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Abstract

1 Introduction

2 Fourier Analysis on Finite Groups

Let G be a finite abelian group. a character of G is simply a homomorphism ¢ from G to the
multiplicative group of the complex numbers C* : ¢(a + b) = ¢ (a)y(b), and ¢(—a) = ﬁ Since

G is finite, we have that every element in the image of 1 is a root of unity, and thus ﬁ = (a).

Characters form a group under multiplication. Define the dual group of G to be the group G of
all characters of G. Let ¢ be the trivial character, which maps all of G to 1; this is the identity
element of G.

Examples. Let G = Z, (p need not be prime) and w, = e . Fora € Zy, define 9, : G — C by:
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Here we can see that w), is the primitive p-th root of unity. Then G= {tala € Zp}. In our case,
G = Zon, and for a € Zgn, define ¢, : G — C by:

wa<$) = (—1)a®x = (_1)2?:1 a;T;

Then G = {g]a € Zon}.
Inner Product. For two complex—valued functions f, g on G, define the inner product to be

F.0=1g %f = Eacclf (0)9(0)].

Now we can see that every function f : G — C can be written as a linear combination of
characters of G.
Lemma 2.1. Fvery f : G — C has the following expression:

= fa)a()
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where R
f(a) = <f7 ¢a> = E:):EG[f(x)¢a(x)]
Lemma 2.2 (Plancherel Identity.). Let f,g: G — C, then:

(f.9) = 1GI(f,9) = fla)i(a)
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Proof.
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Lemma 2.3 (Parseval Identity.). Let f : G — C, then

o =Ir13 =Y 1@

aclG

3 Simulation of Stabilizer Circuits

It is straightforward that

Z f(@) = (f,v0) = f(0)

z€lFy

Note that the fourier coefficient f(0) is exactly the amplitude (0"|Cg|0™) for 0™ on the stabilizer
circuit corresponding to G. To extend it to arbitrary output b, we know that the corresponding
quadratic form becomes

a(x) = q(x) + 2 Z x; mod 4
J:bj=1

with b = (b1, ---by,). We obtain

(blCalo) = o 3 Fae) = F0).

zeFG

Now consider a graph G = (V, F) and its adjacency matrix Ag. Assume we are also given
matrix P such that PTAgP = D where D is in normalized form. Let E; be the matrix with only
the (i,7)-th entry being 1 and others 0. Also let Ey = diag(vy,- -+ ,v,) with v = (v1,--+ ,v,). Tt is
easy to check that PT2E,P is again a diagonal matrix. More precisely,

P'2E,P = 2diag(P;;--- ,Pi,) mod 4,



and we have
P2E,P =2 Y diag(P,1---,Pi,) mod 4.

;=1

Suppose the vector set {v;} with cardinality rank(A¢) over Fa such that
P'2E,,P = 2E,.

With lemma 4.1, 4.2 and 4.3 in [], we can check that the vector space spanned by {v;} over Fy
gives all the vector b such that (b|Cg|0™) # 0. The proof can be extended directly from the proof
for those lemmas. Hence we have the following:

Lemma 3.1. Given an adjacency matriz A for a stabilizer circuit, the set of all outputs of non-zero
amplitudes form a vector space of dimension rank(A) over Fa.

4 Algorithm Description

For rank computing, we just need to focus on the cases of bipartite graphs. Pictorially, we can look
at the nodes of a given bipartite graph as two separate node sets: one on the left side (LHS) and
one on the right right (RHS). Then each edge only connects one node on the left to one on the
right.

4.1 Base Example

Consider a base case ?7?7: an m-node bipartite graph G = (V, E) with two nodes on LHS and
arbitrary many nodes on RHS. Then the corresponding quadratic form will be

x) =211 Z T; + 219 Z x; mod 4.

(10)eE (2,0)eE

Moreover in bipartite cases, it is equivalent to

Z T; + To Z x; mod 2.

(14)eFE (24)€eE

Hereafter, we identify ¢(x) with the one over Fa. Define

X2

Figure 1:

Now let
g1(z) = (—1)T Za0eBT gy (g) = (1) aen i,

We have f(z) = g1(x)g2().



Note that the amplitude (0"|C¢|0™) = £(0) now equals = Zme]Fg g1(x)g2(x), and more precisely,
it is the following:

= in > gi(@)ge(z) = (g1,92) = > dila
2
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where the last equality follows Plancherel Identity. More generally, we have
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Zgl )G2(b + a).
aclFy

Apparently, we also have f(b) = 3 a€Fy g1(b+ a)gz(a) from commutativity.

Note that the rank of the adjacency matrix for component defined by ¢; is 2, and so is for
g2. Now suppose V' = span({vi,vz}) (as defined and discussed in Section [3|) for g; such that
g1(c1v1 + cava) # 0 with ¢; € Fo, and W = span({wy,wz}) for go. Without loss of generality,
assume §1(0) = g1(v1) = g1(v2) > 0 and §1(v1 + v2) < 0. Same for go. Now we have

F®) =" gi(a)g(b+a)

aclFy
1. 1. 1. 1.
= 592(13) + 592(13 +vi) + ng(b +va) — 592(13 +v1 + va2).
There will be three different cases to consider:
1. V.1IW
2. dim(VNW) =

3. dim(VNW)=2ie, V=W

Case (1): V L W.

4 1 1 1 1 1 1

f(0) = 592(0) + 592(0+V1) + 592(0+V2) - 592(13 +vi+ve) = 1- o2’

because §a2(v1) = G2(v2) = g2(v1+va2) = 0 and §2(0) = % Hence, the total rank is 4. We can also
see that the basis set {v1,va, w1, wa} gives the vector space (V U W) such that f(b) # 0,Vb €
Vuw.

Case (2): dim(VNW) = 1. Let t be the basis vector of the intersection space. We do a case-by-case
analysis to all the possible situations as listed below:



(a) t = vy =wy: rank = 2, basis {wy1,wg + va}
(b) t = vg = wa: rank = 2, basis {wg, w1 +v1}
(¢) t =v1 = wa: rank = 2, basis {wga, w1 + va}
(d) t =vg =wiy: rank = 2, basis {w1,wa +v1}
(e) t =vi1+ va = wi: not possible

(f) t = v1 + v2 = wa: not possible

o+

= W1 + Wa: not possible

(h) t = vg = w1 + wa: not possible

)
(g)
)
(i) t =v1+ ve = wy + wa: rank = 2, basis {w;1 + wa, w1 + v1} or basis {wy + vi, w1 + va}

Consider the situation: (2.a) t = vi = wy.

f(b) = 5g2(b) + %?72(]0 +v1) + %@2('3 +va) — %§2(b +v1+va).
By plugging in b = 0, we get f(0) = % since go(va) = g2(vy1 + v2) = 0 by the fact that vo € W.
Hence, rank remains to be 2

Now some insights for finding the basis for the space S such that f(b) # 0 Vb € S are (1)
if b € W, both terms ga(b + v2) and ga(b + vi + v2) will be zero; (2) if b ¢ W, we need
g2(b + v2) = —g2(b 4+ v1 + v2) and not equal to zero. It is easy to check that {wy, wa + va} is
one valid basis for the space S such that f (w1 + wa + va2) has negative amplitude.

The same analysis can be applied to cases (2.b), (2.c) and (2.d) and derive what it shows above.
In more general words, the basis consists of (1) one member from the intersection space and (2)
one member produced by summing up the basis outside this intersection space.

Cases (2.e), (2.f), (2,g) and (2.h) are impossible because, for instance in (2.e),

—_

£(0) = L32(0) + Lan(va) + L9

1. 1
5 5 292(V2) — =g(vi+ve) = 55

2

where contradict the fact that f(0) > 0 for bipartite graphs. R
As for the last case: t = vi1+va = w1 +wa. We know the rank is again 2 by f(0) = % Following

the same insights as above, we can derive a basis set {w1 + w2, w1 + v1}. However, f(wl + wa)
gives negative amplitude, and we would want a basis set {s;, s} such that f (s1+s2) <0, because
this will be consistent with the fact that both g1(vy + v2) and go(w1 + wy) are negative. Hence,
instead, we take the basis set {w1 + v1, w1 + va} associated with f.

Case (3): dim(VNW) = 2. Let {t1, t2} be the basis of the intersection space. We do a case-by-case

analysis to all the possible situations as listed below:

(a) t1 =v1 =wi,ty = v = wa: rank = 0

(b) t1 =v1 =wa,tp = va = wy: rank =0

(¢) t1 = v1+ve = wi,tys = vi = wa: not possible
)

(d) t1 =v1 4+ vy = wyp,ty = vo = wa: not possible



t1 = vi + ve = wa,to = vi = wy: not possible
t1 = vi + v = wa,to = vo = wy: not possible
t1 = vi = W1 + Wa,te = vo = w1: not possible (same as (3.f))
t1 = vi = W1 + Wa, to = vo = wa: not possible (same as (3.d
(same as (3.e
t1 = vg = w1 + wa,to = v1 = wa: not possible (same as (3.c)

t1 = v1 + va = w1 + wa,t2 = vi = wy: rank = 0 (same as (3.a)

)
)
)
)

(i) t1 = va2 = w1 + wa,t2 = vi = wy: not possible (same as (3
)
)
) t1 =v1+va =wj1 + wa,ta = vi = wa: rank = 0 (same as (3.b)
)
)

( )
( )
t1 = v1+ ve = wy + wa, t2 = vo = wy: rank = 0 (same as (3.b))
( )

t1 = v1+ va = Wi + wa, t2 = vo = wa: rank = 0 (same as (3.a)

Consider (3.a): t1 = v1 = wy,te = vg = wa.

N . 1. 1.
G2(0) + =g2(v1) + 592("2) - §QQ(V1 + v2)

. R 1.
92(W1) + 592(W2) — 592(W1 + wa2)
1

This means that the rank becomes 0. We can see that this actually corresponds to the scenario
that components g; and g2 have identical structure and hence cause cancellation in the combined
stabilizer circuit. The same argument works for case (3.b).

Now for (3C) t1 =vi+ vy =wy,t0 =vy = wa.

. 1. 1. 1. 1.
f(0) = 592(0) + 592("1) + 592("2) - 592("1 +va)
1. 1. 1. 1.
= 592(0) + 592(“’2) + 592(“’2 +wy) — 592(W1)
1 1+1 1+1(1) 11
22 2 2 2 27 2 2
=0

contradicting the fact that f (0) > 0 for bipartite graphs. I would like to point out that this case
is valid for larger bipartite graphs, which will be discussed in Section Using this argument on
cases (3.d) through (3.f) can lead to the same conclusion on them. Also note that (3.g) through
(3.j) are the same as (3.c) through (3.f), respectively. For instance, (3.g) is identical to (3.f) because
v1 + vo = t1 + to = wo. Hence, they will again lead to zero rank.



Case (3.k): t1 =v1 +ve =w1 + wa,ta = vy = wy.

R 1. 1. 1.
32(0) + 592(V1) + 592(V2) - 592(V1 +va)

=
e
I

. 1,
G2(wg) — 592(W1 + wa)

NN =N

Note that this case is exactly (3.a) because v = t1 + t2 = wa. Similarly, we have that (1) (3.1)
corresponds to (3.b); (2) (3.m) to (3.b); (3) (3.n) to (3.a).

4.2 Generalization

Note that if we chop off a bipartite graph as in Figure |2 the following formula still works:

F®) =" gi(@)@(b +a)
aclFy
1. 1. 1. 1.
= 592(1)) + 592(1) +vi) + 592(1) +va) — 592(13 + v+ va),
where the vector space V' = span({vy,va}) is associated with g; such that gi(c1vy + cava) # 0

with ¢; € Fy

5 Conclusions
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