CSE596, Fall 2012 Problem Set 9 Answer Key Due Fri. 12/7

(1) Show that the following decision problem is NP-complete.

INSTANCE: A collection Sq, ..., S, of subsets of a finite set U.
QUESTION: Can U be partitioned into two subsets V and W such that every set S;
contains at least one element of V' and one element of W7

Hint: Take U to be the set of literals and their negations, plus a special “falseness element e.” Use a
reduction from 3S5AT, and take the interpretation that whichever of V or W gets e equals “false.”

Answer: In cases where the answer is “yes,” we need only guess V' (a subset of U) and then the
rest can be verified in polynomial time, so the language L of this problem belongs to NP. We show
3SAT <P L. Given a 3CNF formula ¢ with n variables z1,...,z, and m clauses, define:

b U:Z{.Tl,fil,xQ,jQ,-'.,I'n,jn,e}.

Here e is a special “falseness element,” and its use is the main trick of the solution. We will interpret
whichever partition gets e as the subset of literals made false, and the other subset true. To enforce
a correspondence between “legal” partitions and truth assignments, we must ensure that a literal and
its negation always belong to different partitions. This is done by the following subsets:

e S := {l‘l,i'l },...,Sn = {(L‘n,fn}

Finally, we define the remaining sets so that choosing an element from them connotes satisfaction.
Here and for the next problem we make the convention that w, v, w stand for literals, i.e. positively or
negatively signed x; for some 3.

e For each clause Cj = (u V v V w), Spyj :={u,v,w,e}. This gives r =n +m.

(If you wish, you could think of a “4CNF” clause (u V v V w V e) being involved as a midway point,
as on problem 2.) Clearly the corresponding insatnce of our problem is constructed in O(n +m) time,
where the “O” is modern notation for “ignore factors of log(n) or log(m),” such as the labels i of
variables and j of clauses. Anyway it’s polynomial time.

If ¢ is satisfiable, then let V' be the set of n literals made true in some satisfying assignment, and
give e to W. Then V' and W each contain one element from each S;: within each clause set S,,1;, V
has a satisfied literal while W has e. Conversely, suppose V and W partition U and each contains at
least one member of each S;. One of V' and W must contain e—let’s say without loss of generality that
it’s W. Then |V| = n, because V and W each take one element from S; through S, and if we call the
literals in V' true and those in W false, then we have a legal truth assignment to the variables. This
assignment satisfies ¢ because V' contains at least one element from each clause set Sy41,..., Sntm.

Footnotes. If we dispense with the extra element e, then the remaining construction has the
property that a legal partition exists precisely when there is a truth assignment that makes at least
one literal in each clause true, and at least one in each clause false. The set of CNF formulas with
such a satisfying assignment is the language of a problem called “Not All Equal (3)SAT.” This
is not the same problem as 3SAT—its language is a proper subset—but the above does show that
NAE-3SAT <P L. In lecture and/or stray remarks I have touched on the fact that NAE-3SAT is
NP-complete, but it really should be justified. Recall from lecture that the proof of Cook’s Theorem
via circuits has the property that at most two literals in any clause can be satisfied in a satisfying
assignment to the whole formula. The clauses were: singletons for the bits of “x” and the output wire,
and triples (v V w) A (v V w) A (u V © V w) for each (output wire w of each) NAND gate.

One would like to pad the smaller clauses with literals ¢ and d that must be made false, but
one can’t directly use the formula from problem (1) because it doesn’t have the “Not All Equal”
property. Indeed, there is no way to force a literal to a given value via the NAE property, because the
complementary truth assignment has the same property! However, the simple trick is to add a new
literal e to all of the size-1 and size-2 clauses in the Cook-Levin proof. Then given an NAE assignment
to the resulting new clauses, either the assignment or its complement makes e = false, and so it
induces a satisfying assignment of the original clauses. This actually shows that “NAE-3SAT” is
NP-complete, whereas the reduction in my original answer implicitly reduced 3SAT to “NAE-45AT.”

(2) TiED s-t PATH. You are given a directed acyclic graph G = (V, E) in which each node has
one “left” out-arc and one “right” out-arc, with a distinguished source node s and sink node ¢. You
are also given a list of “ties” (u,v) which say that if you take the left [right] edge out of u, then you
must also take the left [right] edge out of v. Is there a path from s to ¢ subject to the ties? Show that
this decision problem is NP-complete. (30 pts.)

[18 pts. extra credit for doing this with the extra condition that no node is tied more than
once, i.e., the ties are disjoint pairs of nodes—you may wish to lean on special properties of the 3CNF
formulas that translate circuits in my Cook-Levin theorem proof.]

Answer: First, the comparatively easy solution without the extra condition. “In NP” is immediate
either way, since the path has smaller size than the graph and it is easy to check for each tie that
the path takes the same left/right turn at the two nodes in the tie. Given a 3CNF formula ¢ with n
variables and m clauses, we design the DAG G to be a chain of m “clause gadgets,” with some nodes
labeled by variable names.

Each clause gadget C; has an entry node s;, an exit node ¢; which can be identified with the entry

[13 b

node sj41 for the next clause, and two other nodes. The entry node s; for the first gadget is “s,” and
“t” is taken to be t,,. Finally, G has one more sink node r for “reject.”

Within each clause gadget, s; is labeled by one of the three variables appearing in the clause, and
the two other nodes besides ¢;—call them u; and v;—Dby the other two variables. All nodes labeled by
a variable x; in the whole graph are tied to each other (or equivalently, successive pairs of them are
tied). Let us designate the left arc out of any node labeled x; as standing for the assignment x; = 0,
and the right arc for x; = 1. If s; is labeled z; and x; occurs positively in Cj, then the right arc goes
to t;—signifying that the clause has already been satisfied—while the left arc goes to u; to poll the
second member of the clause. If z; occurs negatively (i.e., as Z;), then the left arc goes to t; while the
right arc goes to u;. Node u; is coded similarly with the satisfying arc going to ¢; and the unsatisfying
arc going to v;. At v;, however, the unsatisfying arc goes to r. This finishes the description of G. The
function f(¢) = G is computed in one pass through the clauses of ¢, hence clearly in polynomial time.

Since every node of G other than ¢ and r (recall ¢; is the same as sj1; for j < m) is labeled by a
variable, and all occurrences of a variable are tied, maximal paths in G that respect the ties are in 1-1
correspondence with assignments a € {0,1}". If a satisfies ¢, then the corresponding path goes to t;
in every clause gadget and so ends up at t. Conversely, if a path goes from s to ¢ then it must take
a satisfying arc in each clause, which is possible only if the clause is satisfied by the corresponding
assignment. Thus the reduction f is correct.

Now to comply with the extra(-credit) condition on ties, we replace each node labeled z; in a
clause gadget by a “sub-gadget.” Each sub-gadget has two “exit nodes” (in parallel), and ones for the
second and later occurrences of z; or Z; in ¢ have two “entry nodes” (in sequence).

The first time z; occurs, the 0-arc goes to an exit node labeled y;1, and the 1-arc to one labeled z;1.
The 1-arc out of y;1 and the O-arc out of z;; then go to r, since they represent internal contradictions.

The 0-arc out of y;; and the l-arc out of z;; go to the (first entry nodes of the subgadgets for the)
same places the 0-arc and 1-arc out of x; went in the original G described above. Note that these
destinations still depend only on whether x; occurs positively in the clause or as z;.

The next time z; occurs, the first entry node is also labeled y;; and is tied to the previous ;1.
The 1-arc out of this does not go to r. Instead it means z; = 1, since the only way it can be legally
taken in a path is for the earlier part of the path to have gone through z;;. It goes to the new exit
node z;o. The O-arc out of this y;; does not go immediately to y;2, but instead to the second entry
node, which is labeled z;; and tied to the previous z;;. The 1-arc out of this node goes to r, while the
0-arc continues to y;2. The meaning is this: If the earlier part of the path chose x; = 0 then it went
through the exit node y;1, and so must have taken the 0-arc out of the entry node y;;. It may then
legally take the 1-arc out of the entry node z;; here, since that choice is not tied. If the earlier part
chose z; = 1, then it is not tied at the entry node yil here, but choosing the 0-arc out of yil leads to
the z;1 entry node where the tie to the earlier z;; forces it to oblivion at . Hence to survive, the path
must exploit the fact that it’s not tied to y;; by taking the 1-arc there.

Finally, the new exit nodes ;5 and z;o are coded similarly to the first exit nodes y;1 and z;;. If
there is a next occurrence of x;, they are tied to the entry nodes for it. This completes the description
of the modified graph G’, and the reduction f’ that computes it is clearly still linear-time computable.
And G’ abides by the extra condition on ties. Note that we kept the nodes of G labeled by the first
occurrence of each variable but replaced the others by the entry nodes of sub-gadgets. The correctness
of f’ follows by the correctness of f and the argument of the previous paragraph. (This problem was
posed to me by German researcher Thomas Thierauf in 1998. I solved it within a week, and then
found that another German named Detlef Sesse had solved it in a paper earlier that year.)

(3) Text, “Homework 7.21”: Prove that if some language that is PSPACE-complete under <P
belongs to NP, then PSPACE = NP. Also answer: what happens if the language is complete under
polynomial-time Turing reductions (<%.) instead? Then extend your answers to say what happens for
the higher levels Ei of the polynomial hierarchy for k¥ > 2, noting that 3§ = NP. (9 + 6 + 6 = 21

pts.)

Answer: Suppose B is PSPACE-complete under <P and belongs to NP. Let any language A in
PSPACE be given. By completeness, A <P B. By the downward closure of NP under <P , A € NP.
Since A is an arbitrary member of PSPACE, PSPACE C NP, and since we already know NP C PSPACE,
the classes would be equal. (Indeed, since PSPACE is closed under complements, this would make co-NP
equal to NP too, so we would get PSPACE = NP N co-NP.)

Under <%, all we know is that A <), B with B € NP places A into PNP. Since the latter class
(indeed the whole polynomial hierarchy) is contained in PSPACE, we get PSPACE = PNP.

For k > 1 the analogous things happen: A many-one complete set for PSPACE belonging to
3P would “collapse” PSPACE down to X}—and all higher levels of the polynomial hierarchy would
“collapse” down to the same class. Indeed, we get collapse down to 22 ﬂﬂi. But for poly-time Turing

reductions we only get collapse down to P, (Which incidentally is contained in X% N I 41, but
unlike the arithmetical hierarchy is not necessarily equal to it, just as NP N co-NP might not equal P.)

(4) Define 2SAT to be the language of satisfiable 2CNF formulas, i.e. satisfiable Boolean formulas in
conjunctive normal form with at most two literals per clause.

(a) Show that 2SAT belongs to P (15 pts.).

(b) Show that 25AT is NL-hard under logspace many-one reductions (ngg). (Hint: give a log-space
reduction from the complement of GAP to 25AT, and then argue on the basis of NL being closed
under complementation.)

Answer. (a) The key trick is to regard a two-literal clause (u V v) as the implication & — v
together with its contrapositive, v — wu. (Recall that u can be a negative literal z;, and then
@ = x;.) Now these implications form themselves naturally into a directed graph G = (V, E) with
V ={x1,Z1,...,Tp, Ty } (same as U in the last problem!) and the implications as edges. We claim
that a 2CNF formula ¢ is satisfiable iff the corresponding graph G, has no cycle that includes some
node u together with its negation .

If G4 has such a cycle, then © = u follows by a chain of implications that follows the path
from u to w along the cycle, and 4« = w follows by the rest of the cycle. This is very much like
the contradiction “d € D — d ¢ D — d € D...” at the heart of the proof of “D ¢ RE” by
diagonalization, and it means that ¢ itself implies a contradiction and must always be false. To show
this more concretely, let ¢ be any truth assignment to the variables, and suppose that t makes u = true
and u = false. Somewhere along the path from u to @ there must be an edge (v, w) that goes from
a node v made true to a node w made false. Then the corresponding implication v — w is false,
and so the assignment ¢ fails to satisfy the corresponding clause (v V w). The case where ¢t makes
u = false and u = true is handled symmetrically, using the path from @ back to u.

Conversely, if there is no such cycle, then let us select any node u in G. If there is no path from
u to U, then set u = true; else set u = false. When there is no path from u to @, the node sets

A, = {wv:thereis a path from u to v} and
B; = {wv:thereis a path from v to u }

are disjoint. Set all the literals in A, true, and all those in B, false. If there is any node u’ left
over, repeat the process, setting v/ = true or false depending on whether there is a path from u’
to v/, and doing likewise to A,, and By as before. Continue in this way until all nodes have been
assigned truth values. Doing so never gives an edge going from a true node to a false one, because
all edges into false nodes from previous iterations are exhausted in the definition of Bz, while such
an edge in a current iteration with «/ and its negation @ implies a path from u’ to w/. Thus every
clause corresponding to an edge in Gy, is satisfied by the resulting truth assignment.

Hence we have proved that the following algorithm really does determine whether ¢ is satisfiable:
build G4 and test for each literal « whether there is a path to @ and also a path from « to u that would
complete a cycle. This means running breadth-first search at most 2n times, and gives an O(n?) (i.e.,
polynomial) time algorithm.

Technotes. Actually, we have shown that 2SAT is in co-NL, since when ¢ is unsatisfiable, a
nondeterministic logspace machine can guess a literal x; and guess and follow a sequence of clauses
that correspond to the edges in a path from z; to Z; and a return path from Z; to x;. Since NL is
closed under complements (Immerman-Szelépcsenyi Theorem), we get 2SAT € NL, and from (b) it
will follow that 2SAT is NL-complete. An alternative algorithm strategy is to combine every pair of
clauses of the form (u V v) and (2 V w) and obtain the new clause (v V w). Adding this so-called
resolvent clause to ¢ doesn’t change whether ¢ is satisfiable, since the new clause is implied by the
other two. Keep doing this until you already have all possible resolvent clauses—this must happen
within (2") ~ 2n? iterations since that’s how many possible binary clauses there are. Then you can
show that ¢ is satisfiable iff you never get a pair of clauses (v V u) and (@ V @) from this process.
Actually, what this process of resolution has done is define the transitive closure of the graph G
above, and clearly G has a path from u to @ iff its transitive closure has (u,%) as an edge. Hence
this argument can proceed along similar lines to the featured one. The reason why this process of
resolution doesn’t work efficiently for 3SAT is that the resolvent of two 3CNF clauses is a 4CNF
clause, and the blowup gets worse from there.

