
CSE596 Problem Set 2 Answer Key Fall 2022

(1) Prove that two of the following three languages are non-regular, via a Myhill-
Nerode argument. For the regular one, give a regular expression. Here #a(x) denotes the
number of occurrences of the character a in the string x, and more generally, #w(x) denotes
the number of occurrences of the substring w in x. For example, #0010(00100100) = 2 even
though the two occurrences of the substring 0010 overlap each other. Also, for two strings
x, y of the same length, x⊕ y denotes the bitwise exclusive-OR, e.g. 1011⊕ 0010 = 1001. All
three languages are over the alphabet Σ = {0, 1}.

(i) L1 = {x : #0(x) ≤ #1(x)}.

(ii) L2 = {x : #01(x) = #10(x)}.

(iii) L3 = {xy : |x| = |y| ∧ x ⊕ y = 1|x|}.

(3 × 12 = 36 pts.)

Answers: L2 is regular; the others are not. For L2, the point is that for any binary
string x, #01(x) = #10(x) exactly when x begins and ends with the same character (or is the
empty string). If the first char is 0, then every changeover to 1s involves one 01 substring,
and changing back to 0s creates exactly one balancing 10 substring. For beginning and
ending with 1 it is similar. Paying due attention to edge cases, a regular expression is

r2 = 0(0 + 1)∗0 + 1(0 + 1)∗1 + 0 + 1 + ε.

For both L1 and L3, we can choose S = 0∗, which is clearly infinite. Let any x, y ∈ S, x , y,
be given. Then we can write x = 0m, y = 0n, where without loss of generality we may
assert m < n. Take z = 1m. Then xz ∈ L1 and xz ∈ L3, the latter because 0m

⊕ 1m = 1m. But
yz < L1 because #0(yz) = n > m = #1(yz), and yz < L3 for these reasons: First, if n + m is odd
then there is no way to break yz into equal pieces. For n + m being even, let us rewrite the
definition of L3 without a “symbol clash” as L3 = {uv : |u| = |v| ∧ u ⊕ v = 1|u|}. Then the only
way to break yz into equal-length pieces u, v makes u all-0s and includes at least one 0 into
v. Those two 0s have an XOR value of 0, not 1, so u ⊕ v , 1|u|. Thus S is an infinite PD set
for L1 and also for L3, so both L1 and L3 are non-regular.

(2) Now consider L4 = {x : #010(x) = 0 ∧ #101(x) = 0}. Use the Myhill-Nerode
technique to show that any DFA M such that L(M) = L4 requires at least 6 states. Then
design such a DFA M—ideally showing how your proof guided you to it (or vice-versa).
Finally explain why you can basically “collapse” M into a generalized NFA with only 2
states s, f such that

L(M) = Ls,s ∪ Ls, f ∪ L f ,s ∪ L f , f ,

and use that to give a regular expression for L4. (12 + 6 + 9 = 27 pts.)

Answer: The strings on the way to building 010 and/or 101 are {ε, 0, 1, 01, 10}, plus
either 010 or 101 causes a “dead condition.” Let’s choose 010, so S = {ε, 0, 1, 01, 10, 010}.
Now 010 is separated from the other five strings by ε, since 010 < L4 whereas the other five

strings all belong to L4. So we need only separate those five strings from each other. It was
fine to do so by itemizing all (5

2) = 10 pairs, but here is a shortcut: For those pairs x, y with
|x| < |y|, take z such that yz = 010 or yz = 101; then yz < L4 while |xz| ≤ 2 so xz belongs to
L4. This leaves just the pair x = 0, y = 1, which is separated by z = 10 (or by z = 01) and the
pair x = 01, y = 10, which is separated by z = 0 (or by z = 1). Thus S is a PD set of size 6.

This means every DFA M such that L(M) = L4 must process the strings in S to different
states, including 010 (and 101) going to a dead state—with the other states accepting. This
pretty much dictates the design shown at left in the figure. Now to find a regular expression,
we can first delete the dead state since it can never be used in an accepting computation.
Then the states q01 and q10 have only one incoming and one outgoing arc, so they can be
elided to produce the second machine. Then because the start state is accepting, nothing
is disturbed by deleting it but allowing either q0 or q1 to be the start state. This yields the
hinted two-state GNFA N with:

L(M) = L(N) = L0,0 ∪ L0,1 ∪ L1,0 ∪ L1,1

= (0 + 111∗00) ∗ (ε + 111∗) + (1 + 000∗11)∗(ε + 000∗).

s

0

1

01

10

d s

0

1

0

1

s copy lenchk match

qaccqrej

Start
0

1

1

0

1 0

1

0

0, 1
0

1

Start

0

0

1

1

11 00

0

1

Start

Start

1100

(cB/c∧,SR)

(cB/cc,RR)

(#B/#$,RL)

(0c/0c,RL)

(# ∧ /#∧,RR)

(cc/cc,RR)

(B$,B$,SS)
(cd/cd,SS)

(0 ∧ /0∧,SS)(#c/#c,SS)

Start

(1c/1c,SS)

(3) Design a two-tape deterministic Turing machine M2 that recognizes the language

L3 = {x#0k#y : x, y ∈ {0, 1}∗, x = y ∧ |x| = k}.

Here Σ = {0, 1, #} but the # character is only allowed as a marker to divide the input string
w into thirds. Your M2 should run in O(n) time where n = |w|; note that any accepted string
gives n = 3k + 2 with k as above. (A well-commented arc-node drawing is fine; if you use

the Turing Kit, please take a screenshot since its own Postscript-based print feature is old
and may be wonky.)

Answer shown above. It needs some comments, first that ‘c’ and ‘d’ are “wildcards”
standing for 0 or 1. In the “match” state, the interpretation is that the more-specific arc
(cc/cc,RR) where the chars are equal takes precedence over the most-general case (cd/cd,SS),
leaving “cd” in the latter to apply to those cases where the characters are different. Some
arcs going to the reject state are not shown—they are cases in which the input has fewer
than two or more than two ‘#’ characters. When there are exactly two ‘#’ characters, the
input has the form x#u#y. The “copy” state copies x to the second tape as ∧x$ where the
endmarkers ∧ and $ make the next stages easier to code and interpret. While moving the
second tape head leftward—and not writing blanks which is where M2 is not a PDA—it
checks that u has no 1 and that |u| = |x|. The condition |u| < |x| is caught by the tape-1
head seeing the second # while the tape-2 is still reading 0s and 1s that were copied; the
condition |u| > |x| is caught by the tape-2 head reaching the left-endmarker ∧ (which was
placed down in the initial step) while the input head is still reading 0s. When u = 0|x| is
verified, the heads are in perfect position to check y = x, which is then the condition for M2

to accept. Not only does M2 run in linear time, it moves its input head right in each step
except the single initial and final steps, which means it runs in real time.

Then argue as best you can that every single-tape TM M1 such that L(M1) = L3

requires Ω(n2) time. Since n is linear in k, it may help to think of this as Ω(k2) time.
Start by showing that S = {0, 1}k is PD fopr L3. Then argue that this means k bots of
information must somehow cross the middle 0k part in order to decide y = x correctly.
Finally reckon how much total time M1 must spend in that middle region, noting that
M has a fixed number r = |Q| of states but k can grow. (You may consult last year’s key
https://cse.buffalo.edu/ regan/cse596/F18/CSE596ps3key.pdf for a related problem where the
one-tape time is Ω(n log n), but your answer does not have to use the Australian imagery.
18 + 18 = 36 pts.)

Answer: For any k, let any distinct x1, x2 ∈ {0, 1}k be given. Take z = #0k#x1. Then
x1z ∈ L3 since its “y part” equals x1 and its middle has the right length k, but x2z < L3. In
particular, it is not in the “slice” of L3 that deals with this value of k. So S is PD for L3. The
intuititve meaning of this is that the “x part” requires 2k distinctions to be made at the other
end of the tape, which is captured by saying that (at least) k bits of information need to be
transported from left to right.

It was acceptable to say that anytime the single-tape TM M1 = (Q,Σ,Γ, . . .) crosses
the second # sign left-to-right, it carries in only the information in its current state. So it
can carry at most q = log2(|Q|) bits at a time. Thus the computation needs k/q trips from the
“x” part to the “y” part. Since there are k cells in-between, this takes order-of k · k/q = Ω(k2)
steps overall. This is hence a lower bound on the running time.

If this last part seems hand-wavy to you, then you may appreciate how Kolmogorov
complexity rigorizes the argument. This will be done as a separate post after the first exam.
Briefly put, if M could work in time t = o(k2) then the average time it spends among the k
cells in the middle part is t/k = o(k). Some cell j is at most average. Every string y ∈ {0, 1}k

could then be specified by giving just the sequence of states M is in on its at most t/k
crossings—since the “x#0k#” part would have to automatically match it for M to accept.
Then every string y ∈ {0, 1}k would be specifiable in < k bits, which is impossible.

https://cse.buffalo.edu/~regan/cse596/F18/CSE596ps3key.pdf

