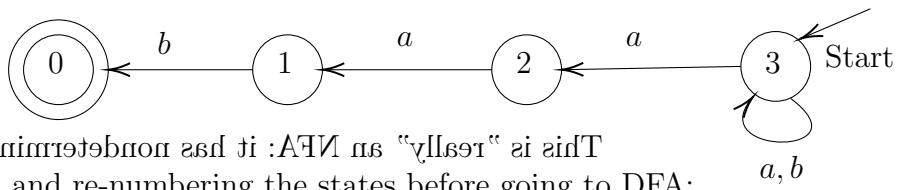
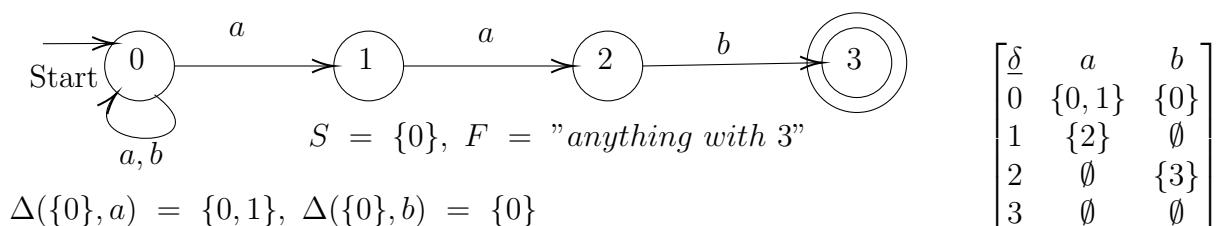
(b) Now design an NFA N with only 5 instructions such that $L(N)$ equals the language of strings that end in aab . (As in part (a), a single edge or loop labeled with two chars counts as two instructions.)

(c) Then show the conversion of N into an equivalent DFA, following the method in class. Compare the number of instructions and states that you get between the two. (6+6+12 = 24 pts., for 68 total on the set)

Answers all in the picture:



Strings that end in aab embody the mirror-image of the first regexp, giving $(a \cup b)^*aab$. The NFA is similarly reversed: reverse each arc and swap s and f :

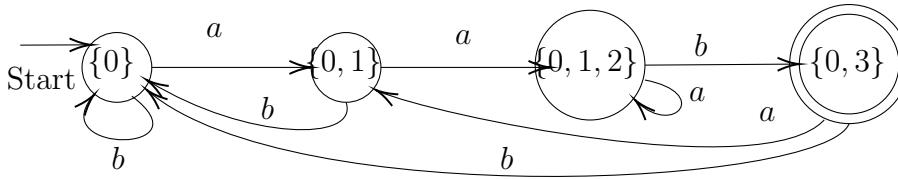


$$\Delta(\{0\}, a) = \{0, 1\}, \Delta(\{0\}, b) = \{0\}$$

$$\Delta(\{0, 1\}, a) = \{0, 1, 2\}, \Delta(\{0, 1\}, b) = \{0\}$$

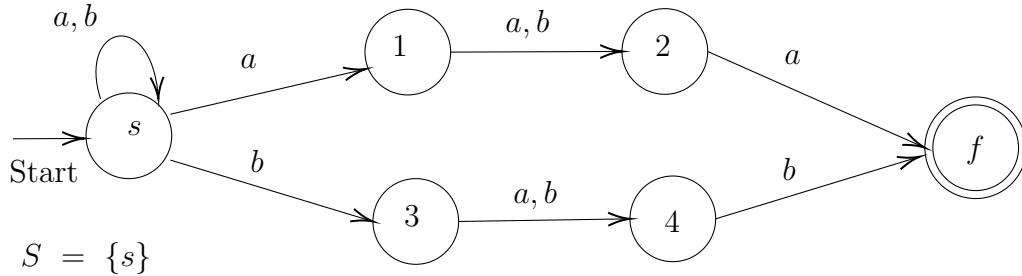
$$\Delta(\{0, 1, 2\}, a) = \{0, 1, 2\}, \Delta(\{0, 1, 2\}, b) = \{0, 3\}$$

$$\Delta(\{0, 3\}, a) = \{0, 1\}, \Delta(\{0, 3\}, b) = \{0\}. \text{ Done.}$$



The DFA has the same number of states but 8 instructions instead of 5. Its "backbone" is the same, however, and the "design pattern" of tracking progress toward the goal would design it directly.

Extra—this was not assigned but is a useful example. Here is the NFA-to-DFA conversion for 2(c):



$$\Delta(S, a) = \{s, 1\}, \Delta(S, b) = \{s, 3\}$$

$$\Delta(\{s, 1\}, a) = \{s, 1, 2\}, \Delta(\{s, 1\}, b) = \{s, 2, 3\}$$

$$\Delta(\{s, 3\}, a) = \{s, 1, 4\}, \Delta(\{s, 3\}, b) = \{s, 3, 4\}$$

Ouch, we have four new states to expand. How bad will this get?

$$\Delta(\{s, 1, 2\}, a) = \{s, 1, 2, f\}, \Delta(\{s, 1, 2\}, b) = \{s, 2, 3\}$$

$$\Delta(\{s, 2, 3\}, a) = \{s, 1, 4, f\}, \Delta(\{s, 2, 3\}, b) = \{s, 3, 4\}$$

$$\Delta(\{s, 1, 4\}, a) = \{s, 1, 2\}, \Delta(\{s, 1, 4\}, b) = \{s, 2, 3, f\}$$

$$\Delta(\{s, 3, 4\}, a) = \{s, 1, 4\}, \Delta(\{s, 3, 4\}, b) = \{s, 3, 4, f\}$$

Answer was worse—four new states again. The end?

$$\Delta(\{s, 1, 2, f\}, a) = \{s, 1, 2, f\}, \Delta(\{s, 1, 2, f\}, b) = \{s, 2, 3\}$$

$$\Delta(\{s, 2, 3, f\}, a) = \{s, 1, 4, f\}, \Delta(\{s, 2, 3, f\}, b) = \{s, 3, 4\}$$

$$\Delta(\{s, 1, 4, f\}, a) = \{s, 1, 2\}, \Delta(\{s, 1, 4, f\}, b) = \{s, 2, 3, f\}$$

$$\Delta(\{s, 3, 4, f\}, a) = \{s, 1, 4\}, \Delta(\{s, 3, 4, f\}, b) = \{s, 3, 4, f\}$$

DFA M at right. Like binary tree at first but gets twisty.

δ	a	b
s	$\{s, 1\}$	$\{s, 3\}$
1	$\{2\}$	$\{2\}$
2	$\{f\}$	\emptyset
3	$\{4\}$	$\{4\}$
4	\emptyset	$\{f\}$
f	\emptyset	\emptyset

