CSE491 /596 Problem Set 7 Answer Key Fall 2022

(1) Let an undirected graph G = (V, F) have distinguished nodes s, sg, t1, t5. Initially we
place a chess queen on s; and a chess king on ss. If the king and queen are ever on nodes
connected by an edge, then the king is in check. The question is, can they execute a sequence
of moves “asynchronously”—meaning either can move at any time and can make multiple
moves in a row, not strict alternation or “lockstep” moves—so that the queen reaches ¢, the
king reaches t,, and the king is never in check?

Your task is to determine whether this decision problem belongs to NL or is NP-complete.
Note that if the king and queen move simultaneously in lockstep, then this is the problem on
Prelim II which is in NL. But if the queen could be “superposed” anywhere along its path to
s9 at once, so that the king would need to find a path that gives zero risk of being checked
from the queen’s path, then this becomes the same as the “Edge Disjoint Paths” problem
which we saw to be NP-complete. So which problem is this like? You must prove your answer,
at least up to the part of the Prelim II key that is relevant to your answer. (24 pts.)

Answer: The problem is in NL, hence in P. The important contrast with the edge-disjoint
paths problem is once again that the absence of edges need only be checked at two focal points,
here the current locations of the king and queen. So we design an NTM N that has exactly
the same memory map as the one in the Prelim II answer. The only difference in operation
is that instead of guessing a neighbor for both v and v “in lockstep,” N nondeterministically
chooses one of them and updates only it. The check is then that there is no edge (v',v) (if
u was updated to u'), or alternatively no edge (u,v’) (if v was updated to v’). The rest is as
before.

The avenue of defining a modified graph G’ also works, though is IMHO a trickier to
visualize when the original graph G is bushy (and in particular, not a planar graph). You
need the new edge set to consist of pairs-of-pairs ((u,v), (u/,v")) such that either v’ = u and
G has an edge (v,v'), or v = v and G has an edge (u,u’). Thus far it is like the definition
of the line graph of G, but that applies only where (u,v) is an edge in G. Here we always
need (u,v) not to be an edge. So what we actually need is G’ to be the line graph of the
complement of G. Then BFS in this graph G’ works. IMHO, the element of negation involved
in its being the line graph of the complement makes this more difficult to visualize than the
proof via G’ on Prelim II. Whereas, the demonstration via NL-machine is as easy as before.

(2) Compute the tensor product of the row vector u = \%(1, i) with the column vector

v = \% (1) You will get a 2 x 2 matrix A. Does it matter whether you do the tensor product
as A=u®uvoras A=v®u? Also answer: Is A unitary? (15 pts. total)

Answer: The constant factors \/Li multiply to give simply %, so we can temporarily put that
aside and focus on the matrix contents. They give:

wor () ()L )

The other way is



which is the same matrix A. Is this an accident or a general rule? Well, for a general u = (a, b)
and any column vector v = (fl) we get

o= () ()- [ ]
o= () [2 3]

They are the same, but FYI that is because ordinary scalar multiplication is commutative.
As for whether A is unitary, note that its adjoint is

. |1 =i
|
The —1 did not change sign, because it is a real number, but the two occurrences of i (which
were symmetric to each other) did change sign. Now we get (still leaving aside the % part):

a4 = B _ZJ - {_ll- :ﬂ - {22@ _22i]'

Whoops—the off diagonal entries did not cancel. So A is not unitary.

(3) Now change u to be the row vector \%(1, —1), keeping v the same. Now does u ® v =
v ®@u? Is the 2 X 2 matrix you get, either way, unitary now? (15 pts. total)

Answer: We know from the general demonstration in (2) that © ® v = v ® u. Now, still
ignoring the constant factor, we get the matrix

1 1 —1i
o= () G- =]

1 7 1 —1
Now BT = [_12 _ZJ but we have to remember that when we then complex-conjugate, the
—1
-1
B* = B, which is the definition of B being Hermitian. Is it unitary? See,

. |1 =i 1 —i| |[1+¢-—1 —i+1 12 0
BB = L —1] ' L —1} B { i—i i-—i—l——l*—l} B {o 2}
The off-diagonal entries duly canceled. So when we restrore the constant factor, do we get a
unitary matrix? Well, we thus actually have

signs of the imaginary parts change again, so we get ] which is B back again. So

1(1 4
B=3 [—z‘ —1} '
When we multiply BB*, the factor outside becomes 411' One-quarter. Not one-half. So
BB* = 0(')5 005 . This is not the identity matrix, so B is not unitary. See end note for

some further chitchat, FYI.



(4) Now let A be any 2 x 2 matrix and A? its square under ordinary matrix multiplication
(not tensor product). Does A ® A? always equal A> ® A? Try it when A is the Hadamard
matrix, and diagram a little two-qubit quantum circuit to interpret what A® A% and /or A?® A
winds up being in this case. (15 pts. total)

Answer: When A is the Hadamard matrix H, then via the fact H? = I, we get:

AR A> = H®I, but
A2 A = T®H.

These are not the same. Visualized as two-qubit quantum circuits, the former is a single
Hadamard gate on line 1, whereas the latter is a single Hadamard gate on line 2. These
have different actions—e.g., when followed by a CNOT gate between the lines, one causes
entanglement and the other does not.

(5) Show that the vector w = %(1, 1,1,—1) cannot be written as a tensor product of two
smaller vectors. That is, it represents an entangled quantum state. Show this by writing out
the equations you get if w = (a,b) ® (¢,d) and proving that they cannot be solved for this w.
(You can if you want ignore the % factor in w. 12 pts.)

Answer: Suppose it could be a tensor product (a,b) ® (¢,d) = (ac,ad, be,bd). Then we
would have the equations ac = 1, ad = 1, bc = 1, and bd = —1. But the first two equations
entail d = ¢, whereupon the latter two become bc = 1 and bc = —1. This is impossible. So w
is entangled.

(6) Let C) be the two-qubit quantum circuit consisting of one Hadamard gate on line 1,
then a CNOT gate with control on line 1 and target on line 2, and then another Hadamard
gate on line 1. Let C5 be the circuit that looks like C; “upside down”: it has Hadamard on
line 2, then CNOT with control on line 2 and target on line 1, and finally another Hadamard
gate on line 2.

(a) Draw these two quantum circuits. (3 pts.)

(b) Use matrices to show that these circuits are equivalent. (OK, multiplying 4 x 4 matrices
is tedious but this is “good for you.” Good for 12 pts., anyway)

(c) Draw the “maze diagrams” for these two circuits, and trace using “signed mice” the
result of running each on the input state |10). Check that you get the same results, as
part (b) mandates. (12 pts., for 27 on the problem and 108 on the set)

Answer (hand-drawn):
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End Note on problem (3): That we got only %I not I may seem loke a nasty trick, but who is
the trickster? Since v is a column vector, we can think of it as a “ket”: |v). The associated
“bra” vector is then written (v |. But this is not the row vector in problem (2) even though
it has the same entries. The imaginary part must be conjugated. Thus (v | is the row vector
%(1, —i) given here. The tensor product is then the same as the outer product which is
written |v)(v|. Visually this is v ® u not u ® v but we saw the order didn’t matter. This
is defined on page 134 of the supplementary physics-based reading and applied on the top of
page 146. When we wrote |v) with a ket, we intended it to be part of an orthonormal basis.
In 2-dimensional space, that needs one more unit vector, which in this case can be w = \/Li (;)

A similar calculation shows that

_ i1 4
wew=|w)w/ =5 |1 .

which is the transpose of B without conjugating. Let’s call it C'. Then we again get that
cCr = %I . The drumroll is that if we add the two outer-product matrices together:

D:]v)(v|+\w><w|:%[§ g]

which already is the identity matrix, hence is unitary. So getting only half the identity matrix
from |v)(v| is because v was only half the basis.



