

The **First Prelim Exam** will definitely be on **Wed. Oct. 10**, in class period. This is the last problem set before it; hence it is also longer.

Office Hours (final): Regan Mon. 2–4pm and Tue. 1–3pm, 326 Davis; Hughes Thursdays 11am–noon, Fridays 11:30am–class time, plus the Mondays 11–11:50am **Review Sessions** in **19 Clemens**.

Reading. For Friday next week, read Chapter 3 through Section 3.5, although Section 3.5 may come in the following week. One stylistic difference is that I won’t emphasize pairing functions per-se, since the current material only requires that the pairing be one-to-one. Instead I will suppose that the original alphabet Σ is enlarged to an alphabet Σ' that includes an extra “separator symbol” such as ‘#’ that is not in Σ . Then strings $x, y \in \Sigma^*$ are paired simply by writing $x\#y$ as a string over Σ' . If needed or desired, we can re-code Σ' back to strings over Σ by something like $0 \mapsto 00$, $1 \mapsto 11$, and $\# \mapsto 01$. Unlike with a pairing function this encoding isn’t *onto* Σ^* (or onto **N**), because it doesn’t have strings like 10 in its range, but its being 1-1 is good enough to define languages such as the language of the Halting Problem. Besides simplicity, another advantage is that arbitrary tuples can be encoded as $x_1\#x_2\#\cdots\#x_n$ without having to “cascade” the pairing function.

In the latter two problems, the alphabet called “ Σ ” is unspecified. You should give your answers in such a way that the particular identity of Σ does not matter. Generally you may assume Σ includes $\{0, 1\}$, and you may speak as though Σ is no larger than the set ASCII of (printable) ASCII characters. Your answers may lead you to enlarge Σ , or rather enlarge the work alphabets “ Γ ” of machines being described. This is fine. Ultimately ASCII or larger alphabets such as UNICODE can be re-coded as fixed-size words over $\{0, 1\}$. At various points in the course (especially Section 5.1) we will probe whether this matters.

(1) Given any fixed language L over an alphabet Σ , define its “Myhill-Nerode dimension” at strings of length m by $f_L(m) =$ the maximum cardinality of a distinctive set $S \subseteq \Sigma^m$. That is, the maximum number of strings of length m that are all inequivalent under the relation

$$x \sim_L y \longleftrightarrow (\forall z \in \Sigma^*)[L(xz) = L(yz)].$$

For example with $L = \{a^n b^n : n \geq 0\}$, the dimension is $m + 2$, because all of the strings $a^m, a^{m-1}b, a^{m-2}bb, \dots, b^m$ are distinctive, plus one more equivalence class for “dead prefixes” like $ba \dots$.

Prove that when L is the language of palindromes over $\Sigma = \{a, b\}$, $f_L(m) = 2^m$. (18 pts.)

(2) Now let $\Sigma = \{(,)\}$, and let L be the language of balanced-parenthesis strings. Show that now $f_L(m) = O(m)$. Can you give an exact value?

There is a general theorem that to decide a language L on a *single-tape* Turing machine requires time $\Omega(n \log f_L(n))$. The idea is that $\log_2 f_L(n)$ bits of information need to be “ferried”

along the tape, though the proof itself is advanced. Instead, however, **sketch** how the “ferry” idea can be used on a virtual second “track” to create a 1-tape TM that decides this language in time $O(n \log n)$. (18 + 24 = 42 pts.)

(3) Text, “Homework 3.5” on page 50. That is, given programs M_1 and M_2 , show how to design programs M_3 and M_4 so that $L(M_3) = L(M_1) \cup L(M_2)$ and $L(M_4) = L(M_1) \cap L(M_2)$. (Although you can technically use any of the equivalent definitions of “c.e.” to come in the Friday 9/29 lecture, the intent is to use the original one: a language A is c.e. if there is a program M (whether Turing machine or C or Pascal or Java or other high-level language program) such that $L(M) = A$. Use as a primitive the idea of simulating one next step of a program. You need not give Turing machine arc-node level detail—flowcharts or pseudocode sketches are fine. 12 pts.)

(4) Suppose A is a c.e. language, f and g are computable total functions, and B is a language such that for all $x \in \Sigma^*$, $x \in B \iff f(x) \in A$, and $x \notin B \iff g(x) \in A$. Show that B is decidable. (12 pts., for 84 on the problem set)