CSE396 Problem Set 5 Answer Key Spring 2017

(1) Define L to be the language of strings over ¥ = {a, b} that do not begin with aa and
do not end in bb. (Note this is different from the language on Prelim 1 by having and in place
of xor.) Find a PD set S of size 6 for L.

Answer: Among the first few strings in order €, a, b, aa,ab, ..., €,a,b,ab, ba all belong to L,
whereas aa and bb do not. Moreover, aa is “dead”—mno string beginning with aa can belong
to L—while bb can be made “live” if an a comes next since bba € L. This already tells us that
z = a distinguishes aa from bb, so let’s keep both of them for our set S.

We need 4 more strings. What if we try those first four, €, a,b,ab, to make Sy =
{€,a,b,ab,aa,bb}? First thing to note is that each of the first four is distinguished from
both of the last two automatically (by z = €) because the first four strings belong to L and
the others do not. This already gives us 4 x 2 = 8 distinguished pairs, plus aa ¢, bb gives us
9 out of the (g) = 15 pairs we need to consider. Thus we are just left with the (;1) = 6 pairs
among {¢,a,b,ab}. A little “hacking” distinguishes 5 of those pairs:

e a b ab
€ a b b
a a a
b 77
ab

But how to separate b from ab? How many strings z do we need to consider? Well, you’ll
never find one: a little reflection shows that b and ab leave you in exactly the same “menatl
state” regarding the language L, so in fact b ~p ab. So let’smove on and try ba in place of
ab, i.e. S ={e,a,b,ba,aa,bb}. Since ba € L, the distinctions from aa, bb are preserved, so we
need only focus in on the 4 x 4 section of the 6 x 6 grid that was suggested:

€ a b ba
€ a b aa
a a a
b b
ba

We distinguished b from ba by z = b. The only other revision that was tricky was that to
separate € from ba you can’t use z = a or z = b anymore, but z = aa works. Thus S is a PD
set of size 6, so any DFA M such that L(M) = L needs at least 6 states. And you can build
an M with 6 states: Branch off ¢ and b apart from the start state s and each other. Make aa
go to “dead” and ab go to the same place as b, which is the middle state of the DFA called
M on the Prelim I answer key. Then you just need the other two states of M; to make 6.

(2) For the following languages L1, Lo over {0, 1}, design context-free grammars G, G5 such
that L(G1) = Ly and L(G3) = Ls. You need not prove your grammars correct, but as usual
you should include a few comments explaining how and why the grammars work correctly.
(2 x 12 = 24 pts., for 42 total on the set)



1. Ly ={0m1™0™1™ :m > 1,n > 0},
2. Ly = {20y : #0(z) = #1(y) }.

Answer: Gy has rules S — 051 | 071, T'— 170 | e. The design pattern is “nesting”—S
handles the outer 0™ and 1™ layers, and the fact that the dropdown to T" comes with 07'1
ensures m > 1. The inner 7" handles 170" with 7" — ¢ allowing n = 0.

For G5 the key idea is that the displayed 0 between x and y—which is a movable pain-in-
the-neck when you are trying to parse strings—is derived when the grammar halts a recursion
on Sy. So the idea of “on the left of Sy” rigorously becomes “on the left of that 0.” It follows
that we can add a single 1 on the left of Sy without changing the balance, and likewise add a
single 0 on the right of S;. But whenever we add a 0 on the left of S5, we have to balance it
immediately with a 1 on its right. This shows thatthe following grammar is sound:

SQ—>O | 182 | SQO | 0S21

Is it comprehensive? Let any w € L be given, and write w = x0y such that #0(x) = #1(y) =
k, say. Mark the k-many Os in x and the k-many 1’s in y. Pair them up in a nested fashion.
In-between the 0s in x you have a “filling” of however-many 1s, and in-between the 1s in y
you have fillings of 0s. Working from the outside-in, use the Sy — 155 and Sy — S50 rules to
handle the “fillings” until you reach a marked pair on both the left and right. Then you use
Sy — 0551 to generate that pair. Rinse, repeat, enjoy, and finally to So — 0 to finish w. So
L(Gg) = LQ.

There was no requirement to use only one variable. The explanation above is arguably
clearer if we apply it to this grammar instead:

Sy —= 0| TSU | 051, T—0T|e U—Ul]|e

Then using the notation in lecture for the language of each variable, we have Ly = 0* and
Ly = 1%; these are the classic ways of making lists (and for those in CSE305, of simulating
the BNF “star” operator).



