

Closed books and laptops, one notes sheet allowed, closed neighbors, 75 minutes. Do ALL FIVE problems **on these exam sheets**. The exam totals 100 pts., subdivided as shown.

(1) (5 × 5 = 25 pts.)

This problem had diagrams for Turing machines with these accompanying prose descriptions. The language is given after each machine.

1. One-tape TM M_1 = “Do zero or more *passes* and accept if and when [the] tape has no a ’s or b ’s left. Each *pass* X-es out one a then one b or vice-versa, rejecting if there is no opposite char to X out.” The work alphabet Γ adds ‘ X ’ and the blank B to the input alphabet $\Sigma = \{a, b\}$. *Answer:* This machine was drawn to accept on reading the blank right away so it accepts ϵ and gives $L(M_1) = \{x \in \{a, b\}^* : \#a(x) = \#b(x)\}$.
2. Two-tape TM M_2 , arcs going to q_{rej} not shown: “Push an ‘ a ’ for each ‘ a ’ read. On reading ‘ b ’, switch to popping one a for each b . Accept iff [the] stack empties on the last b .” *Answer:* This machine does not accept ϵ since it needs reading at least one b , so $L(M_2) = \{a^n b^n : n \geq 1\}$.
3. Two-tape TM M_3 , again cases of immediate rejection are not shown: “Similar to M_2 , except also accept if no b ’s are found.” *Answer:* This machine does accept ϵ under the “no b ’s found” clause, so $L(M_3) = L(M_2) \cup a^*$.
4. One-tape TM M_4 that emulates a DFA: [no prose description given or needed]. *Answer:* In the diagram q_{acc} and q_{rej} are add-ons, the latter subbing for a dead state. The only states that matter for the language can be labeled s, f and coded by $(s, a, s), (s, b, f), (f, a, s)$ with $F = \{f\}$, formally as an NFA. The language is $L(M_4) = (a + ba)^* b$ = the set of strings with no bb substring that also end in b . Note $\epsilon \notin L(M_4)$.
5. “None of the Above.”

With this done, the problem was given each context-free grammar G below, say which if any Turing machine M_i at right makes $L(G) = L(M_i)$.

- (a) $S \rightarrow aSb \mid ab$ *Answer:* Generates $\{a^n b^n : n \geq 1\}$, so $L(M_2)$.
- (b) $S \rightarrow aSb \mid \epsilon$ *Answer:* Generates $\{a^n b^n : n \geq 0\}$ which includes ϵ , but the two machines that accept ϵ do not yield this language, so 5, “None of the Above.”
- (c) $S \rightarrow aS \mid baS \mid b$ *Answer:* Generates $(a + ba)^* b$, so $L(M_4)$.
- (d) $S \rightarrow aSb \mid bSa \mid SS \mid \epsilon$ *Answer:* This was the CFG from lecture for $\{x : \#a(x) = \#b(x)\}$, so $L(M_1)$.
- (e) $S \rightarrow aSb \mid ab \mid A$,
 $A \rightarrow aA \mid \epsilon$ *Answer:* Includes $L(M_2) \cup a^*$, so includes $L(M_3)$ (and in particular generates ϵ), but by self-recursion before transiting to A , it also includes $\{a^m b^n : m > n\}$. So another “None of the Above” (but partial credit given for M_3).

(2) (6 × 3 = 18 pts.) *True/False:* Please write out `true` or `false` in full, no justifications needed. The space below can also be used as scratch for Problem (1).

- (a) For all context-free languages A , B , and C , the language $A^* \cup B \cdot C$ is also context-free. *True:* the CFLs are closed under the regular operations.
- (b) If a CFG G is unambiguous, and G' is obtained by deleting one or more rules of G , then G' is unambiguous. *True:* if a string x has two distinct parse trees in G' , then it already had them in G .
- (c) For every NFA N there is a CFG G such that $L(G) = L(N)$. *True* because every regular language is a CFL.
- (d) If a CFG G has a variable A such that $A \Rightarrow^* \epsilon$, then $\epsilon \in L(G)$. *False:* A is nullable but the start symbol S need not be.
- (e) For every Turing machine M there is a CFG G such that $L(G) = L(M)$. *False:* some TMs M accept languages like $\{a^n b^n a^n\}$ that are not CFLs.
- (f) The language of odd-length palindromes, i.e., $\{wcw^R : w \in \Sigma^*, c \in \Sigma\}$, is context-free. *True:* $S \rightarrow aSa \mid bSb \mid a \mid b$.

(3) (6 + 3 + 3 + 12 = 24 pts.)

Let E be the language of all strings over $\Sigma = \{a, b\}$ that do not have the substring bb , and let G be the following context-free grammar:

$$\begin{aligned} S &\rightarrow \epsilon \mid b \mid BS \mid SA \\ A &\rightarrow aS \mid AA \\ B &\rightarrow a \mid bAaB \end{aligned}$$

- (a) Show that the string $babab$ is ambiguous in the grammar G , by giving two different parse trees. *Answer:* Start $S \rightarrow SA$ in both cases. In the first, derive the S to b and A to aS . This gives baS , which repeats to give $babaS$ and finally $babab$. The second derives the A to AA instead, giving bAA . The next level of the tree has $baSaS$, and deriving both S -es to b completes the tree.
- (b) Is any other variable besides S nullable? Give one(s) if so. *Answer:* No; in particular, A is not nullable since it eventually must derive at least one a .
- (c) Do any unit rules occur during the conversion to Chomsky normal form? Give one(s) if so—but do not do any more of the conversion. *Answer:* Yes—the rules $S \rightarrow B$ and $S \rightarrow A$ occur. The rule $A \rightarrow a$ is also added, but it does not count as a unit rule.
- (d) Prove by structural induction that $L(G) \subseteq E$. *Hint:* Ask yourself what additional properties, besides not allowing a bb substring themselves, must the variables A and B maintain?

Answer: Define $P_S \equiv$ “Every x that I derive has no substring b ,” which is just the “vanilla” statement of membership in E . The properties you want for P_A and P_B both *include* P_S , and *add* the clause “and if $A \Rightarrow^* x$ then x begins with a ” for P_A and “if $B \Rightarrow^* x$ then x ends in a ” to P_B .

The key points were that these stronger properties for A and B were needed to prevent bb occurring “at boundaries” and that we need to uphold these extra clauses in the rules for A and B as well (though not immediately within the rules for S).

- $S \rightarrow \epsilon \mid b$: These rules uphold P_S immediately. (Note also that the latter means a string derived from S can both begin and end with b , which is why the stronger properties for the other 5 variables need to be leaned on.)
- $S \rightarrow BS$: Suppose $S \Rightarrow^* x$ using this rule first. Then $x =: yz$ where $B \Rightarrow^* y$ and $S \Rightarrow^* z$. By IH P_B, P_S on the right-hand side, neither y nor z has a bb substring and y ends in a , so no bb appears where they concatenate either. So x has no bb , which upholds P_S on the left-hand side.
- $S \rightarrow SA$: Suppose $S \Rightarrow^* x$ utrf. Then $x =: yz$ where $S \Rightarrow^* y$ this time and $A \Rightarrow^* z$. By IH P_S, P_A on RHS, y and z each have no internal bb and z begins with a . So x has no bb at the boundary either, which upholds P_S on LHS. (That finishes S , but we still need to maintain the stronger properties in the other rules.)
- $A \rightarrow aS$: Suppose $A \Rightarrow^* x$ utrf. Then $x = ay$ where $S \Rightarrow^* y$. By IH P_S on RHS, y has no bb so neither does x , and the leading a makes $ay = x$ immediately uphold the added clause of P_A . So P_A is upheld on LHS.
- $A \rightarrow AA$: Suppose $A \Rightarrow^* x$ utrf. Then $x =: yz$ where $A \Rightarrow^* y$ and $A \Rightarrow^* z$. By IH P_A on RHS (twice), neither y nor z has an internal bb , and y begins with a which implies the same for x . Is that all we need to say, i.e., is it immaterial that z begins with a ? No, that is needed too, to say that no bb occurs at the boundary between y and z . So P_A holds on the LHS.
- $B \rightarrow a$: Both clauses of P_B are immediately upheld.
- $B \rightarrow bAaB$: Suppose $B \Rightarrow^* x$ utrf. Then $x =: byaz$ where $A \Rightarrow^* y$ and $B \Rightarrow^* z$. By IH P_A, P_B on RHS, those strings have no internal bb , and they don’t touch and in fact surround an a , so the only bb danger can come from the leading b . That is averted, however, because P_A on RHS implies that y begins with a . We’re not done—we need to uphold “ends with a ” as well to get P_B on LHS, but this follows by “self-induction” since z ends in a by IH P_B on RHS.

Thus the properties are upheld by all the rules, so $L(G) \subseteq E$ by structural induction.

(4) (18 + 6 = 24 pts.)

With reference to G and E in problem (3), prove that $E \subseteq L(G)$ (18 pts.) and also find two rules not used in your proof that can be deleted (6 pts.) while keeping $L(G) = E$. *Hints:* Note that if $x \in E$ and x begins with b and $|x| \geq 2$ then the next char must be a . Do you *need* to add induction hypotheses for the other variables besides S ?

Answer: Prove $(\forall n \geq 0)P(n)$, where $P(n) \equiv$ for each $x \in \{a, b\}^n$, if x has no substring bb then $S \Rightarrow^* x$. Let’s see if we can do this without having to use a property $P'(n)$ that is “augmented” with clauses for the other variables.

Basis ($n = 0$): $\epsilon \in E$ and $S \Rightarrow \epsilon$. Check.

Another Basis ($n = 1$): Both a and b belong to E . We have $S \Rightarrow BS \Rightarrow aS \Rightarrow a$ and $S \Rightarrow b$. (For reference at the end, note also the alternative $S \Rightarrow SA \Rightarrow A \Rightarrow aS \Rightarrow a$, which uses the

rule $S \rightarrow SA$ instead of $S \rightarrow BS$ for the basis—the same idea also yields more parse trees for $babab$ in 3(a).)

Induction ($n \geq 2$): We may assume (IH) the statements $P(m)$ for all m , $0 \leq m < n$. We will in fact only use $P(n-1)$ and $P(n-2)$, but it doesn't hurt to say the full slate is at your disposal. Let any $x \in \Sigma^n$ such that $x \in E$ be given. We try two mutually exhaustive cases: (i) x begins with a and (ii) x begins with ba . Regarding the latter, note we don't have $x = b$ since $n \geq 2$ (here is where we'd be reminded to make a separate base case for it if we hadn't already), so there is a second char, and since the second char being b would make x begin with bb and put $x \notin E$, case (ii) must hold as stated if case (i) doesn't.

Case (i): $x = ay$ where $|y| = n - 1$. Since $x \in E$ we have $y \in E$, so IH $P(n-1)$ kicks in to imply $S \Rightarrow^* y$. Then we build $S \Rightarrow BS \Rightarrow aS \Rightarrow^* ay = x$. So $P(n)$ holds in this case.

Case (ii): $x = baz$ where $|z| = n - 2$. Then z too must be in E , so by IH $P(n-2)$, $S \Rightarrow^* z$. This gives us $S \Rightarrow SA \Rightarrow bA \Rightarrow baS \Rightarrow^* baz = x$.

Thus $P(n)$ holds in each of two exhaustive cases, so it follows in general, which completes the induction showing $(\forall n)P(n)$, which says $E \subseteq L(G)$. (Putting problems (3) and (4) together, we get a full proof of $L(G) = E$.)

We nowhere used the rules $A \rightarrow AA$ and $B \rightarrow bAaB$ in the proof, so while sound they are superfluous. *Actually*, we could have avoided $S \rightarrow BS$ in case (i) as well as the $n = 1$ basis, by doing $S \Rightarrow SA \Rightarrow A \Rightarrow aS \Rightarrow^* ay = x$ instead. So $S \rightarrow BS$ is a third rule that can be removed—but any two were enough for full credit.

(5) (9 pts.)

The language $L = \{a^i b^j c^k : i < j \vee j < k\}$ is context-free.¹ But suppose you were being questioned on Capitol Hill by a prosecutor trying to prove otherwise. Say you give $p = 5$ as the pumping length and the prosecutor tells you to break down

$$s = a^p b^{p+1} c^{p+2} = \text{aaaaabb}bbbccccc.$$

Give a breakdown $s =: uvxyz$ into five substrings that “survives”—i.e., is such that for all $i \geq 0$, $uv^i xy^i z$ **does** belong to L . Briefly explain why. (There are multiple correct answers.)

Answer: One of many ways is to take

$$u = a^{p-1} \quad v = a \quad x = \epsilon \quad y = b \quad z = b^p c^{p+2}$$

(either abstractly or concretely with $p = 5$ was fine). Ditto taking $vxy = bc$ on the other side instead, and actually the OR allows you to give practically any breakdown with $|vxy| \leq 5$. The reason in the above particular case is that the property of having one less a than b doesn't change in $uv^i xy^i z$ for any i .

¹A grammar starts with $S \rightarrow S_1C \mid AS_2$, makes A derive a^* and C derive c^* , and makes S_1 derive $\{a^i b^j : j > i\}$ by ways we have seen in lectures and notes and answer keys, likewise S_2 deriving $\{b^j c^k : k > j\}$. You can answer the question without caring about these details. END OF EXAM