
CSE396 Problem Set 10 Answer Key Spring 2017

The Final Exam is set for Tuesday, May 16 in the lecture room, Cooke 121, 11:45am–
2:45pm. We have decided to repeat the terms used for last year’s exam in the identical
room: one notes binder is allowed. The textbook is not allowed, and all electronic devices
are forbidden. If you must bring a backpack or other bulky bag into the room at all, it must
be stowed along the side of the room.

(1) Consider the following decision problem:

Exception Throw

Instance: A Java program P and an input stream x ∈ ASCII ∗.
Question: Does running P on x throw an ArrayIndexOutOfBoundsException?

Show that this decision problem is undecidable—by arguing concretely that if it were decid-
able, then the Acceptance Problem for Turing machines would be decidable, which it isn’t. (It
may help you to know that the Turing Kit program, though it has other bugs, never throws
this exception. 18 pts.)

Answer: Given a TM M and an argument w to M , define a Java program P as follows: P
is the “Turing Kit” program (or JFLAP or some other Turing machine simulator) with two
modifications:

• It has M and w embedded in its code, so that when P starts up on any input x (which
is ignored) it begins a simulation of M on input w.

• Right after the line that displays the “String accepted” dialog, it has a line that throws
the exception—which importantly is the only way that exception can be thrown when
running P .

If we had a decider R for the Exception Throw problem, then we could chain R to the
above conversion of 〈M,w〉 into P , and so would get a decider Q for the ATM problem. To
wit, 〈M,w〉 ∈ ATM ≡ M accepts w =⇒ P on any x eventually displays “String accepted”
and throws the exception, which =⇒ 〈P, λ〉 is in the language of the Exception Throw

problem. But 〈M,w〉 /∈ ATM ≡ M does not accept w =⇒ P never throws the exception
(because the above is the only way the exception can be thrown), so 〈P, λ〉 /∈ Exception

Throw. So Q, coded to translate 〈M,w〉 into (say) 〈P, λ〉 and accept iff R accepts 〈P, λ〉,
would be a decider for the ATM problem. But since ATM is undecidable, Q is “quixotic” and
cannot exist. Hence the decider R cannot exist so Exception Throw is undecidable.

Alternately, you could use just the second modification and make P treat whatever input
x comes on System.in as a machine+input pair, loading and running them if x successfully
decodes as such. If you then translate f ′(〈M,w〉) = 〈P, 〈M,w〉〉 (rather than f(〈M,w〉) =
〈P, λ〉 which is implictly going on above), the decoding will be successful and we again get
that P (x) throws the exception if and only if M accepts w. Either way, focusing on the logic
of =⇒ and ⇐⇒ and the translation function f or f ′ is all you really need—the “window-
dressing” of “R” and “S” is automatic. So answers phrased as reductions can be shorter than
this one.



(2) Suppose we have a computable function f(〈M,w〉) = 〈M ′〉 with the following properties
for any given TM M and string w:

• If M accepts w, then L(M ′) = Σ∗.

• If M does not accept w, then L(M ′) = ∅.

Explain why this not only mapping-reduces ATM to NETM, it also mapping-reduces ATM to
ALLTM and to KTM. (Note that the latter supplements the simple way KTM was reduced to
ATM via the simple function f ′(x) = 〈x, x〉, so that KTM and ATM are mapping equivalent—
more usually called many-one equivalent and written ≡m either way. 6 + 12 = 18 pts.)

Answer: All we need to do is continue the =⇒ logic and see what ⇐⇒ relations it leads
to:

• 〈M,w〉 ∈ ATM ≡ M accepts w =⇒ for all x, M ′ accepts x =⇒ L(M ′) = Σ∗ =⇒
〈M ′〉 ∈ ALLTM .

• 〈M,w〉 /∈ ATM ≡ M does not accept w =⇒ for all x, M ′ does not accept x =⇒
L(M ′) = ∅ =⇒ L(M ′) 6= Σ∗ =⇒ 〈M ′〉 /∈ ALLTM .

• So 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′〉 ∈ ALLTM , so ATM ≤m ALLTM via this f .

• 〈M,w〉 ∈ ATM ≡ M accepts w =⇒ for all x, M ′ accepts x =⇒ M ′ accepts the
particular x that happens to be its own code =⇒ 〈M ′〉 ∈ KTM .

• 〈M,w〉 /∈ ATM ≡ M does not accept w =⇒ for all x, M ′ does not accept x =⇒ M ′

does not accept the particular x that happens to be its own code =⇒ 〈M ′〉 /∈ KTM .

• So 〈M,w〉 ∈ ATM ⇐⇒ 〈M ′〉 ∈ KTM , so ATM ≤m KTM via this selfsame f .

(3) Show that the language REGULARCFG = {CFGs G : L(G) is regular } is undecidable.
Note that this is not the same as deciding whether the rules of G obey the format of a “regular
grammar” as described on HW7. Rather, the question is whether the language of G is regular.
Use the fact that the language of accepting computation histories of a single-tape TM is not
regular unless it is empty1, and do a reduction from ETM . (18 pts., for 54 on the set)

Answer: We can convert any given TM M into the grammar f(M) = G that generates the
complement of ACHM (that is ACH for M). Then

• 〈M〉 ∈ ETM =⇒ L(G) = Σ∗ =⇒ 〈G〉 ∈ REGULARCFG; since Σ∗ is regular, but

• 〈M〉 /∈ ETM =⇒ ACHM 6= ∅ =⇒ ACHM is not regular =⇒ L(G) is not regular (since
the class REG is closed under complements) =⇒ 〈G〉 /∈ REGULARCFG

Since the process of building G is computable given any TM M , we have a computable
function f such that for all M , 〈M〉 ∈ ETM ⇐⇒ f(〈M〉) ∈ REGULARCFG, so ETM ≤m
REGULARCFG, and since ETM is undecidable, this shows that REGULARCFG is undecidable.

1 Technically, say if there is only one accepting computation C, then the language ACH of accepting
computation histories would be finite and hence regular. To fix this, we re-define ACH to allow configurations
to have any number m of extra trailing @ chars, provided all configurations in the history have the same m.
This and the fact that any halting C has at least two configurations in it makes ACH “embed” the language
{@m#@m : m ≥ 0} so that ACH is non-regular, unless it is empty.


