CSE596 Problem Set 7 Answewr Key Fall 2016

(1) (36 pts. total)

Prove that the following decision problem is NP-complete.

Two-COLORING WITH FAULTS

INSTANCE: An undirected graph G, an integer k > 1.

QUESTION: Can G be colored with 2 colors so that at most k edges have both nodes
of the same color?

Answer: The problem belongs to NP because a coloring is smaller than the size of the
input graph and whether the number of faults is < k can be checked by iterating through
the edges. To show completeness we define a mapping reduction f from 3SAT to it. Let any
3CNF formula

p=CiNCyN---NCy,

be given. We define f(¢) = (G4, k) where G is in fact exactly the same graph used for the
reduction to INDEPENDENT SET in lecture, but k is different: & = m (however, see below).

That is to say, G4 has 2n “rung vertices” x1,1,..., %y, Ty, with an edge connecting each
pair (z;,Z;). And for each clause C; containing 3 literals, G4 has 3 nodes connected in a
triangle labeled with those literals. Finally, a literal x; in a triangle has an edge going to its
complement Z; in a rung, and Z; similarly has an edge to x; in the rung. (There is nothing
wrong with connecting to the same-sign vertex in the rung instead.) A single pass through ¢
sufficies to build G, in O(m) time, so this is a polynomial-time reduction.

For correctness, first observe that every triangle must have at least one fault in any 2-
coloring, so k is the minimum target value that can possibly be achieved. When is it achiev-
able? For the rungs and corssing edges not to add to the faults, each rung (z;, z;) must have
x; green and ; red or vice-versa. If x; is green then consider the assignment to have x; = 1,
else x; = 0. If such a 2-coloring exists, then at least one node in each clause must be green,
since 3 reds means 3 faults, so the assignment satisfies each clause, so ¢ is satisfiable.

Going the other way, if an assignment satisfies ¢, then it cannot color all theee literals red
in any clause. But oops, it could color all three green, which would also cause 3 faults not 1
fault. How to cope with this?

The simplest way is to play “bait-and-switch” and say we are reducing from the problem
NoT ALL EQUAL 3SAT instead. Then the correctness analysis is perfect. Another is to use
the Cook-Levin proof as it was given: ¢ is assumed to be in the range of this proof, meaning
its clauses come in triads (v V w) A (v V w) A (Vv V w). Like in the proof for GRAPH
3-COLORING in the ALR notes and lecture, we add to G4 a “Green Node” whose (arbitrary)
color determines which color stands for “true.” It is connected to the z; part of each rung and
to a third node r; added to C} of the form (uVw) or (vV w) to make it a triangle. That node
must be “red,” which prevents the three-green case from coming up. And it can’t come up in
a triangle for (uV vV w) because having all of u, v, w be false makes the original ¢ unsatisfied.
Finally, clauses of 1 literal, including (wy) for the output wire, just “hang there” with one node
and its crossing edge, nothing else, and cause no faults provided they are satisfied. So with
this addendum, the reduction remains correct, except that “,4 = m” has to be re-interpreted
as “k =" the number of clauses apart from those having just 1 literal.



(2) (36 pts. total)

Arora-Barak, chapter 2, exercise 2.17, both ExAcTtry ONE 3SAT and SUBSET SUM.
Needless to say, it is forbidden to look these up on the Internet.

Answer: Clearly both problems are in NP. To reduce 3SAT to ExAcTLy ONE 3SAT,
consider a general clause
C: (61\/62\/63)

Here ¢; stands for a literal which could be a negated variable; it is convenient to write this
way rather than refer to variables directly. The simplest answer I know translates every C' to
the clause group

C'=(yVaVvb)A(laVevd)A{lsVeV f)A(aVeVe).

If all three literals are false, then their negations are true in the first three clauses, so we have
to make a,b,c,d, e, f all false, which prevents (a V ¢V e) from being satisfied. But otherwise,
some literal is true, say £, without loss of generality. Since ¢; is false, we take a from the first
clause true and set ¢ and e both false. Regardless of the truth values of the other two literals,
we can freely set d and f so as to make each clause exactly-one-satisfied.

Gives a 3CNF formula ¢, it is easy to create an equivalent instance ¢’ of EXACTLY ONE
3SAT by replacing each clause C; of ¢ by the corresponding group C?. Hence EXACTLY ONE
3SAT is NP-complete. (There is a footnote below about variations on this reduction.)

For the second part, we need to reduce ExAcTLY ONE 3SAT to SUBSET SUM. The idea is
that we give every clause C; a numerical value t; > 0 and set the target T' = Z;n:l t; (except
see modification below). Every time C; is satisfied by a literal ¢; (which could be z; or z;
depending on which one appears in C}), we add t; to our total. So we will get T" if every
clause is satisfied exactly once.

If C; is satisfied twice-over then we get “ka-ching!” +t; added twice—which we actually
wish to avoid. So we want to space out the values ¢; so that 2¢; or 3¢; can never work as part
of a sum adding to 7. Taking ¢; = 220U~V suffices, since t; = 1 and ¢;; = 4t; for j > 1, so an
increment of 2¢; or 3t; (which causes a ‘1’ in an even-numbered bit place) can never be wiped
out by other terms. The value T" has 1s in every odd-numbered place in binary notation, e.g.
for m = 4 clauses we get 1010101 = 85. Thus we can get 1" only if every clause is satisfied
exactly once.

We have proved much about the reduction before even giving the construction of the set
U of numbers involved. U has one number a; for each z; and b; for x;, giving 2n numbers in
all. The value a; equals the sum of ¢; over all j such that C; has z;, and similarly b; over all
clauses that have ;. An assignment that satisfies each clause exactly once then gives rise to
a subset A of size n that picks exactly one of a;,b; for each ¢ and sums to 7. The last detail
is how to enforce the “exactly one of a;,0;” part. The answer is to use ¢; also for j =m + 1
to j = m +n. To both a; and b; we add t,,,;, and we re-define T to be Z;’:{" t;. Now by
the same logic as why the subset-sum fails if any clause is satisfied twice or thrice over, we
must use exactly one of a; and b;. Calculating the numbers a; and b; requires just one pass
through the formula, so this is a polynomial-time reduction and correctly reduces EXACTLY
ONE 3SAT to SUBSET SuM. Hence SUBSET SuM is NP-complete.



Footnote on exactly-once satisfiability: There are some interesting variations of the
above answer, which we illustrate first in the case of a clause C' = (¢; V ¢3) of two not three
literals. Each literal could be either a plus or negated variable—it won’t matter and it’s
convenient to write them this way. First consider replacing C' by the single 3-clause

Cl = (Zl \/EQ\/Z),

where z is a new variable. If both /; and ¢ are true then we can exactly-one-satisfy this with
z = 1; if one of them is true then we use z = 0. If both ¢; and ¢y are false then C’ has two
true literals and so cannot be exactly-one-satisfied, but that is exactly what we want since
that’s the case were C' is false.

There’s an alternate way to do this with no additional negations:
C'=(l1 V)N UlaVy) AN(zVyV z2).

An assignment that makes both ¢; and ¢y true can be handled by making x = 0, y = 0, and
z = 1. An assignment that makes ¢; true but not /5 is handled by y = 1 and x = z = 0, and
one that makes /5 true but ¢; false allows z = 1 and y = z = 0. Finally, an assignment that
makes both ¢; and ¢ false forces x = y = 1, but then the (x V y V z) clause in C’ cannot be
uniquely satisfied. We can pad the first two clauses in C’ to length exactly 3 by inserting a
where we separately have clauses (a V bV ¢) and (a V bV ¢) which force a = 0 for exact-one
satisfiability.

Here is a third way that involves negation and leads into the logic of how you could come
up with the above-given answer for a 3-literal clause:

C'=(VaVvb)A(lyVevd) AlaVe).

Incidentally, if we wished b and d to be the same variable, we could enforce this by adding
the clause (b V d), which is exactly-one satisfied if and only if b and d have the same value.
So there is no loss of generality in beginning with all different new variables in the first two
clauses. Now if both ¢; and /¢y are false then all of a, b, ¢, d have to be false, which prevents
(a V ¢) from being satisfied. If both are true then we can pick a,d = 1 and b,c = 0. If ¢; is
true and /5 is false then pick only a = 1, and if vice-versa then make ¢ = 1. So this works.

The 3-literal answer followed a similar pattern with the extra variables e and f.

Here are two further questions:

e Can a 3-clause C be handled entirely without negation, as we did for a 2-clause? Perhaps
if we allow a 4-clause in the resulting group C'?

e Can we simplify matters if we consider ¢ to come from the range of the Cook-Levin

proof for NAND (or for NOR)?

Recall that in the Cook-Levin proof the only 3-literal clauses are ones with all-negated
variables, and those three literals cannot all be satisfied. So we can pretend that the assignment
¢y = ly = (3 cannot happen—or rather, that it is correct to cause a situation in the C’ we
want to build where it can’t be “exactly-one” satisfied. Put another way, is it easier to reduce
“NoT-ALL-EQUAL 3SAT” to EXACTLY-ONE 3SAT? Well, this is more an esthetic question
than a problem.



