
CSE396 Problem Set 5 Answer Key Spring 2017

(1) Define L to be the language of strings over Σ = {a, b} that do not begin with aa and
do not end in bb. (Note this is different from the language on Prelim 1 by having and in place
of xor.) Find a PD set S of size 6 for L.

Answer: Among the first few strings in order ε, a, b, aa, ab, . . . , ε, a, b, ab, ba all belong to L,
whereas aa and bb do not. Moreover, aa is “dead”—no string beginning with aa can belong
to L—while bb can be made “live” if an a comes next since bba ∈ L. This already tells us that
z = a distinguishes aa from bb, so let’s keep both of them for our set S.

We need 4 more strings. What if we try those first four, ε, a, b, ab, to make S0 =
{ε, a, b, ab, aa, bb}? First thing to note is that each of the first four is distinguished from
both of the last two automatically (by z = ε) because the first four strings belong to L and
the others do not. This already gives us 4× 2 = 8 distinguished pairs, plus aa 6∼L bb gives us
9 out of the

(
6
2

)
= 15 pairs we need to consider. Thus we are just left with the

(
4
2

)
= 6 pairs

among {ε, a, b, ab}. A little “hacking” distinguishes 5 of those pairs:

ε a b ab
ε a b b
a a a
b ??
ab

But how to separate b from ab? How many strings z do we need to consider? Well, you’ll
never find one: a little reflection shows that b and ab leave you in exactly the same “menatl
state” regarding the language L, so in fact b ∼L ab. So let’smove on and try ba in place of
ab, i.e. S = {ε, a, b, ba, aa, bb}. Since ba ∈ L, the distinctions from aa, bb are preserved, so we
need only focus in on the 4× 4 section of the 6× 6 grid that was suggested:

ε a b ba
ε a b aa
a a a
b b
ba

We distinguished b from ba by z = b. The only other revision that was tricky was that to
separate ε from ba you can’t use z = a or z = b anymore, but z = aa works. Thus S is a PD
set of size 6, so any DFA M such that L(M) = L needs at least 6 states. And you can build
an M with 6 states: Branch off a and b apart from the start state s and each other. Make aa
go to “dead” and ab go to the same place as b, which is the middle state of the DFA called
M1 on the Prelim I answer key. Then you just need the other two states of M1 to make 6.

(2) For the following languages L1, L2 over {0, 1}, design context-free grammars G1, G2 such
that L(G1) = L1 and L(G2) = L2. You need not prove your grammars correct, but as usual
you should include a few comments explaining how and why the grammars work correctly.
(2× 12 = 24 pts., for 42 total on the set)

1. L1 = {0m1n0n1m : m ≥ 1, n ≥ 0},

2. L2 = {x0y : #0(x) = #1(y)}.

Answer: G1 has rules S → 0S1 | 0T1, T → 1T0 | ε. The design pattern is “nesting”—S
handles the outer 0m and 1m layers, and the fact that the dropdown to T comes with 0T1
ensures m ≥ 1. The inner T handles 1n0n with T → ε allowing n = 0.

For G2 the key idea is that the displayed 0 between x and y—which is a movable pain-in-
the-neck when you are trying to parse strings—is derived when the grammar halts a recursion
on S2. So the idea of “on the left of S2” rigorously becomes “on the left of that 0.” It follows
that we can add a single 1 on the left of S2 without changing the balance, and likewise add a
single 0 on the right of S2. But whenever we add a 0 on the left of S2, we have to balance it
immediately with a 1 on its right. This shows thatthe following grammar is sound :

S2 → 0 | 1S2 | S20 | 0S21

Is it comprehensive? Let any w ∈ L be given, and write w = x0y such that #0(x) = #1(y) =
k, say. Mark the k-many 0s in x and the k-many 1’s in y. Pair them up in a nested fashion.
In-between the 0s in x you have a “filling” of however-many 1s, and in-between the 1s in y
you have fillings of 0s. Working from the outside-in, use the S2 → 1S2 and S2 → S20 rules to
handle the “fillings” until you reach a marked pair on both the left and right. Then you use
S2 → 0S21 to generate that pair. Rinse, repeat, enjoy, and finally to S2 → 0 to finish w. So
L(G2) = L2.

There was no requirement to use only one variable. The explanation above is arguably
clearer if we apply it to this grammar instead:

S2 → 0 | TS2U | 0S21, T → 0T | ε, U → U1 | ε.

Then using the notation in lecture for the language of each variable, we have LT = 0∗ and
LU = 1∗; these are the classic ways of making lists (and for those in CSE305, of simulating
the BNF “star” operator).

