
CSE396 Prelim II Answer Key Spring 2016

Closed books and laptops, one notes sheet allowed, closed neighbors, 75 minutes. Do all five

problems on these exam sheets. The exam totals 100 pts., subdivided as shown.

(1) (5 × 5 = 25 pts.)

This problem had diagrams for Turing machines with these accompanying prose descriptions. The
language is given after each machine.

1. One-tape TM M1 = “Do zero or more passes and accept if and when [the] tape has no a’s or
b’s left. Each pass X-es out one a then one b or vice-versa, rejecting if there is no opposite char
to X out.” The work alphabet Γ adds ‘X’ and the blank B to the input alphabet Σ = {a, b}.
Answer: This machine was drawn to accept on reading the blank right away so it accepts ε and
gives L(M1) = {x ∈ {a, b}∗ : #a(x) = #b(x)}.

2. Two-tape TM M2, arcs going to qrej not shown: “Push an ‘a’ for each ‘a’ read. On reading ‘b’,
switch to popping one a for each b. Accept iff [the] stack empties on the last b.” Answer: This
machine does not accept ε since it needs reading at least one b, so L(M2) = {anbn : n ≥ 1}.

3. Two-tape TM M3, again cases of immediate rejection are not shown: “Similar to M2, except
also accept if no b’s are found.” Answer: This machine does accept ε under the “no b’s found”
clause, so L(M3) = L(M2) ∪ a∗.

4. One-tape TM M4 that emulates a DFA: [no prose description given or needed]. Answer: In
the diagram qacc and qrej are add-ons, the latter subbing for a dead state. The only states
that matter for the language can be labeled s, f and coded by (s, a, s), (s, b, f), (f, a, s) with
F = {f}, formally as an NFA. The language is L(M4) = (a+ ba)∗b = the set of strings with no
bb substring that also end in b. Note ε /∈ L(M4).

5. “None of the Above.”

With this done, the problem was given each context-free grammar G below, say which if any
Turing machine Mi at right makes L(G) = L(Mi).

(a) S → aSb | ab Answer: Generates { anbn : n ≥ 1 }, so L(M2).

(b) S → aSb | ε Answer: Generates { anbn : n ≥ 0 } which includes ε, but the two machines that
accept ε do not yield this language, so 5, “None of the Above.”

(c) S → aS | baS | b Answer: Generates (a+ ba)∗b, so L(M4).

(d) S → aSb | bSa | SS | ε Answer: This was the CFG from lecture for {x : #a(x) = #b(x) }, so
L(M1).

(e) S → aSb | ab | A,
A → aA | ε Answer: Includes L(M2) ∪ a∗, so includes L(M3) (and in particular generates ε),
but by self-recursion before transiting to A, it also includes { ambn : m > n }. So another “None
of the Above” (but partial credit given for M3).

(2) (6 × 3 = 18 pts.) True/False: Please write out true or false in full, no justifications needed.
The space below can also be used as scratch for Problem (1).

(a) For all context-free languages A, B, and C, the language A∗ ∪B · C is also context-free. True:
the CFLs are closed under the regular operations.

(b) If a CFG G is unambiguous, and G′ is obtained by deleting one or more rules of G, then G′ is
unambiguous. True: if a string x has two distinct parse trees in G′, then it already had them
in G.

(c) For every NFA N there is a CFG G such that L(G) = L(N). True because every regular
language is a CFL.

(d) If a CFG G has a variable A such that A =⇒∗ ε, then ε ∈ L(G). False: A is nullable but the
start symbol S need not be.

(e) For every Turing machine M there is a CFG G such that L(G) = L(M). False: some TMs M
accept languages like { anbnan } that are not CFLs.

(f) The language of odd-length palindromes, i.e., {wcwR : w ∈ Σ∗, c ∈ Σ}, is context-free. True:
S → aSa | bSb | a | b.

(3) (6 + 3 + 3 + 12 = 24 pts.)

Let E be the language of all strings over Σ = {a, b} that do not have the substring bb, and let G
be the following context-free grammar:

S → ε | b | BS | SA
A → aS | AA
B → a | bAaB

(a) Show that the string babab is ambiguous in the grammar G, by giving two different parse trees.
Answer: Start S → SA in both cases. In the first, derive the S to b and A to aS. This gives
baS, which repeats to give babaS and finally babab. The second derives the A to AA instead,
giving bAA. The next level of the tree has baSaS, and deriving both S-es to b completes the
tree.

(b) Is any other variable besides S nullable? Give one(s) if so. Answer: No; in particular, A is not
nullable since it eventually must derive at least one a.

(c) Do any unit rules occur during the conversion to Chomsky normal form? Give one(s) if so—but
do not do any more of the conversion. Answer: Yes—the rules S → B and S → A occur. The
rule A→ a is also added, but it does not count as a unit rule.

(d) Prove by structural induction that L(G) ⊆ E. Hint: Ask yourself what additional properties,
besides not allowing a bb substring themselves, must the variables A and B maintain?

Answer: Define PS ≡ “Every x that I derive has no substring b,” which is just the “vanilla”
statement of membership in E. The properties you want for PA and PB both include PS , and add
the clause “and if A =⇒∗ x then x begins with a” for PA and “if B =⇒∗ x then x ends in a” to PB.

The key points were that these stronger properties for A and B were needed to prevent bb occurring
“at boundaries” and that we need to uphold these extra clauses in the rules for A and B as well
(though not immediately within the rules for S).

• S → ε | b: These rules uphold PS immediately. (Note also that the latter means a string
derived from S can both begin and end with b, which is why the stronger properties for the
other5 variables need to be leaned on.)

• S → BS: Suppose S =⇒∗ x using this rule first. Then x =: yz where B =⇒∗ y and S =⇒∗ z.
By IH PB, PS on the right-hand side, neither y nor z has a bb substring and y ends in a, so no
bb appears where they concatenate either. So x has no bb, which upholds PS on the left-hand
side.

• S → SA: Suppose S =⇒∗ x utrf. Then x =: yz where S =⇒∗ y this time and A =⇒∗ z. By IH
PS , PA on RHS, y and z each have no internal bb and z begins with a. So x has no bb at the
boundary either, which upholds PS on LHS. (That finishes S, but we still need to maintain the
stronger properties in the other rules.)

• A→ aS: Suppose A =⇒∗ x utrf. Then x = ay where S =⇒∗ y. By IH PS on RHS, y has no bb
so neither does x, and the leading a makes ay = x immediately uphold the added clause of PA.
So PA is upheld on LHS.

• A → AA: Suppose A =⇒∗ x utrf. Then x =: yz where A =⇒∗ y and A =⇒∗ z. By IH PA on
RHS (twice), neither y nor z has an internal bb, and y begins with a which implies the same for
x. Is that all we need to say, i.e., is it immaterial that z begins with a? No, that is needed too,
to say that no bb occurs at the boundary between y and z. So PA holds on the LHS.

• B → a: Both clauses of PB are immediately upheld.

• B → bAaB: Suppose B =⇒∗ x utrf. Then x =: byaz where A =⇒∗ y and B =⇒∗ z. By IH
PA, PB on RHS, those strings have no internal bb, and they don’t touch and in fact surround an
a, so the only bb danger can come from the leading b. That is averted, however, because PA on
RHS implies that y begins with a. We’re not done—we need to uphold “ends with a” as well
to get PB on LHS, but this follows by “self-induction” since z ends in a by IH PB on RHS.

Thus the properties are upheld by all the rules, so L(G) ⊆ E by structural induction.

(4) (18 + 6 = 24 pts.)

With reference to G and E in problem (3), prove that E ⊆ L(G) (18 pts.) and also find two rules
not used in your proof that can be deleted (6 pts.) while keeping L(G) = E. Hints: Note that if
x ∈ E and x begins with b and |x| ≥ 2 then the next char must be a. Do you need to add induction
hypotheses for the other variables besides S?

Answer: Prove (∀n ≥ 0)P (n), where P (n) ≡ for each x ∈ { a, b }n, if x has no substring bb then
S =⇒∗ x. Let’s see if we can do this without having to use a property P ′(n) that is “augmented”
with clauses for the other variables.

Basis (n = 0): ε ∈ E and S =⇒ ε. Check.

Another Basis (n = 1): Both a and b belong to E. We have S =⇒ BS =⇒ aS =⇒ a and S =⇒ b.
(For reference at the end, note also the alternative S =⇒ SA =⇒ A =⇒ aS =⇒ a, which uses the

rule S → SA instead of S → BS for the basis—the same idea also yields more parse trees for babab
in 3(a).)

Induction (n ≥ 2): We may assume (IH) the statements P (m) for all m, 0 ≤ m < n. We will in
fact only use P (n− 1) and P (n− 2), but it doesn’t hurt to say the full slate is at your disposal. Let
any x ∈ Σn such that x ∈ E be given. We try two mutually exhaustive cases: (i) x begins with a
and (ii) x begins with ba. Regarding the latter, note we don’t have x = b since n ≥ 2 (here is where
we’d be reminded to make a separate base case for it if we hadn’t already), so there is a second char,
and since the second char being b would make x begin with bb and put x /∈ E, case (ii) must hold as
stated if case (i) doesn’t.

Case (i): x = ay where |y| = n− 1. Since x ∈ E we have y ∈ E, so IH P (n− 1) kicks in to imply
S =⇒∗ y. Then we build S =⇒ BS =⇒ aS =⇒∗ ay = x. So P (n) holds in this case.

Case (ii): x = baz where |z| = n− 2. Then z too must be in E, so by IH P (n− 2), S =⇒∗ z. This
gives us S =⇒ SA =⇒ bA =⇒ baS =⇒∗ baz = x.

Thus P (n) holds in each of two exhaustive cases, so it follows in general, which completes the
induction showing (∀n)P (n), which says E ⊆ L(G). (Putting problems (3) and (4) together, we get
a full proof of L(G) = E.)

We nowhere used the rules A → AA and B → bAaB in the proof, so while sound they are
superfluous. Actually, we could have avoided S → BS in case (i) as well as the n = 1 basis, by doing
S =⇒ SA =⇒ A =⇒ aS =⇒∗ ay = x instead. So S → BS is a third rule that can be removed—but
any two were enough for full credit.

(5) (9 pts.)

The language L = {aibjck : i < j ∨ j < k} is context-free.1 But suppose you were being
questioned on Capitol Hill by a prosecutor trying to prove otherwise. Say you give p = 5 as the
pumping length and the prosecutor tells you to break down

s = apbp+1cp+2 = aaaaabbbbbbccccccc.

Give a breakdown s =: uvxyz into five substrings that “survives”—i.e., is such that for all i ≥ 0,
uvixyiz does belong to L. Briefly explain why. (There are multiple correct answers.)

Answer: One of many ways is to take

u = ap−1 v = a x = ε y = b z = bpcp+2

(either abstractly or concretely with p = 5 was fine). Ditto taking vxy = bc on the other side instead,
and actually the OR allows you to give practically any breakdown with |vxy| ≤ 5. The reason in the
above particular case is that the property of having one less a than b doesn’t change in uvixyiz for
any i.

1A grammar starts with S → S1C | AS2, makes A derive a∗ and C derive c∗, and makes S1 derive {aibj : j > i}
by ways we have seen in lectures and notes and answer keys, likewise S2 deriving {bjck : k > j}. You can answer the
question without caring about these details. End of Exam

