CSE396, Spring 2021 Problem Set 6 Due Tue. 3/30, 11:59pm

Reading: On Tuesday we will finish section 2.3 and move on to chapter 3, so please read
section 3.1 for Tuesday. Note that we will come back to section 2.2 after section 3.2.

Homework—part online (TopHat), part written, and all individual work:
(1) Using TopHat, the “Worksheet” titled S21 HW6 Online Part (10 Qs, 20 pts.)
Answers given there:

The other two problems are to be submitted as PDFs using the CSE Autograder system.

(2) Let E be the language of all strings over ¥ = {a, b} that do not have the substring bb,
and let G be the following context-free grammar:

S — ¢|b|BS|SA
A — aS|AA
B — a|bAaB

(a) Show that the string babab is ambiguous in the grammar G, by giving two different parse
trees. (6 pts.)

(b) Is any other variable besides S capable of deriving €? Give one(s) if so. (3 pts.)

(c) Prove by structural induction that L(G) C E. Hint: Ask yourself what additional
properties, besides not allowing a bb substring themselves, must the variables A and B
maintain? (15 pts., for 24 total)

Answer: To describe the trees in prose: Start S — SA in both cases. In the first, derive
the S to b and A to aS. This gives baS, which repeats to give babaS and finally babab. The
second derives the A to AA instead, giving bAA. The next level of the tree has baSaS, and
deriving both S-es to b completes the tree. (There are other parses too.)

(b) No, only S is nullable. In particular, A is not nullable since it eventually must derive
at least one a.

(c) [Same key as from Spring 2019, which was same key as from earlier year that I assembled
the parts of this problem from.] Define Ps = “Every z that I derive has no substring bb,”
which is just the “vanilla” statement of membership in E. A top-down, goal-oriented way to
get the stronger properties needed for A and B was to note that by the rule S — b, one must
allow that a substring y derived from S might both begin and end with b. Hence S — SA
requires that strings z such that A =* z cannot begin with b—which since A is not nullable
means z must begin with a. Likewise S — BS mandates that any string w derived from B
(which is not nullable either) must end in a. Thus the properties you want for P4 and Pg
both include Ps, and add the clause “and if A =* z then z begins with a” for P4 and “if
B =" z then = ends in a” to Pg. The key further point required for full credit was that we
need to uphold these extra clauses in the rules for A and B as well.

(a)

(b)

S — € | b: These rules uphold Pg immediately.

S — BS: Suppose S =* x using this rule first. Then x =: yz where B =" y and
S =* z. By IH Pg, Ps on the right-hand side, neither y nor z has a bb substring and
y ends in a, so no bb appears where they concatenate either. So z has no bb, which
upholds Ps on the left-hand side.

S — SA: Suppose S =>* x utrf. Then z =: yz where S =" y this time and A =* 2.
By IH Pg, P4 on RHS, y and 2z each have no internal bb and z begins with a. So x has
no bb at the boundary either, which upholds Ps on LHS. (That finishes S, but we still
need to maintain the stronger properties in the other rules.)

A — aS: Suppose A =* x utrf. Then z = ay where S =" y. By IH Ps on RHS, y
has no bb so neither does z, and the leading a makes ay = x immediately uphold the
added clause of P4. So P, is upheld on LHS.

A — AA: Suppose A =* x utrf. Then x =: yz where A =* y and A =* 2. By
IH P4 on RHS (twice), neither y nor z has an internal bb, and y begins with a which
implies the same for x. Is that all we need to say, i.e., is it immaterial that z begins
with a? No, that is needed too, to say that no bb occurs at the boundary between y and
z. So P4 holds on the LHS.

B — a: Both clauses of P are immediately upheld.

B — bAaB: Suppose B =" x utrf. Then z =: byaz where A =>* y and B =" z.
By IH P4, Pg on RHS, those strings have no internal bb, and they don’t touch and in
fact surround an a, so the only bb danger can come from the leading b. That is averted,
however, because P4 on RHS implies that y begins with a. We're not done—we need
to uphold “ends with a” as well to get Pg on LHS, but this follows by “self-induction”
since z ends in a by IH Pg on RHS.

Thus the properties are upheld by all the rules, so L(G) C E by structural induction.

(3) Let A= {a"" :n > 1}. Define E to be the language of strings that differ in at most
one place from a string in A. An example of a string in F is aaba, since changing the last a
to b gives a string in A. Note that E contains A, and that the strings in E have the same
lengths as strings in A. Define G to be the context-free grammar ({S,7,U },{a,b}, R,S),
where the rules in R are:

S — aSb | aTU | UTH
T — aTb | €
U — a | b

For each of the following strings, say whether it belongs to E, and if so, give a leftmost
derivation for it (6 pts. total): (i) €, (ii) bb, (iii) aaabb, (iv) aabbbb.

Find an ambiguous string and draw two different parse trees for it. (6 pts.)

(c) Prove by the structural induction technique that L(G) C E. (You may speak in terms
of £/ “allowing up to one error.” As usual, “reasonable proof shortcuts” are OK. 18 pts.)

(d) Is L(G) = E? Justify your answer briefly by referring to your parsing strategies in (a,b),
but you need not give a formal proof. (6 pts., for 36 total on the problem, 80 on the set)

Answer: (a) (i) € ¢ FE since it (too) requires n > 1; moreover ¢ ¢ L(G) because S is
immediately not nullable—all its rules include terminal(s); (ii) bb € E since it is one-place
different from ab, and G derives it: S = UTb = bTb = bb; (iil) aaabb ¢ E because it
has odd length; (iv) aabbbb € E with regard to aaabbb which is in A, plus S = aSb =
aaSbb = aaUTbbb = aabTbbb = aabbbb.

(b) The string ab is ambiguous—intuitively because it has no errors and hence has an
allowance it can use (or rather refuse) in two places. ASCII parse trees:

(S) (S)
\ /
U
I
a

S S
/| I\
a T U T b

(. |
eps b eps

(c) Define the properties P = “Every x I derive belongs to E” (or more intuitively, “has at
most one error and is not empty”), Pr = “Every z I derive belongs to A or could be empty”
(that is, adds no errors), and Py is that U stands for one char, either a or b. The rules for U
are immediate, as is T — €, so we need only focus on the other rules.

e S — aSb. Suppose S =* x using this rule first. Then z = ayb where S =—* y. By
IH Ps on the right-hand side, y differs from a string in A in at most one place. Adding
an a in front and a b in back preserves that property (one could say, doesn’t add any
further error), so x belongs to E and Ps on LHS is upheld.

e S — aTU: Suppose S =>* x using this rule first. Then = = ayc where T' =-* y and
U =" ¢, so that cis a or b. By IH Pr on RHS, y is in A or y = €; either way |z| > 2.
So even if ¢ = a, x differs from a string in A in at most that one place, which is good to
put x € E thus upholding Ps on LHS.

e S — UTb: Suppose S =* x using this rule first. Then z = cyb where T' =—>* y and
U =" ¢, so that c¢is a or b. By IH Pr on RHS, y is in A or y = ¢; either way |z| > 2.
So even if ¢ = b, x differs from a string in A in at most that one place, which is good
to put € E thus upholding Ps on LHS. (It would be fine to shortcut this by saying,
“similar to last rule.”)

e T'— aTb: Suppose S =>* x using this rule first. Then x = ayb where T'=—-* y. By IH
Pr on the right-hand side, y € A or ye. Adding an a in front and a b in back preserves
that property (it actually gives = € A but upholding Pr on LHS is enough).

Thus the properties are upheld in all rules, so L(G) C E.

(d) In fact, L(G) = E. Sufficient justification is that you can derive any string x € E by
working from the outside in: use S — aSb until you hit a place with an error (if any), then
switch to S — aT'U if the error is an a in back that should be a b, or to S — UTb if a char
in the first half of x is wrong. Then finish off using 7. In case of there being no error, the
restriction n > 1 means = # € so that there is “time” to use one of the rules S — aTU or
S — UTb.

