
CSE596, Fall 2012 Problem Set 3 Due Wed. Oct. 3

The First Prelim Exam will definitely be on Wed. Oct. 10, in class period. This is the last
problem set before it; hence it is also longer.

Office Hours (final): Regan Mon. 2–4pm and Tue. 1–3pm, 326 Davis; Hughes Thursdays
11am–noon, Fridays 11:30am–class time, plus the Mondays 11–11:50am Review Sessions in
19 Clemens.

Reading. For Friday next week, read Chapter 3 through Section 3.5, although Section 3.5 may
come in the following week. One stylistic difference is that I won’t emphasize pairing functions
per-se, since the current material only requires that the pairing be one-to-one. Instead I will
suppose that the original alphabet Σ is enlarged to an alphabet Σ′ that includes an extra
“separator symbol” such as ‘#’ that is not in Σ. Then strings x, y ∈ Σ∗ are paired simply by
writing x#y as a string over Σ′. If needed or desired, we can re-code Σ′ back to strings over Σ by
something like 0 7→ 00, 1 7→ 11, and # 7→ 01. Unlike with a pairing function this encoding isn’t
onto Σ∗ (or onto N), because it doesn’t have strings like 10 in its range, but its being 1-1 is good
enough to define languages such as the language of the Halting Problem. Besides simplicity,
another advantage is that arbitrary tuples can be encoded as x1#x2# · · ·#xn without having
to “cascade” the pairing function.

In the latter two problems, the alphabet called “Σ” is unspecified. You should give your
answers in such a way that the particular identity of Σ does not matter. Generally you may
assume Σ includes { 0, 1 }, and you may speak as though Σ is no larger than the set ASCII
of (printable) ASCII characters. Your answers may lead you to enlarge Σ, or rather enlarge
the work alphabets “Γ” of machines being described. This is fine. Ultimately ASCII or larger
alphabets such as UNICODE can be re-coded as fixed-size words over { 0, 1 }. At various points
in the course (especially Section 5.1) we will probe whether this matters.

(1) Given any fixed language L over an alphabet Σ, define its “Myhill-Nerode dimension”
at strings of length m by fL(m) = the maximum cardinality of a distinctive set S ⊆ Σm. That
is, the maximum number of strings of length m that are all inequivalent under the relation

x ∼L y ←→ (∀z ∈ Σ∗)[L(xz) = L(yz)].

For example with L = {anbn : n ≥ 0}, the dimension is m + 2, because all of the strings
am, am−1b, am−2bb, . . . , bm are distinctive, plus one more equivalence class for “dead prefixes”
like ba . . ..

Prove that when L is the language of palindromes over Σ = {a, b}, fL(m) = 2m. (18 pts.)

(2) Now let Σ = {(, )}, and let L be the language of balanced-parenthesis strings. Show
that now fL(m) = O(m). Can you give an exact value?

There is a general theorem that to decide a language L on a single-tape Turing machine
requires time Ω(n log fL(n)). The idea is that log2 fL(n) bits of information need to be “ferried”



along the tape, though the proof itself is advanced. Instead, however, sketch how the “ferry”
idea can be used on a virtual second “track” to create a 1-tape TM that decides this language
in time O(n log n). (18 + 24 = 42 pts.)

(3) Text, “Homework 3.5” on page 50. That is, given programs M1 and M2, show how to
design programs M3 and M4 so that L(M3) = L(M1) ∪ L(M2) and L(M4) = L(M1) ∩ L(M2).
(Although you can technically use any of the equivalent definitions of “c.e.” to come in the
Friday 9/29 lecture, the intent is to use the original one: a language A is c.e. if there is a program
M (whether Turing machine or C or Pascal or Java or other high-level language program) such
that L(M) = A. Use as a primitive the idea of simulating one next step of a program. You
need not give Turing machine arc-node level detail—flowcharts or pseudocode sketches are fine.
12 pts.)

(4) Suppose A is a c.e. language, f and g are computable total functions, and B is a language
such that for all x ∈ Σ∗, x ∈ B ⇐⇒ f(x) ∈ A, and x /∈ B ⇐⇒ g(x) ∈ A. Show that B is
decidable. (12 pts., for 84 on the problem set)


