
CSE596 Problem Set 8 Answer Key Fall 2012

(1) A collection { Ci } of complexity classes forms a proper hierarchy if given any Ci and
Cj with i 6= j, one of them is properly contained in the other. Which of the following collections
are proper hierarchies? Justify your answers, mainly by verifying the relevant “little-o” or “Θ”
relations between time bounds. Here Q+ stands for the positive rational numbers.

(a) {DTIME[nc] : c ∈ Q+, c ≥ 1 }.

(b) {DTIME[(n+ c)3] : c ∈ Q+, c ≥ 1 }.

(c) {DTIME[2cn] : c ∈ Q+ }.

(d) {DTIME[2n
1/c

] : c ∈ Q+, c ≥ 1 }.

(24 pts. total, plus 15 pts. extra credit if you do (e) {DTIME[n2(log n)1/c] : c ∈ Q+, c ≥ 1 }.)

Regular-Credit Answers:

All of the functions involved are time constructible, since c and d are rational. Hence
we need only check, for each case of a time bound t(n, c) and given c < d, whether
t(n, c) log t(n, c) = o(t(n, d)), i.e. whether t(n, c) log t(n, c)/t(n, d) −→ 0 as n −→ ∞. For
convenience we assume that logs are to base e; in none of these cases does the base of the
logarithms matter.

(a) {DTIME[nc] : c ∈ Q+, c ≥ 1 }: We get nc log(nc)/nd = c(log n)/nd−c. One application
of L’Hôpital’s Rule turns the ratio into (c′/n)/(d− c)nd−c−1, where c′ = c give-or-take a
factor of log2 e I-forget-which, and this equals (c′/(d− c)) times 1/(n · nd−c−1). Ignoring
the constants leaves 1/nd−c, which goes to 0 since d > c. So this is a proper hierarchy.

(b) {DTIME[(n+ c)3] : c ∈ Q+, c ≥ 1 }: For all c and d, (n+ c)3 and (n+d)3 are both Θ(n3),
since the highest-powered term is n3. By the “Linear Speed-Up Theorem,” all of these
classes are equal, so there is no proper hierarchy.

(c) {DTIME[2cn] : c ∈ Q+ }: We get 2cn · cn/2dn = cn/2(d−c)n. A trip to the L’Hôpital
eliminates the numerator and leaves the denominator 1/2(d−c)n times some constants, and
again this −→ 0 as n −→∞. So this is a proper hierarchy.

(d) {DTIME[2n
1/c

] : c ∈ Q+, c ≥ 1 }: Note that here higher d makes the time bound smaller,

so we get 2n
1/d
n1/d/2n

1/c
= n1/d/2n

1/c−n1/d
. L’Hôpital gets messy here, but a permissible

handwave is to reason that for all d > c, there exists an n0 such that for all n > n0,
n1/d < n1/c/2. For such n the ratio is bounded above by n1/d/2n

1/c/2. Since d > 1 this

is certainly also bounded above by n/2n
1/c/2. Now L’Hôpital kills the numerator like in

(c), and the denominator stays something that clearly goes to ∞ as n does. Hence this
bounding ration goes to 0, taking the original ratio down with it. Thus this is a proper
hierarchy.

(2) Let C and D be any two language classes that have complete sets and are closed
downward under ≤pm. Which of the following must be true? Prove those that are true, and give
concrete counterexamples for those that aren’t. (18 pts. total)

(a) C ∩ D is closed downward under ≤pm.

(b) C ∩ D has a complete set under ≤pm.

(c) C ∪ D is closed downward under ≤pm.

(d) C ∪ D has a complete set under ≤pm if and only if C = D.

(a) C ∩D is closed downward under ≤pm: True. Given A ≤pm B and B ∈ C ∩D, the downward
closure of C implies A ∈ C, and that of D implies A ∈ D, so A ∈ C ∩ D.

(b) C ∩ D has a complete set under ≤pm: False. The simplest (hinted-at) counterexample
is to take C = RE and D = co-RE. Then C ∩ D = REC, but the class of recursive
languages has no complete sets under ≤pm. The reason is that if REC had a complete set
B under ≤pm, then we would get a decidable set S of total Turing machines accepting all
recursive languages. [Proving this is a good self-study exercise; I shortchanged the text’s
coverage of recursive enumerations in my lectures.] But the diagonal set DS for S would
be decidable, which is a contradiction.

(c) C ∪D is closed downward under ≤pm: True. Given A ≤pm B and B ∈ C ∪D, either B ∈ C,
in which case A ∈ C, or B ∈ D, in which case A ∈ D. Either way, A ∈ C ∪ D.

(d) C ∪ D has a complete set under ≤pm if and only if C = D: False. A counterexample is
C = RE and D = P. The complete set for RE shown in class is complete for C ∪ D, but
C 6= D. Without being so drastic as to go up to RE, one can take C = EXP instead, since
EXP has complete sets and is closed downward under ≤pm (self-study exercise).

(3) Prove that NP = co-NP if and only if for some NP-complete language A, its com-
plement Ã also belongs to NP. (12 pts.)

Answer: If NP = co-NP, then all languages in NP have their complement in NP, so this
certainly holds for “some NP-complete set.” If some NP-complete set B has its complement B̃
in NP, then let any language A ∈ NP be given. Since A ≤pm B, Ã ≤pm B̃. By B̃ ∈ NP, that
reduction gives us Ã ∈ NP, so A ∈ co-NP. Since A was arbitrary in NP that gives NP ⊆ co-NP,
and that implies NP = co-NP.

(5.2) Extra Credit—optional Prove that for all languages A, NPA = NP ⇐⇒ A ∈
NP ∩ co-NP. (24 pts.)

First suppose NPA = NP. Since A and Ã always belong to PA, they belong to NPA,
hence to NP. But A, Ã ∈ NP is equivalent to A ∈ NP ∩ co-NP.

The converse part has the key idea of both the proof of the Arithmetical Hierarchy The-
orem (Theorem 4.1 in my notes on that topic) and the analogue for the Polynomial Hierarchy
(Theorem 7.11 in the text). The idea is to separate those queries answered “yes” and those
answered “no” as declared in the computation being traced, and use different logic on them.

SupposeA ∈ NP∩co-NP. Then there are polynomials q, r and polynomial-time decidable
predicates Q and R such that for all x,

x ∈ A ⇐⇒ (∃y : |y| ≤ q(|x|)) Q(x, y), and

x /∈ A ⇐⇒ (∃z : |z| ≤ r(|x|)) R(x, z).

Now let L ∈ NPA; we have to show L ∈ NP. Take a nondeterministic oracle TM N that accepts
L with oracle A in some polynomial time p(n). Now we define a nondeterministic non-oracle
TM N ′ that on any input w simulates the computation NA(w). Whenever NA writes a query
string x, N ′ guesses either a y such that Q(x, y) or a z such that R(x, z). Note that the existence
of y or z is mutually exclusive, so a successful guess by N ′ really does return the correct oracle
answer “yes” or “no” to the query “is x ∈ A?” Thus N ′ accepts w iff it successfully traces
out an accepting computation of NA on w, and such a trace always exists when w ∈ L. Hence
L = L(NA) = L(N ′). Since the total time for the trace is bounded by p(n)∗ (q(p(n) + r(p(n))),
which is still a polynomial, N ′ is an NP-machine, so L ∈ NP. Since L was an arbitrary member
of NPA, we have NPA ⊆ NP, so they are equal.

(4) Homer-Selman, exercise 6.17 on page 142 (page 147 in older editions). (12 pts.)

Answer. Clearly this language (call it SAT2) is in NP, with the witness being two
satisfying assignments whenever φ belongs to L. To show it is NP-complete, we need to reduce
3SAT to it. This means finding a polynomial-time computable function f that alters any given
3CNF formula into a formula φ′ such that

φ has at least one satisfying assignment ⇐⇒ φ′ has at least two satisfying assignments .

Our strategy can be to add one “extraneous” satisfying assignment while preserving any others
that φ has.

The easiest way to do this takes advantage of neither the definition of L in the text
nor correctness of the reduction requires φ′ to be a 3SAT formula. We can make φ′ a 4SAT
formula: First define φ0 by adding a “dummy variable” c to every clause. Then the “extraneous”
satisfying assignment a will involve setting c true, while setting c false leaves us with only the
satisfying assignments we originally had. To make this idea work technically, we first need to
create a formula ψ that has exactly one satisfying assignment when c = 1, and exactly one
when c = 0. Such a formula is simply (c ∨ d) ∧ (c̄ ∨ d̄). However , when we trivially satisfy
the original clauses of φ by choosing c = 1, we need to prevent the original variables x1, . . . , xn
of φ from compounding the resulting number of satisfying assignments. This can be done by
forcing all those variables to be true via

ψ = (c ∨ d) ∧ (c̄ ∨ d̄) ∧ (d ∨ x1) ∧ (d ∨ x2) ∧ . . . ∧ (d ∨ xn).

The reason is that when c = 1, d must be 0 (i.e., false) by the second clause of ψ, and thus every
xi must be set true in that assignment. When c = 0, d must be 1, and that sets x1, . . . , xn at
complete liberty to be anything they want in the original formula. Then f(φ) = φ′ = φ0 ∧ ψ
can be our “Final Answer” and is clearly computable in polynomial time (indeed, linear-time
via one L-to-R pass over φ). (If for purely aesthetic reasons you want ψ too to be a 4CNF
formula,. . . that’s a self-study exercise. In the next problem it is important that not only φ′ but
also the “extraneous” satisfying assignment a are computed in polynomial time.)

(5) Apply ideas of problem (4) to create a polynomial-time computable function h :
Σ∗ −→ Σ∗ for which

Lh = {x : (∃y 6= x)h(y) = h(x) }
is NP-complete. Your h will not (cannot!?) be exactly length-preserving as on Prelim II,
but it must be polynomially honest : there must be a polynomial q(n) such that for all x,
q(|h(x)|) ≥ |x|. Hint: make satisfying assignments cause collisions. (24 pts.)

Answer: Given a formula φ and an assignment a, define h(〈φ, a〉) = φ if φ(a) = 1, and
h(〈φ, a〉) = φ ∧ αa otherwise. Here αa = xa1

1 ∧ · · · ∧ xann , where for each i, x1
i = xi and x0

i = x̄i.
Thus in the latter case, φ ∧ αa preserves both φ and the information in a, so nothing else in
the domain of h can ever collide with it. Whereas, when φ(a) = 1, h(〈φ, a〉) = φ generates a
collision with h(〈φ, b〉) whenever b 6= a and φ(b) = 1, i.e. when φ has more than one satisfying
assignment. Hence we have

Lh = { 〈φ, a〉 : φ(a) = 1 ∧ φ ∈ SAT2 }

and it follows that modifying the reduction f from Problem (1) to include the “extraneous
assignment a” as well gives a reduction from 3SAT to Lh.

The function h is clearly polynomial-time computable. Moreover, since always |a| < |φ|,
|h(〈φ, a〉)| ≥ |〈φ, a〉|/2, so h is in fact linearly honest. Thus Lh ∈ NP, so it is NP-complete.

Extra Credit Answer: For Halves(L), consider pairs of the form 〈φ, x〉 where x is a truth
assignment. The language L of these pairs belongs to P. But, as is especially clear when the
“pairing function” is just to concatenate as φ#x, the instances of Halves(L) include cases where
you are given just the φ part, and boil down to asking whether there exists an x that satisfies
φ, which is SAT and so is equally NP-complete.

(6) Show that the following decision problem is NP-complete:

Dominating Set

Instance: An undirected graph G = (V,E) and an integer k, 1 ≤ k ≤ |V |.
Question: Does there exist a subset U ⊆ V of size at most k such that every other

vertex in V is adjacent to one in U (that is, (∀v ∈ V \ U)(∃u ∈ U) :
(u, v) ∈ E)?

Answer: This one is almost the simplest example of the “ladder/clause-gadget” archi-
tecture of a reduction from 3SAT that I know. Given φ with n variables and m clauses, set
k = n and G with 3n + m nodes as follows: For each variable xi, in place of a simple “rung”
connecting xi to its opposite x̄i we add one more node ti connected to both xi and x̄i in a
triangle. And G has just one node cj for each clause Cj in φ. Node cj is connected to the (up
to) 3 literals that belong to the clause Cj. That finishes the description of what is clearly a
polynomial time (in fact, linear time and log space) computable function f(φ) = 〈G, n〉.

For correctness, note that since each ti is connected only to xi and x̄i, there is never any
reason to prefer choosing it when either xi and x̄i will dominate the triangle equally well. No
node can dominate more than one ti, so the minimum possible size for a dominating set in G
is n. Thus without loss of generality, a size-n dominating set U contains exactly one of xi and
x̄i for each i. These choices correspond to a truth assignment. The set U needs to dominate all
nodes cj as well, and this happens if and only if the assignment U represents satisfies φ. Hence
f reduces 3SAT to Dominating Set.

