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Abstract

“Quantum supremacy” or “quantum advantage” means demonstrating a quantum computer’s
ability to compute a task that no classical device can emulate in a comparable amount of time.
This raises the question: how can one determine such an advantage? Much work on studying
quantum supremacy has been done. In pursuing this question, this thesis takes a different
angle from the great recent efforts at achieving quantum supremacy. In particular, it develops
logical and algebraic tools for investigating how well classical computers can emulate/simulate
quantum computers.

The first part studies a logical approach to classically emulate general quantum circuits.
Specifically, we give a new explicit conversion from a quantum circuit C' into a small set of
Boolean formulas such that the acceptance amplitude of the circuit (on a given input z) can
be computed from the numbers of satisfying assignments to the formulas. The fact of this
has been known for two decades, but our compact constructions promote the use of heuristic
#SAT solvers to perform emulation of quantum circuits. We implement a prototype of our
simulator in which #SAT solver can be utilized to compute the acceptance probabilities.

The second part’s main discovery is the tight connection between the strong simulation
of quantum stabilizer circuits and two bedrock mathematical tasks: computing matrix rank
and counting solutions to quadratic polynomials (both over the field Fy). Precisely, it uses
quadratic forms to obtain a strong simulation (i.e. computing the probability for any input
and output) of stabilizer circuits. Our results improve the asymptotic running time from
O(n?) to O(n*), where w = 2.372... is the known exponent of matrix multiplication, as well
as show a near-tight relationship to the task of computing matrix rank that was not known
before. They also improve the O(n3)-time algorithm for solution counting of quadratic forms
over Fy to O(n*). Besides, we also find further connections to graph theory and matroid
theory.

The third part builds on the second part to launch a direct attack on computing matrix
rank over Fo. Although rank reduces to matrix multiplication, they are not known to be
equivalent. Getting any time better than O(n“) would be a major breakthrough. At a high-

level, it combines quadratic forms and Fourier analysis to improve the time in some very
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special cases.

In the conclusion we close with a brief discussion of future research directions and then
speculate about further applications of algebraic geometry in search of measures of the effort
required to operate a quantum circuit that might explain the sustained difficult obstacles to

maintaining quantum coherence that have been encountered.
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Chapter 1

Introduction

In the 1980s, Feynman [Fey82, [Fey86] put forth the idea of quantum computation along with
Deutsch [Deu85l [Deu89), with Albert [AIb83] independently introducing quantum automata.

The initial question that motivated Feynman to think up “quantum computers” was:
What kind of computer can we use to simulate (quantum) physics?

In principle, it is possible to use a classical computer to simulate the behavior of n-particle
systems evolving according to quantum laws. However, it seems to require exponentially
larger computing power. People have remarked that the particles seem to simulate themselves

efficiently—so how does Nature compute? This brought out the following question:
Can we do it with a new kind of computer—a “quantum computer”?

Instead of simulating (quantum) physics, why don’t we cluster the particles following their
natural quantum-mechanical behavior to build a computer? Imaginably, this “quantum com-
puter” would appear to be simulating a quantum system exponentially more efficiently than
a classical computer would.

From the perspective of quantum physics, this idea implies that a multi-particle quantum
system that computes like Nature (namely, quantum mechanics) will probably give exponen-
tial speedups for some natural computational problems. The most spectacular example that
really brought the idea of quantum computers to wide attention is Shor’s factoring algorithm
[Sho94]. This was an algorithm implementable on a quantum computer that can factor any
n-digit integer (with high probability) in roughly n? time. In contrast, the fastest known
classical algorithm for factoring n-digit integer takes roughly 27" time. As a consequence,
a quantum computer capable of performing Shor’s algorithm with moderate overhead would
be able to break an enormous number of current real-world cryptographic applications in a

matter of seconds.



CHAPTER 1. INTRODUCTION 2

This seemingly powerful nature of quantum computers has inspired researchers to explore
the nature and limitation of quantum computing for three decades. The goal of demonstrating
the ability of a quantum computer to perform important tasks that cannot be achieved
classically is called “quantum supremacy” or “quantum advantage”. Much work on studying
“quantum supremacy” has been done. In this thesis, we take a different angle from these to
show quantum supremacy. Particularly, this thesis develops logical and algebraic tools for
investigating how well classical computers can emulate/simulate quantum computers.

This topic directly pertains to a second question:

how do you design and debug circuits/algorithms that you cannot even simulate efficiently

with existing (classical) tools?

To debug circuits in the classical setting, programmers can add test conditions or read inter-
mediate data to find where problems occur. In the quantum setting, those similar standard
techniques would probably require measurements that destroy coherence. Furthermore, it
seems likely that we may still not be able to build large-scale quantum computers in the
short future, while physicists and chemists have long needed to simulate quantum systems.
All these problems leads to a desire for methods to simulate quantum circuits on a classical

computer.

1.1 Simulation of Quantum Circuits

Quantum circuits can efficiently perform n-bit computations that are commonly believed to
require time exponential in n on classical computers. The salient example is Shor’s algorithm
[Sho94] for factoring n-bit integers using roughly 2n qubits. Cryptographic standards for
hardness of factoring involve n on the order of 1,000, while successful classical emulation-
s of quantum circuits considered difficult have recently been claimed for n approaching 50
[HSSTT6, BIST16l, [HS17]. We are still a long way from implementing Shor’s algorithm in
practical time. By creating emulations of a quantum computer on classical systems we are
able to test, at least to some degree, the workings of such algorithms. There are already sev-
eral packages for simulating general quantum systems on classical computers: the quantum
programming language QCL by [0me14], the QulDD (Quantum Information Decision Dia-
grams) package by Viamontes et al. [VMHO03, VRMHO3|, and the parallel quantum computer
simulator by Obenland and Despain [OD98§].

Simulators and emulators use several forms. Aaronson and Chen [ACI7] summarized that
the space of emulation strategies is bounded by two pure strategies they call “Schrodinger”
and “Feynman”. The Schrodinger approach is to encode (pure) quantum states by length-N

vectors, where N = 2", under some hybrid of explicit and implicit representation. A direct
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simulation implements the N x N matrices defining (compositions of) gate operations under
sparse representations of these matrices. Thus the exponential penalty is paid up front but
additional operations only involve N x N matrix computations with no further blowup. The
Feynman way is to calculate an amplitude as a sum of terms, where it first pre-process a given

o(1)

circuit C' in time scaling as n“\". Only the final summation involves exponential blowup but

the number of items being summed can have order worse than N or N2.

1.2 Technical Tools

This thesis employs elementary mathematical tools that have been used to analyze quantum

circuits before but extends the analysis in new ways. Here is a preview.

e Boolean formulas. A Boolean formula is a string of symbols consisting of variables,
0/1 (0 means false and 1 means true) and Boolean logics. Basic Boolean logics include
A (conjunction), V (disjunction) and — (negation). In this thesis, we also use other
operations such as @ (exclusive or) and = (equivalence). Examples of using Boolean
logic to help synthesize quantum circuits include [LCJ13l [Lin14, SRWDMI17]. What
distinguishes the work is using Boolean formulas to effect an efficient reduction from
quantum simulation to #SAT (in Chapter [5)).

e Polynomials. The first express conversion to (sets of) polynomials was by Dawson
et al. [DHH"04] and programmed by Gerdt and Severyanov [GS06]. It applied only
to the universal set { H,CNOT, Tof } of gates with 41 entries, except for remarks in
[DHHT04] about “mixed mode (mod-2/mod-8) arithmetic.” Bacon, van Dam, and
Russell [BvDRO8a| tailored a construction to (singly and doubly) controlled phase-
changing gates modulo various values. In Chapter [0, we use a special form, named
quadratic form, of polynomials to further improve the strong simulation of stabilizer
circuits and unveil its new connections with two fundamental problems: matrix rank

and counting solutions to quadratic polynomials, both over Fs.

e Quadratic Forms [Sch09, [O13]. A quadratic form is a polynomial with terms all of
degree two. For instance, 322 + zy — 2y? is a quadratic form in variables 2 and .
The coefficients usually belong to an integer ring or a field. More discussion on this is
in Section Quadratic forms over Z4 are the main objects we are working with in
Chapter [6] To our knowledge, our level of applying the theory of quadratic forms is

new.

e Algebraic Geometry [CLO13| [Harl3|. Classically, this subject studies zeros of mul-

tivariate polynomials, which are called algebraic varieties. By relating the degree of



CHAPTER 1. INTRODUCTION 4

varieties to computational complexity, tools like Bézout’s Theorem have succeeded in
many applications in computer science. One of the most important results is Strassen’s
nonlinear lower bound on arithmetic circuits [Str73]. These techniques seem to have
advantages in analyzing polynomial-represented problems. It also finds applications
in the field of computational complexity. Mulmuley and Sohoni [MS01), MS07, [MS08]|
introduced the geometric complexity theory which is an alternating approach to the
P vs. NP problem. In quantum computing, Bacon, van Dam, and Russell [BvDR08a]
found that the amplitude of certain special class of quantum circuits is highly related
to the concept of singularity. Our discussion in Chapter [§| askes if we can find any

trail of nonlinearity using algebraic geometry.

1.3 Logical Emulation of General Quantum Circuits

This starts from the Feynman simulation approach. In Chapter [5| we give a new explicit
conversion from a quantum circuit C into a small set of Boolean formulas such that the ac-
ceptance amplitude of the circuit (on a given input x) can be computed from the numbers of
satisfying assignments to the formulas. The fact of this has been known for two decades, but
our compact constructions promote the use of heuristic #SAT solvers to perform emulation
of quantum circuits. More precisely, we propose to design small sets of Boolean formulas
¢$ (21, ..., 2r) (in conjunctive normal form) such that C' can be simulated with exact knowl-
edge of the number of assignments in {0,1}" that satisfy the <Z>g. The acceptance amplitude
involves formulas ¢g, ¢1 with some number r of variables—h of them “free”—and gives values

of the form
#sat(po) — #sat(¢1)
R b)

where R = 2?2 rather than be of order 2" or 2". The total numbers ng and n; of satisfying

assignments to ¢g and ¢,, will each have order 2", but their difference is a priori constrained
to be at most R. It will therefore not suffice to compute ng to within a factor of (1 + €),
say, nor likewise n;. This is why exact #SAT solving is sought. The main result can be

summarized as follows:

Theorem (Less formal description of Theorem ) Given C' as a circuit of a common type
of size s with m qubits. Then we can efficiently build a Boolean formula ¢¢ of size O(s) and
find a fractional constant R such that for any input a € {0,1}" and output b € {0,1}™ to
C:

—

e (¢ is a Boolean formula in variables W, ¥, v, Z.
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e The amplitude of C' on input a and output b is equal to R times the sum over the number

of 0/1-assignments to § in ¢pc with ¥ = a, Z=b and @0 be 0 through K — 1.

e For every assignment (a,c) to T,y there is exactly one pair (L,b) such that ¢pc[ =

L,%=a,§=c Z=>b| holds and it can be found in O(s) time.

Moreover, the last bullet above implies a “clever” brute-force #SAT solvers. Prelimi-
nary computational trials show that some freely available #SAT solvers give considerable
advantage over brute-force and that this advantage scales non-linearly. Strategies for the
#SAT solvers might be tuned for the special nature of the clauses arising from the “parity of
AND” equations in our main technical theorem. Thus this can become a potential sub-field

of intelligent software simulation of complex systems.

1.4 Algebraic Simulation of Stabilizer Circuits

A salient subclass of quantum circuits that have a deterministic polynomial-time simulation
are stabilizer circuits. They can be generated by the following three gate matrices—Hadamard

gate, phase gate and controlled-Z gate, respectively:

100 0
11 10 010 0

He o ., S= , CZ=
V21 -1 0 i 001 0
000 —1

Their extensions to act on CV by tensor product with the identity. It is worth pointing out
that stabilizer circuits can also be generated with CZ gate replaced by CNOT gate, that is
Hadamard gate, phase gate and controlled-NOT gate.

Stabilizer circuits play an important role in fault-tolerant circuits because they can be
used to perform the encoding and decoding steps for a quantum error-correcting code. Besides
that, those gates—H,S and CNOT—-has many other applications. They are powerful enough
to encompass most of the “paradoxes” of quantum mechanics, including the Greenberger-
Horne-Zeilinger (GHZ) experiment [GHZ89], dense quantum coding [BW92], and quantum
teleportation [BBCT93|. The original polynomial-time algorithm by Gottesman and Knill
[Got98] involved Gaussian elimination and so ran for all intents and purposes in order-of n?
time. Aaronson and Gottesman [AG04] improved this to O(n?) time with a tableau method
and also showed that every stabilizer circuit has an equivalent one with O(n?/logn) gates.
Both of these two work were built on the idea of stabilizer groups Section

Chapter [6| uses quadratic forms instead of stabilizer groups to obtain a strong simulation
(i.e. computing the probability p = |(0"| C |0 |> [JvdN14]) of stabilizer circuits. Our
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results improve the asymptotic running time as well as show a near-tight relationship to the
task of computing matrix rank that seems not to be noticed in these papers. They also
improve the O(n3)-time algorithm for solution counting of quadratic forms over Fo, as given
by Ehrenfeucht and Karpinski [EK90], to O(n*). Informally, our results are summarized as

follows:

Theorem (Less formal description of Theorem [6.14). (a) Strong simulation of n-qubit sta-

bilizer circuits on standard-basis inputs is in time O(n*) where 2 < w < 2.3729.

(b) Computing n X n matriz rank is linear-time equivalent to computing the probability p

on the promise that p is positive.

In view of the normal form of [AG04] and in practice, the restriction on h and s in (b)
is highly reasonable. Part (b) can be further rephrase as (Section : if membership in
a certain class of undirected n-vertex graphs can be decided in O(n?), then the following

problems all have the same time complexity:
e The strong simulation of quantum stabilizer circuits;
e The computation of rank of matrices over Fo;
e The counting of solutions to classical quadratic forms modulo 4.

Note that the “promise” condition of (b) is ignorable in the direction from the rank r to p,
but not from p to r. The sense of the latter direction is that if rank for dense matrices comes
to have a lesser time ¢(n) with n? < ¢(n) < n“ than matrix multiplication, then computing p
correctly in cases where p > 0 will have exactly the same time ¢(n), whereas computing p in
all cases might remain in n* time. We do not have a reduction from matrix multiplication
itself (over Fg) to strong simulation, hence our results do not imply an asymptotic equivalence
between those. To be sure, we note as a practical caveat that among the known sub-cubic
algorithms for matrix multiplication, only Strassen’s original one [Str69], which runs in time
O(n?81), is generally considered competitive for problem sizes in the range of thousands of
qubits that are addressed concretely in the above-cited papers.

We may ask (1) how far these techniques can apply to general quantum circuits, and (2)

can the tools achieve better general complexity results?

1.5 Outline of This Thesis

In Chapter [2| we present background knowledge on quantum computing and some corre-

sponding complexity classes.
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In Chapter [3] we survey past applications of algebraic methods in quantum computing.

In Chapter [4] we mainly discuss the connections between strong simulation of stabilizer
circuits and two fundamental mathematical problems: computer matrix rank and count-
ing solutions to quadratic polynomials (both over Fg). More details of how to prove these
connections are presented in Chapter [6]

In Chapter [5] we give a new explicit conversion from a quantum circuit C into a small
set of Boolean formulas such that the acceptance amplitude of the circuit (on a given input
x) can be computed from the numbers of satisfying assignments to the formulas. The fact
of this has been known for two decades, but our compact constructions promote the use of
heuristic #SAT solvers to perform emulation of quantum circuits. An alternate form facili-
tates uniform sampling of quantum outputs. The Boolean formulas assign one independent
variable to each Hadamard gate; all other variables are forced by any assignment to them.
Preliminary computational trials show that some freely available #SAT solvers give consider-
able advantage over brute-force and that this advantage scales non-linearly. Strategies for the
#SAT solvers might be tuned for the special nature of the clauses arising from the “parity of
AND” equations in our main technical theorem. Thus this can become a potential sub-field
of intelligent software simulation of complex systems.

In Chapter [6] we show that a form of strong simulation for n-qubit quantum stabilizer
circuits C' of size s is computable in O(s + n*) time, where w is the exponent of matrix
multiplication. Solution counting for quadratic forms over Fq is also placed into O(n®) time.
This improves previous O(n3) bounds. Our methods in fact show an O(n?)-time reduction
from matrix rank over Fs to computing an amplitude of C' (hence also to solution counting)
and a converse reduction that is O(s + n?) except for matrix multiplications used to decide
whether p > 0. The current best-known worst-case time for matrix rank is O(n*) over Fo,
indeed over any field, while w is currently upper-bounded by 2.3728... Our methods draw on
properties of classical quadratic forms over Z4. We study possible distributions of Feynman
paths in the circuits and prove that the differences in +1 vs. —1 counts and +i vs. —i counts
are always 0 or a power of 2. Further properties of quantum graph states and connections to
graph and matroid theory are discussed.

In Chapter [7] we launch a possible attack on computing matrix rank over Fo. Built
on insights from the previous chapter, it combines quadratic forms and Fourier analysis to
improve the time in some very special cases.

In Chapter [§| we close with a brief discussion of future research directions and speculate

about more possible applications of algebraic methods in quantum computing.



Chapter 2

Quantum Computing and

Complexity Classes

2.1 Quantum Circuits

To study quantum computing, most of the time we don’t need to understand quantum physics.
A quantum circuit is a compact representation of a quantum system. It consists of some
number m of qubits represented by lines and some number s of gates acting on qubit lines.
Here is an example created using the popular visual quantum circuit applet by Davy Wybiral
[WH]:

0.25000000+0.000000003 [00000>  6.2500%

11> i -0.23096988-0.095670861 [00010>  6.2500%
10> - . 0.17677670+0.17677670i [00100>  6.2500%
-0.09567086-0.23096988i [00110>  6.2500%

[0> l w s I: 0.00000000+0.250000001 [01000>  6.2500%
l 0.09567086-0.230969881 [01010>  6.2500%

11> i i 0.17677670+0.176776701 [01101>  6.2500%
10> A 0.23096988-0.095670861 [01111>  6.2500%

-0.25000000+0.000000001 [10000=  6.2500%

Figure 2.1: A five-qubit quantum circuit that computes a Fourier transform on the first four

qubits.

The circuit C operates on m = 5 qubits. The input is the binary string x = 10010. The first
n = 4 qubits see most of the action and hold the nominal input xg = 1001 of length n = 4,
while the fifth qubit is an ancilla initialized to 0 whose purpose here is to hold the nominal
output bit. The circuit has thirteen gates. Six of them have a single control represented by

a black dot; they activate if and only if the control bit receives a 1 signal. The last gate
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has two controls and a target represented by the parity symbol &. It is called a Toffoli gate.
This gate will set the output bit if and only if both controls receive a 1 signal. The two gates
before it merely swap the qubits 2 and 3 and 1 and 4, respectively. They have no effect on
the output bit (i.e., the fifth bit) and are included here only to say that the first twelve gates
combine to compute the quantum Fourier transform QFT,4. This is nothing more than the
ordinary discrete Fourier transform Fjg on 2* = 16 coordinates.

The actual output C'(x) of the circuit is a quantum state Z that belongs to the complex
vector space C32. Nine of its entries in the standard basis are shown in Figure seven
more were cropped from the screenshot. Sixteen of the components are absent, meaning Z
has 0 in the corresponding coordinates. Despite the diversity of the nine complex entries Zp,
shown, each has magnitude |Z|? = 0.0625. In general, | Z1|? represents the probability that
a measurement—of all qubits—will yield the binary string z € {0, 1 }5 corresponding to the
coordinate L under the standard ordered enumeration of {0, 1 }5. Here we are interested in
those z whose final entry z5 is a 1. Two of them are shown; two others (11101 and 11111)
are possible and also have probability %6 each, making a total of i probability for getting
z5 = 1. Owing to the “cylindrical” nature of the set B of strings ending in 1, one can also
say that a measurement of just the fifth qubit yields 1 with probability i.

Below three important ingredients of quantum computing are summarized.

2.1.1 Quantum State

Each quantum state is a superposition. A quantum bit (qubit) is allowed to be in a superpo-
sition of the state 0 and 1. As is customary, we use the Dirac’s bra-ket notation and a qubit

with the label ¢ can described by linear combination

) = a[0) + B[1),

where the normalization restriction |a|? + |3]> = 1 applies with the amplitude o, 3 € C.
This representation formulates the state space of a single qubit as the unit vectors in the
two-dimensional Hilbert space Hs.

Hence, for k qubits, there will be 2* basis states and the corresponding superposition

becomes a linear combination of all 2F possible strings of k bits:

) @@ lg) = Y aili),

i€{0,1}*
where again as required, those amplitudes o; obey: >, |o;|> = 1. A pure state is any linear
combination of basis states.

A state is said to be entangled if it can be decomposed as a tensor product of all single-
qubit states. A famous entangled state is the Bell state %(\0@ + |11)) which has no valid
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decomposition as a tensor product of two single qubits. There are also mized states, which

can be represented as classical distributions on pure states.

2.1.2 Unitary Transformation on Quantum Bits

Quantum mechanics only allows transformations of states that are linear and respect the
normalization restriction. For this purpose, the operations on an N-dimensional Hilbert
space are the N x N complex-valued norm-preserving matrices. Such matrices are called
unitary and the group of them is denoted by Uy (C) (unitary group of degree N). Also this
meets the requirement that the inverse of U is the conjugate transpose U* of the matrix.
The effect of a unitary transformation U on a state |z) = Y . «; |i) is exactly described
by the corresponding rotation of the vector |z) in the appropriate Hilbert space. For this
reason, U stands both for the quantum mechanical transformation as well as for the unitary
o1

a2
rotation, which can be represented via matrix multiplication: U |z) =U - | | . Hence, the

an
associativity of matrix multiplication gives that the effect of two consecutive transformation

U and W is the same as the single transformation W -U, and the non-commutativity of matrix
multiplication implies that the order of a sequence of unitary transformations matters.

Another important fact is that the tensor product of two unitary matrices is again unitary.
Then a single-qubit gate matrix M on qubit ¢ can be represented with the operator U =
Q- RIIMRIR--- Q| with M in position 7. This also allows us to focus only on small-size
quantum gates.

Some common single-qubit gate matrices are the following:

111 10 10 10 10
H=— 5 7= P S = ) T= ; ’ Rs = ; '
NG [1 —1] [0 —1] [o z] [0 6”/4] ° [0 6”/8]

Adding controls is one way to extend effects to other qubits. The controlled form CG of
I 0 0
a gate G has the block-matrix representation 0 Gl The gate X = Lol which is also

called the NOT gate for the negation it effects on the classical bit corresponding to the qubit
line, yields the controlled forms CX (aka. CNOT) and CCX (aka. Tof for the Toffoli gate) in
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the first and third example below:

CNOT = , Tof =

o O O =

oS O = O

= o o O

o = O O

o O O =

S O = O

O = O O

. O O O
o O O O = O O
o O = O O O O

SO O = O O O O O
_ o O O O O O O
SO R O O O O O O

o O O O o O O
oS O O O O O = O
O O O O = O O O

0 0

Following [DHH™04] a quantum gate is balanced if all nonzero entries in its unitary matrix
representation have the same magnitude. This means that all common gates like Hadamard,
CNOT, Tof, and rotation gates are balanced.

A classical gate set is said to be universal if, by combining enough gates from the set,
one can express any Boolean function on any number of bits. A set of quantum gates being

universal is defined analogously.

Definition 2.1. A set of quantum gates is called universal if any quantum computation can

be expressed by combining gates from the set.
There are two series of universal:

e approximating the amplitudes;

e approximating the probabilities.

One demand that for an quantum state |¢) produced by a general circuit of size s, there
is a circuit of gates from the set that produces a state |¢’) where vector distance from |¢)
can be made as small as desired. The other series merely requires that |¢) gives the same
(measured) output results as |¢). The set {H, Tof} is universal only in the latter, weaker
series, because it gives only real-valued entries. Nevertheless, it can emulate the real and
imaginary parts of |¢) separately. The set {H,CNOT, T} is universal in the stronger series.

It is worth mentioning that the controlled-S (CS) gate is important because it and H form
a universal set of gates. So do H and Tof, or H, CNOT and T, in similar sense to {NAND}
and {AND,NOT} are universal sets of Boolean gates.

2.1.3 Measurements

Mathematically, a single “measurement” is transforming a quantum state to one possible

outcome, which can be described as follows:

| > Z i |Z> outcome m; |Z> ’
. 7
K3
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(19

The possible outcome “i” of z correspond to a set of orthogonal vectors {|m;)} of the mea-

suring device. “Measuring z” (meaning “interacting with z”) will cause the state to collapse

Y

according to the outcome “m;.” From a probabilistic point of view, when measuring the

7532
1

state |z), the outcome will be observed with probability |a;|?. This probability can be

computed via inner product.

ag bo
aj bl . . :
Let |¢) = ) and [¢) = | | with N = 2" and n is the number of qubits. The
an-—1 bn_1

complex conjugation in Dirac’s bra-ket notation is denoted as
(6l =10)" =D a il = a5 af - aiy]-
k
Define the inner product over CV as

(Bl) = agbr.
k

With this, we have the above probability |a;|? = | (m;|2) |?. This also facilitates the calcu-
lation of measuring |z) in any general orthonormal basis {|v;)}. (Note that |v;) and |v;) are
orthogonal if and only if (v;|v;) = 0.) Now if a measurement over |z) is done with respect
to the basis {|v;)}, the probability of obtaining outcome “v;” will be | (v;]z) |2. Normally, we
have a quantum circuit C' and its input state |z), and then the output state |z) = C'|x) with
C be a product of a sequence of matrices representing quantum gates. With this notation,
the probability of seeing outcome “v;” becomes | (v;|C|z) |2.
Consider the basis {|+),|—)} with
gL gL
V2 V2 V2 V2

Now measuring a state |z) with respect to this basis means that the outcomes can only be

+) )+, =) ) -

|[4+) or |—), and the probabilities of seeing them are | (+|z) |* and | (—|2) |? respectively.

In Figure nine of the possible outputs (in the standard basis) are shown along with
their corresponding probabilities and each probability is derived by squaring and summing
the real and imaginary parts.

With the notions of measurement and output probability, we can define what it means
in computational complexity, that a quantum algorithm solves a language. Since we focus
on the quantum circuit model, here we can identify a quantum algorithm with a family of

quantum circuits where each quantum circuit is an instance of the algorithm of certain input
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size. A family (C,,) of quantum circuits is said to solve a language L if for all input size n

and all input z of size n

Wl Do

Pr[measuring the first qubit of C),(z) equals L(x)] >

This is equivalent to saying that the family (C),) can effectively identify L.
Another needed definition is cylinder. This definition of cylinder will be useful in simulat-
ing sampling over outputs of quantum circuits, and we will only be concerned with cylindrical

measurements in the standard basis, i.e., measuring some subset of the qubits.

Definition 2.2. Let a quantum circuit C of n-qubit output. Take some set I = {iy,--- ,ig} C
{1,---,n} for some ¢ and a string w = wy---wy € {0,1}¢. Then we call B C {0,1}" is a

cylinder with respect to I and w if
B={be{0,1}":b;, =wi Abjy, =wa A---ANb;j, =wy}.

Straightforwardly, a cylinder B represents outputs that are consistent with partial mea-
surement already made, and thus is important in sampling.

There are two kinds of classical simulations: weak simulation and strong simulation
[JvdN14].

Definition 2.3. A classical algorithm is said to be weakly simulating a quantum circuit if is

it able to simulate sampling from the output distribution of the quantum circuit.

Definition 2.4. A classical algorithm is said to be strongly simulating a quantum circuit if is

it able to calculate the probabilities of the output measurement outcomes with high accuracy.

Our work in Chapter [5] and [6] concentrate on strong simulation.

2.1.4 More Examples

Single-qubit Circuit Example.

o) —{H—T—{I— 12

The input is a single qubit input z as a vector in € C?. So is the output z. The first gate and

the last gate are Hadamard gates, and the middle T-gate creates a 7 phase shift by mapping
1) to e/%|1) and leaving |0) unchanged. To see what the circuit really does, we can use its

matrix representation, which is the following:

14+ 6i7r/4 1— 6i7r/4
1— eiﬂ/4 1+ ei7r/4

1
|z) =HTH |z) = =

; 7).
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Note that the matrix representation reads from right to left, for instance, the rightmost
matrix H corresponds to the first Hadamard gate in the circuit. Let C' be HTH, and then
HTH |z) = C'|z).

x
Write |z) = 1 with 20,21 € C and then
x1

1’0(1+ei"/4)+x1(1—ei7’/4)
|2) = .

zo(l—ei"/4)+z1(1+ei”/4)
2

Since |z) again belongs to C?, if we do a measurement, the squared norm of the first entry
equals the probability of seeing outcome bit 0, and the second one for outcome 1. In particular,
| (0|C]0) |*> ~ 0.85 and | (1|C|0) |*> ~ 0.15. The significance is that this disparity cannot be
explained by saying that each H gate is like a classical random coin. This is made formal in
the CHSH game.

CHSH Game [CHSH69]. There are two players, Alice and Bob, and a referee. The referee
chooses two bits r, s independently and uniformly at random and then sends bit r to Alice
and s to Bob. Alice and Bob must each answer a single bit: a for Alice, b for Bob. They win
this game if @ & b equals r A s, i.e., the winning conditions are: if either r or s is 0, a and b
should be equal; if r = s = 1, a and b should be different.

The classical strategy to maximize winning probability is simply that Alice and Bob
always send the referee a = b = 0, regardless of what r and s are. In this case, Alice and
Bob win 75% of the time, losing only if  and s are both 1. This can be proved by easily
enumerating cases that this equation cant possibly hold for all 4 values of » and s. At best
it can hold for 3 of the 4 values, which is exactly what this trivial strategy gets.

The quantum strategy requires Alice and Bob to pre-share an entangled Bell state, \% |00)+
% |11). Then it involves Alice and Bob measuring their respective qubits in different bases,
depending on whether their received bits r and s are 0 or 1, and then outputting bits a and b
respectively based on the outcomes of those measurements. If » = 0, Alice measures in basis
{]0),|1)}; if » = 1, she measures in basis {|+),|—)}. On the other hand, Bob measures in

basis {|uo) ,|u1)} if s = 0 and measures in basis {|vg) , |v1)} where

1
\+>=ﬁ!0> f\1> =)= f\1>
|u0>:cosg\0>+sm§\ ), u1) —s1n§|0>+cosg\1>,

10) —

sl

lvg) = cos(—g) 10) + sin(—g) 1), v1) = —sin(—%) 10) + cos(—g) ).

At the end, Alice sets a to 0 if she sees |0) or |[+) after measuring the pre-shared Bell state,

and 1 if she sees |1) or |—); while Bob sets b to 0 if he sees |ug) or |vg), and 1 otherwise.
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This strategy can make Alice and Bob win with probability cos? g ~ 85% for all possible
values of r and s. To see this, let’s consider the case where Alice gets r = 0 and measure.
She will set a = 0, and she and Bob will win if and only if Bob outputs b = 0. So what
are the odds that b = 07 Given that Alice measured her side of the Bell state already,
Bob’s side qubit collapsed to the |0) state as well. Now suppose s = 0. Then Bob measures
the |0) state with the basis {|uo),|u1)}, and outputs 0 if he sees |up), whose probability is
| (uo|0) |* = cos® Z. The same calculation can be applied to other cases. Hence, Alice and
Bob win the game with probability about 85% in all four cases. It turns out that 0052% is the
maximum probability with which Alice and Bob can win the CHSH game using a quantum

strategy, a result known as Tsirelson’s bound [Cir80).

Nevertheless, in Chapter [5| we will give an exact logical translation of this single-qubit
quantum circuit that does represent each H gate by a classical binary variable. The quantum

analysis will come from cosines in Theorem

2.2 Background on Complexity Classes

We assume familiarity with the classes P, NP and PSPACE. Below we briefly review the

probabilistic and counting classes most used in analyzing quantum computation.

BPP (Bounded-Error Probabilistic Polynomial-Time): the class of problems solvable
by a probabilistic classical polynomial-time algorithm, which given any instance, must output
the correct answer for that instance with probability at least 2/3. Thus P C BPP C PSPACE.
It is widely conjectured that BPP = P [IW96], but not even known that BPP C NP.

PP (Probabilistic Polynomial-Time): the class of problems solvable by a probabilistic
classical polynomial-time algorithm, which given any instance, need only output the correct
answer for that instance with probability greater than 1/2. The following problem is PP-
complete: given a Boolean formula ¢, decide whether at least half of the possible truth
assignments satisfy ¢. We have NP C PP C PSPACE and also BPP C PP.

P#P (pronounced “P to the sharp-P”): the class of problems solvable by a P machine
that can access a “counting oracle.” Given a Boolean formula ¢, this oracle returns the
number of truth assignments that satisfy ¢. We have PP C P#F C PSPACE.

BQP (Bounded-Error Quantum Polynomial-Time): the class of problems solvable by
a quantum polynomial-time algorithm, which given any instance, must output the correct
answer for that instance with probability at least 2/3. We have BPP C BQP C PP [BV97,
ADH97].



Chapter 3

Algebraic Methods

This chapter reviews literature on analyzing quantum circuits by polynomials in more detail
than was said in the Introduction (Section [1.2]).

3.1 Polynomial Methods for Query Lower bounds

In the quantum query model, the goal usually is to compute some function f : {0,1}"™ — {0, 1}
on a given input x = (z1, -+ ,2,) € {0,1}". The distinguishing feature of this model is the
way ¥ is accessed: Z is not given explicitly, but instead, the algorithm is being charged unit
cost for every query it makes to Z. Informally, a query asks for and receives the i-th element
x; of the input. Let Oy be a quantum query operation. Note that a quantum algorithm can
apply Oy to a superposition of basis states and gain access to several bits x; at the same
time.

A T-query quantum algorithm starts in a fixed state, say the all-zero state |0 -0), and
then interleaves unitary transformations Uy, Uy, - - - , Up with queries. The final state of the

algorithm can be written as the following sequence of matrix-vector products:
U7rO0;Ur_10p---0;U10Ug[0---0).

This state depends on the input ¥ only via the T queries. The output of the algorithm is
obtained by a measurement of the final state. For instance, if the output is Boolean, the
output could be the first bit of the final state measured in the computational basis.

Now the (bounded-error) quantum query complexity of some function f is defined as the
minimum number of queries needed for an algorithm that outputs the correct value f(z)
for every = in the domain of f, say with error probability at most 1/3, while treating all
the intermediate unitary transformations as costless. Note that in many cases, the overall

computation time (say measured by the total number of elementary quantum gates) of quan-

16
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tum query algorithms is not much greater than the query complexity, which justifies that it
suffices to just count the queries. Many fundamental quantum algorithms have this form,
including Deutsch-Jozsa [DJ92], Simon [Sim97] and Grover |[Gro96).

In 1998, Beals et al. [BBCT01] observed that the bounded-error quantum query com-
plexity of a function f is lower bounded by (one half times) the approzimate degree of f.
This work showed an alternate approach to understand quantum algorithms, which is called
the polynomial method, and its advantage led to a number of new lower bounds on quantum
query complexity [AS04, BKT1S].

Write as follows the final state of a T-query algorithm with given input Z € {0, 1}" acting

Z a(z)|z).

on an m-qubit space

ze{0,1}m
The main observation by Beals et al. is that: the acceptance probability (i.e. |a,(z)|? for
some output Z) of a T-query quantum algorithm is a polynomial in xy,--- ,x, of degree at

most 27". In particular, o (z) is a multilinear polynomial in x of degree at most T" and hence
|, (z)]? has degree at most 27

Consider a Boolean function f : {0,1}" — {0,1} and our algorithm acting on an m-qubit
state. Our final result is obtained by measuring the first qubit of the final state, whose

probability of outputting 1 is given by (using the representation above)

P(z) = > ().
2€{1}x{0,1}m—1
Now if the quantum algorithm computes f with error ¢ (i.e. |P(z) — f(z)] < e for all
x € {0,1}"), then we say P(z) is an approximating polynomial for f and the e-approzimate
degree of f is the degree of P. Hence the (bounded-error) quantum query complexity of this
function f will be the smallest degree of any approximating polynomial for f. This gives
an idea of how to lower bound the query complexity of computing f: if one can show that
every approximating polynomial for f has degree at least 27", then every quantum algorithm

computing f with error € requires at least 1" queries.

The main difference in our work is that we analyze concrete circuits, not circuits with
oracle gates. As with Boolean complexity, the lower bounds for query complexity do not

carry over. The next section surveys some past work on concrete circuits.

3.2 Simulating Circuits via Polynomials

The first express conversion to (sets of ) polynomials was by Dawson et al. [DHH™04] and pro-
grammed by Gerdt and Severyanov [GS06]. It applied only to the universal set { H, CNOT, Tof }
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of gates with +1 entries, except for remarks in [DHH'04] about “mixed mode (mod-2/mod-8)
arithmetic.”

In their model for a quantum circuit C on m qubits with A Hadamard gates, each bit
z; of output 2 is represented by a polynomial z;(#) in “path” variables variables 1, -+, zp.
Then each assignment to x,---,x, gives a path from input (aj,--- ,a,) to some output
Z(%) = (z1(Z), -+ , z2m(&)). Dawson et al. also defined a phase polynomial ¢(z) in variables
1, ,Tp. Then the amplitude <5| C' |d) is given by the following sum over paths from input
a to output b:

b C |a) = \ﬁz

Drawing on the analysis of Dawson et al. |[DHHT04], Bacon, van Dam, and Russell
[BvDROS8a] tailored a construction to (singly and doubly) controlled phase-changing gates
modulo various values of K, like those for K = 4,8, 16 in the last section’s example, plus the
Fourier transform Fx. More concretely, they introduced and analyzed algebraic quantum
circuits that are defined over all finite rings Z,, and finite fields F,. This class of quan-
tum circuits uses algebraic operations of addition and multiplication, as well as the quantum
Fourier transform. They showed that every algebraic quantum circuit has a unique multi-
variate polynomial f associated with it that captures the “action” of the circuit, where in
general f will be a cubic polynomial but for linear circuits (i.e. without multiplication) f is
only quadratic.

With such a unique action polynomial f, the acceptance amplitudes of an algebraic quan-
tum circuit again is expressed as an exponential sum over “paths” between the input and
output of the circuit, which is Feynman style as described in Chapter [} Let C be an alge-
braic quantum circuit over the ring Z,, with w wires, and h Fourier transforms, and define

n := k — w, they derived the acceptance amplitude as

(0] C [0) = — Z exp(2mif(Z)/m).

IEZ"

For such an algebraic quantum circuit over field F,-, the acceptance amplitude is

jyh > exp(2miTr(f(@)/p),
fGF;r

(0] ¢ [0) =

where it uses the standard trace operation Tr: Fpr — F), with Tr:z — o +aP +--- + 2P

They prove several properties of algebraic quantum circuits.
Dawson et al.’s work [DHHT04] also motivated the work by Regan and Chakrabarti
[RCO9]. They extended the polynomial constructions by Dawson et al. to (i) work for

any set of quantum gates obeying a certain “balance” condition and (ii) produce a single
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polynomial over any sufficiently structured field or ring. Hence their work also implies a new
proof of the Gottesman-Knill theorem [Got9§].

The Gottesman-Knill theorem [Got98] was first proved using the idea of stabilizer groups,
which is formally stated as the following theorem [Got98), [AG04]:

Theorem. Given an n-qubit state |1), the following are equivalent:
e [¢)) can be obtained from [0)®™ by H,S and CNOT only.
e |Y) can be obtained from ]0)®” by H,S, CNOT and measurement gates only.
o ) is stabilized by exactly 2™ Pauli operators.

o |Y) is uniquely determined by S(|v)) = Stab(|¢))) N Py, the group of Pauli operators
that stabilize |1)).

This theorem implies that any state [1)) that can be obtained from [0)*" via a stabi-
lizer circuit can be described uniquely by S(|1)), in particular, the n generators of S(|1))).
Building on this, the Gottesman-Knill theorem gives a constructive method for simulating an
n-qubit stabilizer circuit on a classical computer within polynomial time in n. Simulating a
single measurement gate takes O(n®) time, while other unitary gates take O(n) time for each
gate. Hence, a strong simulation using their method takes O(n?) since it needs to measure
all n qubits. Aaronson and Gottesman [AGO04] improved the simulation time for a single
measurement gate to O(n?) at the expense of space and thus requires O(n?) time for strong
simulation.

In this thesis, we study the strong simulation (as defined in Definition of stabilizer
circuits with algebraic method in Chapter [6] completely different from the above idea of

stabilizer groups.



Chapter 4

Matrix Rank, Solution Counting

and Strong Simulation

In this chapter, we mainly discuss the tight connection (in [GR19]) strong simulation of
stabilizer circuits and two mathematical problems: computing matriz rank and counting
solutions to quadratic polynomials (both over the field Fy). Because these two fundamental
problems long preceded quantum computing, this chapter serves the purpose of explaining
these connections more explicitly than that later in Chapter [6] More details of how to prove

these connections are presented in Chapter [0

4.1 Matrix Rank

Given an m X n matrix A over a field F', the rank of A, denoted by rk(A), is the maximum
number of linearly independent columns of A. The problem of computing matrix rank is a
basic computational problem in numerical linear algebra that is used as a subroutine for other
problems [VZGG13| [TBI97]. It has a number of applications in graph theory [MS04, [Har09,
Che97, [CLL11 [San07, Lov07, Lov06] and combinatorial optimization [Har09l [CLLIT].

The up to date work on this problem was done by Cheung et al. [CKL13]. They presented
a randomized algorithm to compute the rank in O(|A| +7+), where |A| denotes the number of
nonzero entries in A and w < 2.38 is the matrix multiplication exponent. They also presented
a randomized algorithm that updates the rank in O(mn) field operations, supporting the

operations of rank one updates and adding and deleting rows and columns.

20
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4.2 Solution Counting to Quadratic Polynomials

Counting the number of solutions to a polynomial equation is another fundamental mathe-
matical problem. In many cases it is NP-hard, indeed NP-complete. However, some important
special cases belong to polynomial time. The simplest non-linear such case is that of quadrat-
ic polynomials over Zo. Ehrenfeucht and Karpinski [EK90] gave an O(n?)-time algorithm.
This runtime was best known until this thesis [KarI9].

The analogous problem over Z,4 is at the crux of a remarkably fine-cut “dichotomy”
[CLX14, ICGW1T] between #P-completeness and back in P. In each case we have a quadratic

polynomial p(z1,--- ,x,) over Zy of the following type:
I. The number of solutions in {0,1,2,3}" is polynomial-time computable.

II. If all cross-terms x;x; with i # j have coefficient 2, then the number of solutions in

{0,1}? is polynomial-time computable.

III. However, if p(z1,--- ,x,) can have cross-terms with coefficient 1 or 3, then counting

the number of binary solutions is #P-complete.

This is significant because stabilizer circuits give polynomials of type 2 whereas adding the
controlled-S (CS) gate creates polynomials of type 3. Thus the power of the universal set
{H, CS} versus {H,CNOT,S} creates this divide. The work by Ehrenfeucht and Karpinski
[EK90] applies to type (II) as well. That is, their algorithm can do binary solution counting on
type (II) in O(n?) time. Our work improved this to O(n®) time. Ehrenfeucht and Karpinski
also showed that exactly counting solutions to a degree-3 polynomial over Fy is #P-complete.
Woods [Wo098|] proved a more general results for quadratic polynomials: there is a deter-
ministic n3 - poly(log q)-time algorithm for counting solutions to a quadratic polynomial over

[F, for every prime power g.

4.3 Near-Tight Connections to Stabilizer Circuits

The connections between counting solution of quadratic polynomials and quantum circuits
were noted in [RC09, [CGW17]. This distinctive point of Chapter [f]in this regard is that
we give concrete running times for the polynomial cases that improve the previous results.
Moreover, the connection between matrix rank and strong simulation of stabilizer circuits is
new to our knowledge.

The connection between the above two problems and strong simulation of stabilizer cir-
cuits is implied by the work in Chapter [6] In other words, the connection can be rephrased

as follows:
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(a) Given a n-qubit stabilizer circuit C, if the amplitude of C' on input 0" and output 0" is
not zero, then the time for strong simulation of circuit C' is of the same magnitude order

as that for computing matrix rank and for solution counting to quadratic polynomials.
0

Ag

A’ is determined by the probability of seeing output 02” on C' with input 0?", where C

A
(b) Given arbitrary n x n matrix A over Fy and form A’ = [ 00] , then the rank of

is the stabilizer circuit transformed from A’.

Part (a) is implied by Theorem and part (a) of Theorem[6.14] More precisely, Section [6.3]
and shows that the runtime for converting a given stabilizer circuit to a quadratic poly-
nomial and its corresponding matrix is O(n?). Then by Section and Theorem the
time for computing the amplitude is the dominated by the time for counting solutions on the

quadratic polynomial or that for computing matrix rank.

Part (b) follows from Theorem and part (bl) of Theorem In particular, the
conversion from a matrix to a stabilizer circuit can be done in O(n?) (as shown in Section,
and Theorem [6.13| gives the fact that computing matrix rank becomes performing strong
simulation of this obtained circuit, which would take at least O(n?). Hence, the running time
for computing the rank of the given matrix in this way is asymptotically the same as strong

simulation of stabilizer circuits.

Overall, via these connections, our improvement on the strong simulation of stabilizer cir-
cuits leads to improvement on the problem of solution counting to quadratic polynomial over
Fy. These connections also suggests that any improvement on one will imply improvement
for the others.



Chapter 5

Logical Emulation of Quantum

Circuits

The results in this chapter are in the paper [RCGIS].

5.1 Overview

In this chapter we give a new logical conversion from a quantum circuit C' into a small set of
Boolean formulas ¢ (z1, ..., 2,) (in conjunctive normal form) such that C' can be simulated
with exact knowledge of the number of assignments in { 0,1 }" that satisfy the qbkc. That there
are such reductions has long been known, but there appears to be no work programming them
concretely, nor developing properties of the reductions that might aid heuristic simulations.

A reduction could be obtained by applying the generic Cook-Levin reduction to #SAT,
starting from the polynomials pc for instance. However, we seek the most efficient reductions,
ones that are natural, specific, and (ideally) tight. We will use the technique that produces pe
as a proof guide. Our main general theorem in Section requires only the knowledge that
a quantum circuit with s gates computes a product of s large unitary matrices. Section
might need familiarity with quantum gates from sources such as [BDEJ95, BBC™95, [NCO0]
but we include the unitary matrices of the gates so it can be regarded as self-contained.

The salient property of our formulas is that they are all of the same form

Prew = Pold D a1 N--- Nam

This form is a controlled bit-flip (more details in Section [5.4). At qubit level, we already
know that controlled-bitflip gates (plus Hadamard gates) are universal: the CNOT gate flips
a qubit with one control, and the Toffoli gate flips with two. By going down to the level of

Boolean logic, we show that controlled-bitflip equations can efficiently describe all behavior

23
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in quantum circuits. To begin, we show how they describe the behavior of Hadamard gates.
Incidentally, note that the discussion of the HTH example (in Section [2.1.4)) is relevant here.

First consider an example of two consecutive Hadamard gates:

[2) 2

Note that these two Hadamard gates will cancel and together behave as an identity. We
can also see this behavior via our Boolean logic forms. Intuitively (from Section , the
resulting Boolean formula will be like (z A y1) @ (y1 A y2) with each variable y; associated
with a Hadamard gate. This form can be converted into one as a conjunction of the above

clauses, i.e.,
(1 =po® (zAp)) \p2=p1 8 (11 A ),

where p;’s are newly introduced variables and pg is fixed as 0. Denote the above equation as
¢. Then the amplitude

(2] Cl) = #sat(p = 0) — #sat(¢p = 1)’
(v2)?
where #sat(¢ = 0) is the number of assignments to y;’s making ¢ = 0, similar for #sat(¢ =
1). Say the input |z) = |0) = |z) which means y» = 0. We have (0|/C|0) = 1 which
means the input deterministically stays unchanged, and we can verify that it also holds for
|x) = |1) = |z). However, if |z) = 0 and |z) = 1, #sat(¢ = 0) = 1 = #sat(¢ = 1) and hence
(1|C10) = 0. This means that it is impossible to get output 1 if the input is 0. Similarly

(0|C|1) = 0. Overall, we can see the identity property from our Boolean logic analysis. We
will give more example later in Section [5.5] including how classical Boolean logic captures
the circuit H-T-H in the CHSH game.

For CNOT gate with source qubit line labeled with w; and target line with wug, it creates
the clause v = uy @ u; being conjoined into the above formula (here v is a new label for the
source line); similarly for Toffili gate, it creates v = uy, @ (u; Auj). Note that Hadamard gate,
CNOT gate and Toffili gate constitute a universal quantum gate set. Hence we can say that
all quantum circuits will have Boolean formulas as conjunction of clauses of this form. More
concrete construction is presented in Section We also extend the construction to other
gates in Section [5.3]

Two important technical points concern approximation and sampling. For the first point,
the acceptance amplitude involves formulas ¢g, ¢1 with some number r of variables—h of

them “free”—and gives values of the form

#sat(po) — #sat(p1)
R )
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where R = 22 rather than be of order 2" or 2". The total numbers ng and n; of satisfying
assignments to ¢g and ¢,, will each have order 2", but their difference is a priori constrained
to be at most R. It will therefore not suffice to compute ngy to within a factor of (1 + ¢), say,
nor likewise ny. This is why exact #SAT solving is sought.

On the other hand, many prominent quantum algorithms—Shor’s among them—use
quantum steps only to generate samples z from a distribution D on {0,1}". Here approxi-
mations 2’ to z are often tolerated. Hence we are most narrowly interested in the sampling
problem for satisfying assignments which is related to uniform generation. Exact counting
generally implies uniform sampling, but when and whether the latter affords more slack is a
difficult problem in general. The second point is that to imitate the classical reduction from
uniform sampling to #sat we need results that give the acceptance probability, rather than

the amplitude, as a difference

#sat (o) — #sat (1)
R? ’
where ¢y and 1 are copies of ¢g and ¢1. Whether further savings can be realized by further

use of approximation will lead to further questions both about sampling and the workings of
individual heuristic #SAT solvers [SBBT04, [SBK05a, [SBK05b], [Thu06]—and perhaps more

general settings of model counters involving algebra.

5.2 Binary Case

We will first consider the common universal quantum gate set of Hadamard (H), controlled-
NOT (CNOT) and Toffoli (Tof) gates. Then in the next section we will outline how to extend
the constructions and proofs for other gates.

When C' is composed of only H, CNOT, and Tof, the nonzero entries are +1 ignoring

factors of v/2 and so the resulting values e

are likewise +1. Paths giving +1 are positive
paths and those giving —1 are negative paths. For any basis value a € {0,1}" given as input
to the circuit and basis value b € {0,1}"™ as a targeted output, we can isloate the paths that
begin in row a of M; and end with column b of M. The number of those paths that are
positive is denoted by p™(a,b), the number of negative paths by p~(a,b). If h < s is the
number of Hadamard gates then the amplitude of obtaining b as output by C(a) is given by

the product
pg(aa b) - pa(% b)
2h/2

(ignoring complex conjugation since the values are all real). Our goal is hence to build two

(a C'1b) =
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boolean formulas ¢g, ¢1 such that

#p~ (a,b) = # assignments satisfying ¢
#pT(a,b) = # assignments satisfying ¢;.

Before presenting the theorem for this case, it is worth pointing out some intuitions behind

that:

CNOT and Toffoli gates don’t have effect on the sign of paths. The generated clauses
for these two gates should always output 1 as long as the variable assignment is valid,

i.e., preserving the input/output consistency.

Only when both input qubit and output qubit to a Hadamard gate are 1’s does the
path’s sign change. The binary basis values of these bits are represented by the variable

pairs u;, v;.

Accordingly, a path is positive if and only if it changes sign in Hadamard gates an
even number of times (including zero). Such a path corresponds to an assignment that

satisfies an even number of the terms (u; A vj).

Whereas, the path is negative if and only if it corresponds to an assignment that satisfies

an odd number of the terms (u; A v;), and so satisfies p with w = 1.

Assuming all other clauses (associated with CNOT and Toffoli gates) constantly have
value 1, the formula ¢ thus outputs 1 with assignments from the set of negative paths
(denoted by S_), while ¢ outputs 1 with assignments from the set of positive paths
(denoted by Sy).

From above, the acceptance probability can be computed as

(18]~ 18-
2h '

Before presenting the main theorem of this section (Theorem [5.2]), we first show the

following lemma which is a more preliminary version of the theorem. The proof for this

lemma gives a inductive construction procedure, while Theorem mainly serves the purpose

of being extended to other cases better.

Lemma 5.1. We can convert C' into a formula ¢ of the form p A n, where

= (wd (up Avr) & (ug Ava) G-+ @ (up Awvy)).

Here some u; variables may coincide with a vj variable, but the {u;} and {v;} are individually

distinct.
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Proof. Let w;,u;,u; stand for the current labels on the qubits ¢,j and/or k involved in a

gate.

L.

II.
III.

IV.

VI

VII.

VIIL

IX.

Label the inputs with variables z1,--- ,x,. If there are ancilla qubits, then continue
labeling them x,, 41, -, Tm, although if they will always be initialized to 0, then one

can label them 0 straightaway.
Label the outputs with variables z1,- - - , z,, again using more if there are more qubits.
Let A be the number of Hadamard gates in the circuit, and allocate variables y1, - - - , Y.

Initially, set a formula ¢ = 1.

. For the next Hadamard gate H; on some qubit line 7, allocate a new variable y; and

then

e when counting positive paths, calculate ¢ = @& (—(u; Ay;)), and make y; the new
label on line ¢. Here & means the complement to exclusive-or operation, that is,

exclusive-or-then-negation.

e when counting negative paths, calculate ¥ =1 @ (u; A y;), and make y; the new

label on line 3.

For a CNOT gate, leave the control label u; unchanged, but u; to u; ® u;. There is no

change to 1.

For a Toffoli gate with controls on line 4, j, leave u; and u; alone, but change the target

ug to (u; A uj) ® ug. There is no change to 1.

When done with all the gates, for each i, create the measurement constraint e(u;, z;),

where u; is the last label on line 7 and
e(ug, z;) = (W V zi) A\ (u; V7).

Note that e(0,0) = e(1,1) = 1, while e(0,1) = e(1,0) = 0, so these enforce equality of
the final labels.

The final boolean formula ¢ is defined by taking the conjunction between v and all the
measurement constraints. That is,

n

¢ =1\ e(ui, z).

i=1
Note that one boolean formula can be constructed only for counting either positive

paths or negative paths, not both. Hence, to keep track of both positive paths and



CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 28

negative paths at the same time, we need two boolean formulas. Take a closer look, we
can see that the two 1 terms in the formula for positive paths is actually complement

to that in the formula for negative paths. In particular,

Y1 D Py = Y1BYe = 1B

Therefore, if we maintain a boolean formula for positive paths, and we can derive the
boolean formual for negative paths from it (which would be ¥ A e(u;, %)), and vice

verse.
U

For any cylinder B (as defined in Definition of target output values, we can define
p*(a,B) =Y ,cpp*(a,b) and define p~(a, B) similarly. We will find it convenient to maintain
these sets of paths when B is a cylinder. Singleton sets b have this form with w = b as do sets
B; = {b: b; = 1} which represent measuring the single qubit ¢ to test for a 1 value. Cylinders
are important because b1, ..., b,, as well as a1, ..., a,, will stand for variables in our Boolean

formulas whose values may selectively be substituted by 0-1 bit values.

Theorem 5.2. Given any m-qubit circuit C of h Hadamard gates and s—h Toffoli and CNOT

gates, input a € {0,1}™, and cylinder B C {0,1}", we can construct a Boolean formula ¢c

of size O(s +m) in conjunctive normal form with variables y1,...,Yn,V1,. .., Vs—p, W, ..., W
together with x1,...,xym and z1,. .., zy Such that

Pi(a,B) = #sat(0lF = a, 7 € B,wy, = 0))

pa(a,B) = #sat(6[F = a,7 € Bywy = 1)).
Moreover, no two satisfying assignments agree on yi,...,Yp.

Proof. We start with variables x;, letting “u;”

initially refer to x; on each line, and start with
the equation wg = 0, i.e., wg. We let £ run from 1 to h this time, not 1 to s.
I. For each Hadamard gate on line ¢, increment ¢, allocate fresh variables wy and y,, and

conjoin the equation
(we = w1 ® (ui A ye))-
To set up the next stage we note that “u;” now refers to ;.
II. For each Toffoli gate with sources 7, 7 and target k, increment o, allocate a fresh variable
v, and conjoin the equation
(vo = ur D (uz AN u]))
Now “uy” refers to v,.
III. For a CNOT gate with source i and target k, we conjoin (v, = u @ u;) instead. Note

this is the same as fixing u; = 1 in the Toffoli case.
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After placing the last gate, we conjoin the output-equating clauses (u; = z;) for each
qubit line i. Note again that in the case h = 0 we have w;, = wp, and so ¢¢c[w, = 1] is
unsatisfiable—in keeping with there being no negative paths.

To finish the proof, we can use either of the following conversions to CNF. We can convert

to 4CNF without introducing any more variables by applying to each equation the conversion

(g=p®(uAiy))

(@—=p=9AG—=p=0)A(uAy) =pF#q)

= (wvVpVOAuVPVOAYVPVON(YVDPVOA@VYVPVa)
AN@VvygVvpVa).

(5.1)

To obtain 3CNF we need to introduce a new variable ¢t and equation ¢t = uAy. Doing so does
not increase the number of satisfying assignments. The clauses thus obtained are:
(g=p@t)AN(t=uANy)
CT=p=A{tapFgANu—=ONG>EA(uAy) 1)

EVpVHANEVDPVGAEVDPVGAEVDVIA(uVE)
ANyVE)A(aVyVi).
The end equations u; = z; become clause pairs (u; V Z;) A (@; V z;). Overall, if C has m qubits,
h Hadamard gates, and s — h Toffoli plus CNOT gates, then the 4CNF formula has:

e h Hadamard variables y1,...,yn;

e h + 1 indicator variables wy, ..., wp;

e s — h line variables vy, ..., vs_p;

e m input variables z1, ..., z,,—which, however, are substituted for when presenting any

input a € {0,1}"™; and

e up to m output variables z1,..., 2z, per the discussion of cylinders above.

These variables form 6h + 6t = 6s 3-clauses and 4-clauses, plus the 1-clause wq plus up to
2m output clauses, making O(s+m) clauses in all. The 3CNF formula adds s more variables

and has 7s clauses besides (wp) and the output ones. As observed above, the formulas meet
the requirements of Theorem [5.2] for any B. O

The Hadamard and Toffoli gates form a universal gate set for approximating quantum
probabilities [Shi03] by themselves. It is striking that each adds one 4-ary c¢BF, though
different roles for the variables. The Hadamard and CNOT gates do not form a universal set,
but adding either T or CS creates a set that is capable of approximating quantum amplitudes

(with complex values) not just probabilities.
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5.3 More General Theorem

The result of the previous section suffices to describe a family of universal quantum compu-
tations. Thus it is good enough in theory. However, besides this universal family, there are
many other commonly used gates, such as T, controlled-S, controlled-Z, and so on. Hence, for
general use, in this section we want to show that we can efficiently represent a wide variety of
quantum gates and circuits. The logic will represent the complex amplitude of every compo-
nent of the state vector. Every nonzero component is the final “location” of some Feynman
path(s). Some zero components may be final locations of paths that cancel.

First, we give a translation for completely general unitary gates (of any arity). Then we
show that for a wide range of quantum gates, the general construction naturally gives small
sets of controlled-bitflip equations for each gate.

Let C' be a quantum circuit on m qubits with s gates and put M = 2™. Consider the
formal product of the s-many unitary M x M matrices Uy, one for each gate in C. It expands
to a sum of s-fold products of matrix entries. Every nonzero product of entries in this sum
can be called a Feynman path through the object described by C'. The value of the product
is a complex number re? with phase . Our general theorem will describe 6 and 7 in binary
notation via Boolean coding, i.e., Boolean formulas.

One thing to note is that (as already seen in Section it is customary to write the
input a to C' on the left and list the gates/gate-matrices left-to-right as Uy, ..., Us, but the

matrix computations are
C(a) = UsUs—1--- UaUra; (b] C |a) = (b,C(a)).

If a path begins in row ¢ of a, then it enters U; through column ¢ and exits through some
row j, whereupon it enters Us through column j. For better intuition we might wish to see

it using either the transposed computation or the conjugate transpose,
C(a) =a'Ul - UL ,UT or Cla)* = a*U;---Ur_ | UZ,

and talk about the path entering row i of the first matrix and exiting via column j, etc., so
as to align with how we read the circuit. At any stage, the path is in (row ¢, column j) of
some matrix and has a current phase . We call this ¢ the location of the path. The core of
the proof is to write logical formulas that describe allowed changes in locations and phases
of paths.

We make the following two mild assumptions about U, and 6.

e All nonzero entries of Uy have the same magnitude, which means that U, is balanced
as defined by Section [2.1.2
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e Phase f is an integer multiple of 27/ K, say ¢2n /K, where K = 2* for some k and some

constant c.

This property of being balanced is preserved under tensor products, so it suffices to verify it

2mi/ K

for the 2" x 2" matrix defining an r-ary gate locally. Denote w = e a primitive K-root

of unity. The second assumption makes e’

call either 27/K or 1/K the min-phase of the circuit, and then the phases identified with

as a primitive K-root of unity as well. We also

0,...,K — 1 modulo K. These two assumptions won’t hurt the generality of our theorem
because: (1) all common gates are balanced, and (2) with min-phase, any phase 6 can be
represented in binary notation.

If x = x1,...,x, are variables in a Boolean formula ¢ and a € {0,1}, then ¢[z = qa]
stands for the formula obtained by substituting a; for x; for each ¢ and simplifying operations

involving constants. Now we can state and prove the main general theorem:

Theorem 5.3. Let C be a circuit of m qubits and s balanced gates of minphase 1/K = 27F
and mazimum arity v < m qubits. Then we can efficiently build a Boolean formula ¢c of size

O(m + sk2%) in variables W, T, ¥, Z and find a constant R such that for all a,b € {0,1}":

K-1
1
(al C |b) =5 > #sat(polw = L, & = a, 7 = b)w”
L=0
1
= % pc(W=L,%=a,j=c 7Z=>b)wr.
L,c

)

Moreover, for every assignment (a,c) to T,y there is exactly one pair (L,b) such that ¢pc [0 =

L, % =a,j=c,Z=0] holds and it can be found in O(s) time.

Proof. We track paths in stages £ = 1 to s as they begin in a column a = Jy € {0,1}"™
of Uy and terminate in row b = I; of U;. We allocate s + 1 suites Wy, ..., Wy of variables
wo e, - - -, Wg—1,¢ which collectively track the phase L € {0,...,K —1} of a path by L =
Zf;é wj,g2j. At each stage ¢ we identify m location references ui, ..., U, on the qubit lines
whose values determine an entry column J € {0,1}"™ to the matrix Uy. Initially the u; refer
to the input variables z1,..., 7y, R =1, and woo = -+ = wr_1,0 = 0. The u; are not actual
literals. For stage ¢ we allocate up to m fresh variables y1, ..., ¥, whose values I € {0,1}™
stand for possible exit rows Iy, which become either the entry column Jy;1 for the next stage
or are equated with the output variables zq,..., zp. E|

If J is any column value in {0,1}"™, then u; denotes the unique conjunction of signed

literals +u; (over ¢ = 1 to m) whose value is 1 on J and 0 for all J’ # J. For instance, if

'Note that the “w;” will be meta-symbols, and extended constructions will allow them to be negated
variables. We will also later distinguish between allocated variables y; whose values are forced not free, calling

them v; instead.
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J = 01101 then uy = (a3 Aug Aus Atg Aus). We denote row conjuncts vy similarly. Entering
stage £ of the circuit, we consider all possible current phases py_1 coded by the variables

Wi—1 = woe—1,-..,Wg—1,—1. For all pairs I, J we add clauses as follows:

o If Uy[l, J] = 0 then we add —(us Avr), which becomes a clause of 2m disjoined literals.

o If Uy[I,J] = re®, then by balance, » # 0 is independent of I,.J and 6 = 2mid/K for
some d < K. Then R is multiplied by r and we add for j =0 to kK — 1 the clause

((wy Aor) = (wje = wje1 @ Fa(We1))),
where Fy is the fixed function true on all ¢ < K such that ¢ 4 d causes a flip in bit j.

Note that Fj; can be a function of the variables wg ¢_1, ..., w; 1 alone. We can alternately

consider that over j = 0 to k£ — 1 alone we have added the single clauses
Wy = wje—1 D Fl(ug, ..oy, v1,y .oy Uy W, - -« W5,

where F’ takes into account all the phases d that arise in the matrix entries Uy[l, J] as
specified by the value J for uq,...,u, and I for vy,...,v,. Economizing F’ will occupy
much of the remainder of the paper, but for this proof we reason about Fj for all the vy and
vy.

Finally we note that vq,...,v, become “ui,...,u,” for the next stage if there is one,
else we conjoin the clauses A", (v; = z;) (or just substitute z1, ..., 2z, directly). The last act
is to add the clauses Aj;w; o and declare w in the theorem statement to refer to the terminal
wj,s phase variables. Then g in the theorem statement ranges over w;, for 1 </ <s—1 and
variables v; ¢ introduced as “v;” in the corresponding stages ¢. (We will pin it down further
in specific instances later.) This finishes the construction of ¢¢.

To see that it is correct, first consider any path P from a to b whose phase changes by L.
First we substitute £ = a and 2= b and W, = L. In the base case s = 0 with empty circuit,
P can only be a path from a to b = a with L = 0. Then we have W; = W) and substituting
L gives T if b = a and L = 0, L otherwise. For s > 1, to P there corresponds a unique

assignment of row and column values
a=Ji, hh=Jo, ..., [s1=1Js, Is=0

to literals designated “u;” and “v;” at each stage ¢. For all (I,J) # (Is, Jy), all clauses

(ur Nvy) — ...) are vacuously satisfied. This leaves the clause

((ug, Nvp,) = (Wi = wj 1 & Fg(Wi-1))),
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where d is the phase of the nonzero entry Uj[I,J]. By induction, the values of Wy_; in
the assignment either have the phase ¢ of the path entering that stage or the assignment
is already determined to be unsatisfying. These determine the value Fy(Wy_1) and hence
collectively over j these clauses determine that W, must have the correct value ¢+ d modulo
K, else they are not satisfied. Since the values of the variables in W, are forced, we have a
unique continuation of a satisfying assignment. In the last stage, the current phase value must
become L. Hence we have mapped P to one satisfying assignment of ¢pc[Z = a,Z = b, W = L]
(with Wy already substituted to zeros).

Going the other way, suppose y is any satisfying assignment to ¢¢ (again with Wy = 0).
We argue that y maps uniquely to a path P,. We get a = J; from the values assigned to Z,
then the values Jo, ..., Js of the other column entries, and finally the exit row I; which gives
a b. The values of phases along the path are likewise determined by the assignment and must
be correct. Hence the assignment yields a unique path. The path must be legal: at any stage
the left-hand side of one clause of the form (uj A v;) — ... holds so its consequent must be
made true.

Thus the correspondence of counting paths and counting satisfying assignments is par-
simonious for each phase value L, so the equation in Theorem follows. Finally, we may
observe that if Uy is a tensor product of a 2" x 2" matrix and identity matrices, then when-
ever I and I’ vis-a-vis J and J' agree on the r qubit lines touched by the gate, their clauses
can be identified, leaving at most 22" distinct clauses added at stage £. The rest of the size

estimation is straightforward. O

As already remarked, the main purpose of the work in this chapter is to find the most
economical (and elegant) formulas for specific families of quantum gates. We also note that
any initialization Lg can be used for Wy provided the corresponding target for Wy is shifted to
be L + Lg. Here we finish this section by noting one further general feature of the emulation
that already follows from this proof.

For any set B of target output values and phase L, we can define p&(a, B) = Y beB pE(a,b),
where pé(a, b) denotes the number of paths from a to b having phase L. We will find it con-
venient to maintain these sets of paths when B is a cylinder (as defined in Definition .
Singleton sets { b } have this form with 7 = {1,...,m}andc=0b,asdosets Bi={b:b; =1}
which represent measuring the single qubit ¢ to test for a 1 value. Cylinders are important
because we can choose not to substitute all z1, ..., 2, variables by values b1, ..., by,.

Note must however be taken that a path to b and path to ' do not interfere—because
they have different “locations.” Hence in particular, taking weighted sums of pé(a, B) is not
the same as measuring outcomes in B. One needs to sum them for all b € B. We will fix this

issue by proving a parallel theorem for the acceptance probability. We state it here just for
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circuits of gates whose phases are multiplies of ¢:

Theorem 5.4. Let C' be a circuit of m qubits and s balanced gates of min-phase w/2 and
mazimum arity v < m qubits. Then we can efficiently build a Boolean formula v of size
O(m + 52%7) in variables v, W, &, ¥, Z and find a constant R such that for all a € {0,1}™ and
cylinders B C {0,1}™:

1
D1l € [b) [ = o5 (s#sat(y) — #sat(v")), (53)
beB
where ' and ¢ are projections of 1 depending on B. Moreover, for every assignment (a, c)
to &,y there is exactly one completion to an assignment that satisfies ' or ¢" (never both)

and it can be found in O(s) time.

It is best to prove this after (in Section |5.6) gaining a concrete understanding of the
efficiency issues for the cases K = 2,4, 8 and the motivation for sampling and uniform gener-
ation. The next section segregates the variables i/ of the general case into Hadamard variables

19+

Y1, --.,yp and other variables vy, ..., vs_p, whence “0” in the above statement.

5.4 Circuit Simulation By “Controlled-Bitflip” Clauses

Now we show how the construction of Theorem when applied to common quantum gates,

yields Boolean equations e of the controlled-bitflip kind:

pP=pod /\Llui. (5.4)
When j = 0 this becomes p’ = —p (not p’ = p) since an empty AND defaults to true. So
then when j = 1 and u; = 1, it is a bitflip. In general, with the u;’s presence, [5.4]is essentially
a controlled bitflip. All u;’s in the aggregate term /\gzlui are control bits, and p is the target.
But in the implementation of our prototype simulator, we introduces new variables to restrict
the length of /\Llui to be 2. More details can be seen in the examples in Section
The fact that CNOT and Toffoli gates alongside Hadamard gates have a universal set says
that all quantum computers can be represented as using only controlled bitflips and quantum
measurements. The essence of our Boolean equations is that all quantum gate behavior and
the dense set of complex amplitudes can be naturally described via controlled bitflips alone.
Moreover, the controls naturally alter “phase sign”. The literals in e are all positive. Negative
literals enter only when e is converted into (e.g.) conjunctive normal form. We call a clause
of the form (5.4) a controlled-Bit-Flip equation, ¢cBF for short, of arity j.

Lemma 5.5. A ¢BF of arity j is equivalent to a conjunction of two (j + 2)-clauses and 2j

3-clauses.
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Proof. The two j-clauses are (a; V---a; VpVp') and (a1 V---u; VpV ). They make p and
p’ have opposite sign in case all u; are true. The 3-clauses are (u; VpV @) A (u; VpVp') for

1 =1 to j. They make p and p’ equal in case some u; is false. O

We show next that all of the most commonly used quantum gates—including those
mentioned in the recent frontier references [HSSTT6, BIST16, [HS17]—translate efficiently
controlled-bitflip equations. The entries of their defining matrices are all powers of w = ¢/7/4

which we identify with the phases 0, ..., 7 (modulo 8). First we describe the Boolean variables

in full:
e Variables zi,...,x,, are input variables assigned ai,...,a,. The line designators
Uy, ..., Uy, initially denote x1, ..., x,,, respectively.
e The output variables z1, ..., z,, are respectively set equal to the variables designated by
U1, ..., Uy, upon finishing the circuit, and may be substituted by any subset of target
output values b1, ..., b, to fix measurements.

e The top-phase variables py, ..., py,... distinguish the top of the circle (phases 0,1,2,3
for py = 0) from the bottom of the circle (phases 4,5,6,7 for py = 1).

e Quarter-phase variables qo, ..., qy,... distinguish the quadrants 0,1 and 4,5 (¢, = 0)
from 2,3 and 6,7 (¢ = 1).

e The variables rq,...,rs,... tell whether the current phase of a path is even (r, = 0) or
odd (r, =1).

e [lree variables y1,...,Yn,... each represent a bit of nondeterminism. Initially A = 0,
R=1.

e Bound variables vy, ...,vs,... are placed on qubit lines ¢ and become the new u; when
placed.

The triple (py, qe,7¢) combines to specify the current phase of a path, while the vector
of values of the variables currently pointed to by w1, ..., u, represents the path’s current
location. All paths on input a = (a1, ..., a,) begin at location a with phase 0 represented by
the initializations pg = 0, go = 0, and g = 0. To illustrate the encoding scheme for phases,
consider counter-clockwise rotations by 7, 7/2, and 7 /4 in the unit circle when the current

phase is denoted by (pr—1,qr—1,70-1):
e By m: py = —py—1; no change to qs—1,7o-1.

e By 7/2: qv = =qo—1; pr = pe—1 ® qo—1; no change to ry_;.
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o By m/4: rp=—rp_1; qr = qo—1 B re—1; pe = pe—1 D (qe—1 Nre—1).

Note how the update to p, under rotation by m/4 represents a two-place “carry” when
incrementing the phase in binary notation with 7y_; holding the least significant bit. A
rotation by 7/8 would involve new phase variables s; distinguishing parity modulo 16 with
ry re-defined as false for phases 0,1,4,5,8,9,12,13 and true for 2,3,6,7,10,11,14,15. None
of these changes the location, and in consequence applying these rotations does not change
the amplitude of any output b on the qubit lines. Thus the ¢BF format captures the effect
of carrying.

Gates with diagonal matrices do not change the location or allocate a new line variable
yr or v,. Gates whose non-zero entries are all 1 (possibly divided by a normalizing constant)
do not change any phase variable, while those with non-zero off-diagonal entries can change
the location as well as phase. Here are the details for individual gates:

1

e Hadamard gate H = 1

V2
new free variable yp on line ¢, add equation p; = py—1 ® (u; A yp), set u; := yp, and
multiply R by v/2.

] on line i: Allocate new top-phase variable py, allocate

01
e Pauli gate X (aka. NOT) = L O] on qubit line ¢: Allocate new line variable vs on

line i, add equation vy = —wu;, update u; := vs, no change to other variables or R.
(Alternately we could just flip the sign on wu;, but we prefer to keep it referring to a

variable—in our C++ code it is an array pointer.)

I 0
e CNOT (aka. CX or just C) = [O X] with control on line i and target on line j: Allocate

new v, on line j, add equation vs = u; @ u;, update u; := v, no other changes.

I 0
e Toffoli gate Tof (aka. CCX) = [O CX] with controls on 7, j and target on k: Allocate
new v, on line k, add equation vs = uy @ (u; A uj;), update uy := vs, no other changes.

0

1
e Pauli gate Z = [O ] on qubit line 7: Allocate new top-phase variable py, add

equation py; = py_1 P u;, no other change.

—i
e Pauli gate Y = | 0 on qubit line i: Since Y = iXZ, we can compose the actions
i

for Z and X, with the final scalar multiplication by ¢ being optional.
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e Phase gate S = : Allocate new py, g, with equations ¢ = qp_1 ® u; and py =

1

pe—1 D (u; A ge—1). No other change.

1 . .
e T= 0 ] , where w = e'™/4 = %: Allocate all new py, g with equations:
w
re = Te—1 Dy
@ = -1 (re—1 Auy)
Pe = Pr—1 D (qu—1 Nre—1 Auy).
144 1—3 7
e V (aka. VNOT or X!/?) = 3 ! T i P Directly transcribing this

211—d 1434 V2T w
per the last section does not yield a single ¢BF, but we can use V = HSH which does it
with four c¢BF'’s.

1 -1

1
counter-clockwise phase shift by 7w/4) can be ignored.

o Y2 =1t : Use Y = HZ - w, where again the scalar multiplication by w (i.e.,

I 0
e CS = [O S] with source i and target j: Allocate py, ¢ and add equations ¢y = qy_1 &

(u; Auj) and pp = pe—1 & (ui Auj A qe—1).

0
e CV = 0V with source ¢ and target j: This is equavalent to placing H on line j,

then CS with source ¢ and target j, and finally H on line j again.

I 0
o CZ= 0 Z] with source ¢ and target j: As with CS (and with an equivalent formula

for CV), it just adds u; as a conjunct to the equation for Z on line j.

5.5 Examples and Execution on Our Simulator

Ultimately all the free variables are assigned when placing Hadamard gates. The sequence
of ¢BF’s, as gates are placed in left-to-right order (with matrices composed in right-to-left

order), obeys the following invariant:

Lemma 5.6. For any truth assignment ¢ = (c1,ca, ..., cp) to the Hadamard variables yi, . .., yn,
mput a = a1 - - - a.my to the variables x;, and initialization of pg, qo, ro, the sequence of cBF’s
can be evaluated in order with all right-hand side values defined in the initialization or in

previous steps. O
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This enables an “intelligent backtrack” brute-force solution counting routine that, when
incrementing ¢ € {0, 1 }h to the next ¢ in standard order, need only roll back to the first
¢BF containing y,, where ¢ and ¢’ agree in the first g — 1 bits. Roughly speaking, this saves
a factor of h when carrying out the brute-force iteration through ¢ to tabulate the results of
each path. This idea is implemented in a prototype of our simulator.

From Section T gate uses one 5-ary c¢BF, which becomes two 5CNF clauses under
Lemma 5.5 and a conversion similar to In the prototype of our simulator, we restrict all
controlled-bitflip equations to have only two control bits and this enables all clauses to be
eventually in 3CNF or 4CNF forms (as discussed in and [5.1). Hence before presenting
our experimental results, we show some examples of the construction of Boolean formulas

and discuss how those controlled-bitfilp equations transform eventually in our simulator.

5.5.1 Single-qubit Example
Section shows a basic but typical example of single-qubit circuit H-T-H.

o) T 12

With the techniques developed in Section this single-qubit circuit will be converted into

the following set of Boolean formulas, with the initializations pg = 0, g9 = 0, and rg = 0:

phase 7: phase 5: phase m:
1 =70 D Yo q1 = qo @ (10 A yo) p1=po® (Yo Az)
p2 =p1® (g0 Aro AYo)
p3 =p2® (Y1 Ayo)-

In the implementation of our simulation system, the equation ps = p1 @ (go ATo Ayo) becomes

p2=p1© (g At)A(t=r0AYo)

which is similar to 5.2
Let r;’s be variables associated with phase 7, ¢;’s for 7, and p;’s for m. Below Figure

shows how the set of Boolean formulas looks like in our simulator.

pl = p0 ¥OR (y0 && x1)
rl = 0 XOR (y0)
cl = r0 ¥OR (rl)
gl = g0 ¥OR (r0 && c0)
cl = g0 XOR (gl)
p2 = pl ¥OR (g0 && cl)
p3 = p2 XOR (yl && y0)

Figure 5.1: Boolean formulas for single-qubit circuit H-T-H.
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The main difference from above lies in py = p; @ (go A 79 A yo) which becomes py =
p1 @ (go A c1) in the simulator, with ¢; = 79 A yp. Hence all the controlled-bitflip equations
can convert into 3CNF or 4CNF forms.

We know that | (0]C|0) |*> ~ 0.85 and | (1|C|0) |* ~ 0.15. This disparity cannot be ex-
plained by saying that each H acts like a classical random coin. This phenomenon is made
more formal in the CHSH game (referred to Section . In particularly, Bell’s Theorem
behind the CHSH game is often interpreted as saying that one cannot use classical binary
random variables to analyze quantum probability. However, this work shows that one can
use such variables internally—one classical Boolean variable per H gate-provided that the

external analysis is correct. Here the external factors are the cosine terms in Theorem

5.5.2 Quantum Fourier Transformation (QFT)

Adding variables standing for phases 1/16,1/32,... can code an even wider range of gates
used in some well-known exact recursions for the quantum Fourier transform on n qubits,

whose matrix is given by

11 1 1 1]
1 w w? w3 e wh—1
111 w? Wi w6 . W2(N-1)
QFTN = ﬁ 1 wg wG wg . w3(N—1)
1 WwN-1 2(N-1)  3(N-1) W(N-D)(N-1)
where N = 2" and w = ¢~ ?™/N_ (It is worth noting that with K = 8 this is the same w as

used in defining T and V above.) However, these recursions involve ©(n?) gates each needing
O(n)-many cBF’s of arity ©(n), giving formulas of size ©(n*) overall. An asymptotically
better way notes that if the incoming phase is H then the new phase is H' = H + I -J modulo
N. This string relation has Boolean circuits of size O(nlognloglogn) via the Schonhage-
Strassen integer multiplication algorithm [SS71] and its conversion to circuits. (Ironically,
this uses Fj,.) Concrete quantum circuits for the relation were presented by Markov and
Saeedi [MS12], but we can simply convert each Boolean circuit gate into a cBF.

The construction of the circuit for QFT over 4 qubits is the one in Figure 2.1} For the

sake of illustration, we also show its set of Boolean formulas generated by our prototype in

Figure [5.2
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pl = p0 XOR (y0 s& x1) p4 = p3 XOR (g2 && c5)
gl = g0 XoR (x2 && y0) pS = p4 XOR (yl && x2)
cl = gl XOoR (al) ad = g3 XOR (%3 && v1)
p2 = pl XOR (g0 && c0) c6 = g3 XOR (qgd)
rl = r0 XOR (x3 && y0) pé = p3 XOR (g3 && cé)
cl = r0 XOR (rl) r3 = r2 ¥XOR (x4 && yl)
g2 = gl XOR (r0 && cl) c7 = r2 ¥OR (r3)
c2 = gl XOR (g2) S = g4 ¥OR (r2 && c7)
P3 = p2 XOR (gl && c2) c8 = g4 XOR (g5)
s1 = s0 XOR (x4 && y0) p7 = p6 XOR (g4 && cd)
c3 = s0 XOR (sl) p8 = p7 XOR (y2 && x3)
r2 = rl XOR (s0 && c3) g6 = g3 XOR (x4 && y2)
cd = rl XOR (r2) cS = g5 XOR (gé)
g3 = g2 XOR (rl s& cd) P9 = p8 XOR (g5 && c9)
c5 = q2 KOR (q3) plld = p% ¥CR (y3 && x4)
(a) (b)

Figure 5.2: Boolean formulas QFT over 4 qubits

The construction follows the convention rules in Section together with one extra step (as
analogous to the single-qubit example above) which introduces new ¢;’s variables to shorten
the number of control bits. This makes all controlled-bitflip forms have only two direct
control bits at the expense of extra controlled-bitflip equations, and it results in the set of
controlled-bitflip equations as shown collectively in Figure[5.2] From the ideas in Section
variables p;’s are associated with phase 7, ¢;’s with phase 7, r;’s with phase 7, and s;’s with
phase {z. They are enough because from the matrix representation, this QFT will be QFT y
with N = 2%, where w = ¢~2™/16and the finest phase for the amplitude (a| C' |b) can only

™

16
Generally, let b(c) denote the final location of a path ¢ and f(c) the final phase. The

amplitude of the outcome C(a) =b € {0,1}" is given by

go as small as

N-1

(@l C by =D w@="|{c:blc)=bAflc)=T}|w’ (5.5)
c:b(e)=b J=0

with w = e*™/N. What the right-hand side of (5.5)) finally means is that we can get the

amplitude by counting the number of satisfying assignments to each of the formulas ¢;

obtained from the basic ¢ = ¢¢c by substituting the binary representation of each J for the

phase variables.
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5.5.3 Demo of Shor’s Algorithm

Hel | . | QFT,/

— — a* mod M —

Figure 5.3: The quantum subroutine in Shor’s algorithm.

Figure shows the main quantum component in Shor’s algorithm [Sho94] for factoring a
given n-bit integer M starts by choosing Q = 2¢ where £ = 2n+1, so that M? < Q < 2M?, and
a random a < M which we may presume is relatively prime to M (else it succeeds at once).
On the left hand side, there are 2n Hadamard gates being applied to 2n qubits separately,
while the right hand side is a QFT over 2n qubits. In the middle, it places a deterministic
circuit Cy that maps any binary-encoded number z < @ to fu(z) = a® (mod M). More
precisely, Cy maps z - 0° to the concatenation x - y where y = f,(z) as an £-bit number. The

combination with the Hadamard gates creates the functional superposition

1
® = g 2 lafala).

The quantum part then applies QFT, to the first £ lines and measures them to get an output
b < Q. The rest is a classical attempt to use b to find a period r such that f,(z) = fo(x +71)
for all z, and then use r to find a factor of M to tumble out. Failure means re-starting the
outer loop with another a’, but the analysis shows that with high probability it needs only
O(logn) restarts. The sampling routine in Section can emulate the inner loop. It will be
interesting to see if this can attack moderately large numbers M. The brute-force method is
OK for M < 100. For comparison, libquantum [BWO03, WML™10, WB11] complied on the
same hardware can work up to about M = 5000. More is discussed in Section

Since the conversion of Hadamard gate and QFT have been discussed in preview sections
(Section and Section [5.5.2)), we restrict our attention to the modular exponentiation



CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 42

gate (a® mod N) in this section. Instead of simulating this classical a® mod N directly, we
emulate this gate with Montgomery multiplication [Mon85] which has been used to implement
Shor’s algorithm before [PG12, [RNSL17]. Montgomery multiplication computes modular
exponentiation using only addition, multiplication, and operations modulo a power of 2, and
hence it is often the most efficient choice if the modulus is not being too close to a power of

2.

5.6 Probability Form and Sampling

We give a revision of the main theorem tailored for the probability on a cylinder (Defini-
tion [2.2)), rather than amplitude. The advantage is that it can be used for sampling.
To discuss sampling, first we review the classical reduction from counting to uniform

generation. It starts with one call to #sat to compute the cardinality of the solution set S.

e Using one call to #sat, compute |So| = |[{z € S:21=0}|and |S1|=[{x e S:x1=1}]| =
S| = 150].

e Set x1 = 0 with probability |Sp|/|S| and x; = 1 otherwise.

e Substitute the value of x1 into ¢ and recurse on x5 and so on.

The quantum sampling task is to generate outputs b—belonging to {0,1}™ or some
(cylindrical) subset B thereof—according to the probability distribution |(a| C |b)[2. A
naive attempt to emulate the above process beginning with B = ({1},0) would substitute
z1 = 0 but leave the variables zo, ..., 2z, open in the first formula ¢g. Applying the counting
in to the phase-shifted formulas derived from ¢¢ would fail, however, because it would
attempt to cancel counts of solutions with different final locations b, ..., b, whose waves do
not interfere. The fix is to maintain the probabilities directly rather than the amplitudes in

a way that preserves the cylindrical structure. We state the binary case first:

Theorem 5.7. Let C' be a circuit of m qubits, h Hadamard gates, and s — h Toffoli and
CNOT gates. Then we can efficiently build a Boolean formula ¢ of size O(m-+s) in variables
b0, B, w0, 7,7,y Z and find a constant R such that for all a € {0,1}™ and cylinders B C
{0.1}™, Pr{C(a) € Bl = Tyep|(al C 1) =

%(#sat(wc[f 4, 7= b Awp = ) — Esat(bolF = a, F =B Awp £ul). (5.6)

- =

Moreover, for every assignment (a,c,c) to Z,4,y’ there is exactly one completion to an

assignment that satisfies o and it can be found in O(s) time.
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The proof is subsumed by that of Theorem [5.4] Note that for +i, —i phases, we get
exactly the same equation since ¢ and —¢ cancel. Now we can make the uniform generation
procedure work by using ¥y = 1¢[z1 = 0] in place of ¢g. We need two calls to the #sat oracle
to evaluate #sat(yo A wy, = wﬁb) and #sat(o A\ wp, # wﬁl) Their difference over 2" gives
the correct probability because by summing over assignments to zo, ..., 2z, we are summing
over b € By. We do not need to make separate calls for the case z; = 1. Thus the
efficiency in the number of oracle calls is the same as in the classical iterative reduction. The
resulting binary string b is generated with the same probability distribution D¢ as measuring
all registers of C'(a) would give, and the time needed is O(mhTssim) where T, is the time
for calls to the #sat oracle on an n-variable formula.

A second elegant point, after what we have noted about the equations for Hadamard
vis-a-vis Toffoli gates, is that ¥¢ is virtually the same as ¢ for the circuit C’ that computes
the standard “compute-uncompute trick” [BBCT95]. For K = 4 we again get a difference of

two calls to #sat:

Proof of Theorem [5.4. Here by the constructions in Section [5.4] the formula ¢¢ has variables
Dh, qn, denoting the final phase, with pp = 0 for 1 and i versus p, = 1 for —1 and —¢, and
gn =0 for 1,—1 versus g, = 1 for 4, —i. Again we make a copy ¢, with final phase variables

p;, < q;,- For a final state o = a + bi — ¢ — di we have
la? = (a® + b* + ¢ + d*) — (2ac + 2bd).

The positive term is expressed by conjoining (p}, = pn) A (¢}, = gn). The negative term is
expressed by the combinations (pnrgn,p}q,) = (00,10), (10,00), (01,11), or (11,01). The

conjunction allowing exactly these combinations is (p}, # pr) A (gn = q},)- O

5.7 A Few Experimental Results

The tasks of counting the number of solutions to a given polynomial equation and the number
of satisfying assignments to a Boolean formula belong to #P as defined above. The general
cases of these tasks are both NP-hard. Although NP-hardness has generally been regarded
as strong evidence of asymptotic intractability, recently there have been broad advances on
solving concrete cases of these tasks. Most of this success has come from so-called SAT-
solvers asked to find just one satisfying assignment, but #SAT solvers charged with counting
the number of satisfying assignments ezactly have gained traction.

We show the experimental results from the performance of solving the generated boolean
formulas using our brute-force (BF) method and current versions of the Cachet [SBBT04,
SBKO05al, [SBK05b] and sharpSAT [Thu06] solvers. For consistency, we use m to denote the
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Table 5.1: CNOT staircase (microsecond (us))

m BF | sharpSAT Cachet

4 34.817 | 7409.250 | 35869.500
618.083 | 8020.500 | 36244.500
12 12238.524 | 8292.250 | 35244.875
16 122063.122 | 8099.500 | 34120.375
20 | 2101033.678 | 9594.000 | 39993.500
24 | 62935719.848 | 9024.125 | 42994.000

number of qubit lines in a quantum circuit. All the circuits we are testing on are first having

a bank of Hadamard-gates applied to the input vector, and subsequently differ as follows:

e CNOT staircase: apply CNOT gates with control n and target n 4+ 1 followed by a T-

gate on line n for n = 1,--- ;m — 1. Concretely, a sequence of applied gates would be
CNOT(1,2),T(2),CNOT(2,3),T(3),...,T(m),CNOT(m, 1).

e CNOT staircase with appended CZ and CV gates that alternate: After the bank of H
gates and the above CNOT staircase, apply CV and CZ alternately to lines n,n+ 1 and

n + 2. Concretely, a sequence of applied gates would be:

CNOT(L,2), T(2), CNOT(2,3), T(3), ..., T(m), CNOT(m, 1)
CV(1,2), CZ(2,3), CV(3,4), CZ(4,5), - ,CZ(n — 2,n — 1),CV(n — 1,n).

e Initial segments of circuits proposed in [BIST16| to be hard for classical simulations.

The following results were run from C++ code on a Dell PowerEdge R720 departmental
machine. Our code represents each element of a ¢BF by a pointer to an unsigned integer
standing for a Boolean value. The brute-force times are single-threaded; the others use
compilations of the official current source code releases of sharpSAT and Cachet.

Table[5.1]shows the results of solving the generated boolean formulas for circuits consisting
of a “staircase” of m Hadamard and CNOT gates producing entanglements. While the brute-
force (BF) running time grows exponentially in m as expected, the running times of sharpSAT
and Cachet change little. This suggests that the solvers are able to figuratively flatten the
staircase so that the transformed solutions are easy to count. The next experiment tries to
frustrate this by sprinkling controlled gates of non-binary phases amid the lines. The CV

gates add extra nondeterminism in the standard basis.
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Table 5.2: CNOT staircase with CZ and CV (microsecond (us)

m BF | sharpSAT | Cachet
4 409.706 8,373 | 42,744
91,534.342 8,486 | 49,493

12 13.858 s 10,400 | 64,300
16 | 14587.857 s 18,500 | 52,000
20 | > 5 hours | 145,700 s | 106,000
24 | > 5 hours | 1,196,100 | 362,700

In Table[5.2] the relations between them are similar to that in[5.1] until the line for m = 16.
The BF running time balloons up even more owing to the extra nondeterministic variables.
The sharpSAT solver seems to have special difficulty with the circuits of 20 and 24 qubits.

We also tried initial sets of layers from the circuits treated in [HS17] based on indications
from [BIST16] of their being hard to simulate classically. Those circuits had too much non-
determinism for BF but gave results within a few hours for sharpSAT and Cachet until the
circuits reached 6 or 7 layers of 24 to 36 qubits—well short of the 40-layer simulations on
massively parallel hardware announced by [HS17].

The results show that sharpSAT and Cachet give better scalability on these circuits.
They as yet do not, however, even “recognize” the identity HH = I in the sense of having
similarly close running times when extra HH pairs are added to these circuits. Of course, our
BF method has its time compounded by a factor of 4 for each pair since it blindly tries all
combinations. This points to the goal is tuning the solvers for a repertoire of basic quantum
simplifications, in the hope that this will boost the heuristics already employed.

The final preliminary experiment, just at press time, emulated the circuits for Shor’s
algorithm that are constructed by libquantum [BW03, (WML™10, WBT11]. The libquantum
package and its shor routine are distinguished among quantum simulation software by being
part of the SPEC CPU2006 benchmark suite [SBH0O6G]. We modified the v1.1.1 release code
so that it prints out each quantum gate in the readable format of our emulator. The circuits
are generated specially for each M and choice of random seed a. For M = 2021 and a = 7
the circuit built by the shor routine uses 22 principal qubits, 35 ancillas, and has 98,135
elementary gates. By far the largest block is for the modular exponentiation step which
consists entirely of deterministic gates (only NOT, CNOT, and Toffoli). They are somewhat
larger than the original circuits for Shor’s algorithm detailed in [BCDP96]. They are far
from optimal; indeed, Markov and Saeedi [MS12, MS13] showed 6-to-8-fold improvements by
high-level means and other gate-level improvements have been made [Bea03, PG14, [HRS17].

The SPEC CPU2006 benchmark consists of one run of shor on M and a, which does
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just one iteration of the quantum circuit—mno restarts in case it doesn’t succeed. It uses a
numerical gate-by-gate simulation. For M approaching 10,000 our compile of shor overflows
its hash table of over 500MB. It functioned correctly on M = 2021 = 43 x 47, which is
just under 2'. Our emulator’s brute-force routine reaches its limit for numbers larger than

236

29 = 512, which entails running through = 64 billion assignments for each of 9 sampled

bits. Optimizing the initial modular exponentiation stage would make very little difference
in our brute-force routine because only one in every 2!%
final QFT step which has 18 Hadamard gates of its own. Runs with the #SAT solvers
succeeded for M = 15 and M = 21 but bogged down for M = 55, with sharpSAT expanding

to over 34GB of system resources. This evidently owes to the second copy of ¢ in the proof

assignments backtracks beyond the

of Theorem doubling the count of Hadamard gates again. The brute-force compilation
needed only the single copy and stayed within 71MB, under 0.1% of system memory, per

billion assignments tried.

5.8 Conclusions

We have defined a natural emulator in the sense of [HSST16]. Preliminary experimental
work shows that it is competent even in brute-force simulation and enables distinctly high
performance through #SAT solvers in several instances. It has a high memory footprint
only in the accumulation of final results. The sampling procedure of Section [5.6| essentially
eliminates that footprint but at double the cost in nondeterminism and a squaring of brute-
force simulation time. Overall the architecture is markedly different from that of commonly
employed systems.

Higher performance may come from software advances in #SAT solvers. These might be
tailored to leverage the “controlled-bitflip” form of the equational clauses before conversion
to conjunctive normal form. At the very least, our work has supplied a new class of natural
instances by which to challenge these solvers.

We close with an analogy to elaborate the main issue with our architecture. Solvers that
represent whole state vectors in some form and emulate circuit levels sequentially figuratively
have the memory footprint of a giant. Once the giant gets going, however, it walks with
a steady gait. Our model instead employs an army of fleet-footed mice and can send one
‘mouse’ (i.e., evaluate one Feynman path) at a time with zero footprint—except for housing
the results of the mice at the end. The issue is that each intermediate nondeterministic gate
doubles the size of the mouse army. The brute-force simulation does intelligent backtracking
but does not carry out simplifications that might reduce the implicit army.

The formulas manipulated by SAT and #SAT solvers, insofar as they expand via resolu-

tion and other techniques, are between the mice and the giant. The further success of this
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approach may depend on how much implicit combination they can achieve. For some sam-
pling steps of quantum algorithms, certain tradeoffs between accuracy of the counting and
size can be tolerated. How this can possibly interact with the deep tradeoff of approximation
and hardness in sampling, over which the argument over “quantum supremacy” is currently

centered, remains to be seen.



Chapter 6

Stabilizer Circuits, Quadratic

Forms, and Computing Matrix
Rank

The results in this chapter are in our paper [GR19|.

6.1 Overview

The main discovery of the work in this chapter is the tight connection between the strong
simulation of stabilizer circuits and two bedrock mathematical tasks: computing matriz rank
and counting solutions to quadratic polynomials (both over the field Fy).

In particular, we show how strong simulation of a stabilizer circuit C' can be reduced to
the problem of computing matrix rank with the promise that (0" C' |0™) is nonzero, and
the same reduction can be reverted directly, which overall gives the almost tight connection

between these two problems. They can be summarized as follows:

(a) Strong simulation of n-qubit stabilizer circuits of size s with h Hadamard gates (or other
nondeterministic single-qubit gates) on standard-basis inputs is in time O(s + n + h*)

where 2 < w < 2.3729. This works for amplitude as well as probability.

(b) Computing n x n matrix rank is linear-time equivalent to computing the probability
p (for circuits where h = ©(n) and s = O(n?)) on the promise that p is positive, and
equivalent to computing p on the narrower promise that the graphs underlying the

circuits are bipartite.

Moreover, the proofs for item (a) and (b) respectively, imply the following two algorithms.

48
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Consider the following algorithm for computing the rank r of an n X n matrix Ay over the
field Fa:

0 A0]

I. Form the symmetric block matrix A =
Al 0

II. Form the quantum graph state circuit C'a for the bipartite graph with adjacency matrix
A.

III. Calculate p = the quantum probability that Ca (0?") = 02". The bipartite case assures
p > 0.

IV. Output r = logy(1/,/p).

All steps except 3 take O(n?) time. Hence, for dense matrices, this is a linear-time reduction
from r to p. In the converse direction, the following algorithm is for computing the amplitude

(0™ C |0™) for any n-qubit quantum stabilizer circuit C:

I. Convert C to a classical quadratic form go over Z4 that retains all quantum properties
of C.

II. Take the matrix A of qo over Z4 and associate a canonical n x n matrix B over Fs to
it.

III. Compute the decomposition B = PLDLTPT over Fy where P is a permutation matrix,

L is lower-triangular, and D is block-diagonal with blocks that are either 1 x 1 or 2 x 2.

IV. Take L™! over Fy but compute D’ = LT'PTAP(L™!)" over Z;. (Note PT =P~1)
If any diagonal 1 x 1 block of D has become 2 in D’, output (0" C' |0™) = 0. Else,

(0" C ]0™) is nonzero and is obtained by a simple O(n)-time recursion.

Here step 1 from [RCGI§| takes time linear in the number s of quantum gates in C, which for
standard-basis inputs can be bounded above by O(n?/logn) with O(n) quantum Hadamard
gates [AGO4]. Step 3 is computable in O(n*) time by [DP18], where w is the exponent of
matrix multiplication and is at most n?37286% [Sto10, Will2, [Gall4]. This is also the best
known time for computing n x n matrix rank over any field and for the particular inverses
and products in step 4 as well (see [CKL13|]). However, when (0" C' |0") # 0 we show that
its absolute value is computable quickly from r alone after step 2.

The connections used in our proof run through the real-time conversion of quantum cir-
cuits C' to “phase polynomials” gc over Zg for K = 2% k> 1 in [RC09, RCG18], which ex-
tended results by [DHH™04] for £ = 1, and the analysis of quadratic forms over Z4 by Schmidt
[Sch09] drawing on [AIb38| Bro72]. In the case of graph-state circuits and stabilizer circuits



CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 50

more generally, go becomes a classical quadratic form over Zy, as treated also in [CGW1S].
Our approach is related to ones involving Gauss sums [BvDRO8al, [CCLLI10, [CGWI8| BK18§]
but exploits the availability of normal forms. For bipartite A as above, it further devolves
into a quadratic form g, over Fy that is alternating (as defined below) plus an ancillary vec-
tor v. A linear change in basis—which also sends v to a vector w but leaves the probability

computation unaffected—gives over Z, the normal form

n
G0 = Y1y + Ysya + - + Yag-1Y2g + O 2w (6.1)
j=1
Here the rank r must be even and g = r/2. This corresponds to block-diagonal matrices D
with g-many 2 x 2 blocks as produced by [DP1§|, together with 1 x 1 blocks coming from
w. The 1 x 1 blocks matter most for j > r. The matrix D’ over Z4 may no longer be
block-diagonal but its diagonal reveals w.

Hereafter, let N.(q) stand for the number of arguments x € {0,1}" giving ¢(z) = ¢
(mod 4) for ¢ =0,1,2,3. Along the way to our main theorem, we prove that for any classical
quadratic form g over Zy4, the differences |Ny(q) — Na(q)| and |N1(q) — N3(q)| are either zero
or a power of 2. This resolves the effects of the “w” part of the normal form (Equation )

for the alternating case in particular.

6.2 Circuits and Quadratic Forms

Let R be a commutative ring with unity 1. A quadratic form in n variables over R is a

homogeneous polynomial

q(w1, -, xn) = Z i jTiTj

1<i<j<n

of degree two with coefficient a; ; in R. The study of particular quadratic forms dates back
many centuries [BELRO0, Hah08]. The Babylonians in the 18th century B.C. had insight into
the ways that the quadratic form 2% 4+ 23 — 22 over the integer Z represents 0. However, the
reasonably systematic study of quadratic forms begins with Diophantus and his Arithmetica
[Hea64] in 3rd century A.D. Since then, many famous mathematician figures appeared in
the development of theories over quadratic forms, including Pierre de Fermat, Leonhard
Euler, Luigi Lagrange and so on. Not until 19th century, the famous treatise Disquisitiones
Arithmeticae |Gau66|] of 1801 by Carl Friedrich Gauss brought that theory to essentially its
modern state.

Quadratic forms can be categorized as classical and non-classical. A classical quadrat-
ic form f in variables & = (zy,---,xy,) is one whose coefficients of crossing terms are all

even, while non-classical one has odd coefficients over cross product terms. Being a classical
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quadratic form means that f can be induced by a symmetric n x n integer matrix A as
(@) =z"AZ,

and this is the form that this chapter concentrates on. More precisely, we will deal with
classical quadratic forms over Z4 with ¥ € {0,1}2.

Classical quadratic forms are indifferent between 0 and 2 as arguments, likewise 1 versus
3, because 22 =0, 32 =1, and 2-1 = 2-3 = 2 modulo 4, so counting solutions over Z) and
over {0,1}" is equivalent for them. An amazing “Dichotomy” phenomenon studied by Jin-yi
Cai et al. [CLX14, [CGW17] show that counting solutions to (all) quadratic forms in Z} is in
P. However, counting binary solutions to non-classical quadratic forms is NP-hard, indeed,
#P-complete, while counting binary solutions to classical quadratic forms over Z4 is in P,
and we improved the time from O(n?) to O(n*) (more in Section .

A high-level idea of how we associate stabilizer circuits with classical quadratic forms is
discussed in Section Adding the controlled-S gate CS to the family of stabilizer circuits
makes it a universal quantum set. Those general quantum circuits will have non-classical
quadratic forms over Z4, over which (as mentioned above) in general it is intractable to count

binary solutions.

6.3 Quantum Stabilizer Circuits and Graph-State Circuits

Recall that the family of stabilizer circuits can be generated by the following three gate

matrices:
1 0 0 O
1 1 1 0 01 0 O
H:L , S= , CZ=
V21 -1 0 i 001 0
00 0 -1

The original polynomial-time algorithm by Gottesman and Knill [Got98] involved Gaussian
elimination and so ran for all intents and purposes in order-of n? time. Aaronson and Gottes-
man [AG04] improved this to O(n?) time with a tableau method and also showed that every
stabilizer circuit has an equivalent one with O(n?/logn) gates. Anders and Briegel [AB06]
improved the running time concretely and for circuits of size s = o(n?) using a graph-state
representation, as we will also do. Dehaene and De Moor [DMO03] described quantum states
produced by stabilizer circuits via linear and quadratic forms over Fy in ways simplified and
extended by van den Nest [vdN09].

We seek even simpler and faster methods that lend themselves to further algorithmic
properties, such as quick update when changes are made to C' in the sense of “dynamic

algorithms.” We employ the theory of classical quadratic forms over Z4 as developed by
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Schmidt [Sch09] and more recently by Cai, Guo, and Williams [CGWI8]. The quadratic
forms are built using the real-time algorithm of [RC09, RCGI§| for computing what we call
the additive partition polynomials qo for quantum circuits C' that meet a mild “balance”
condition. Related works involving low-degree polynomials and counting complexity include
[BvDRO8al, BJS10, Mon17, [KPS17].

The polynomial go has variables 1, ..., z, corresponding to binary input values, z1, ..., 2,
for the binary output values, and yi,. ..,y representing nondeterminism from Hadamard
(and possibly other) gates. For any a,b € {0,1}", letting g, denote ¢ with those values

substituted for the x; and z; variables, we have for some R > 0:

(b C la) = % Z wlab(¥), (6.2)
yE{O,l}h

where w is a K-th root of unity such that all phases produced by the circuit are powers of
w. Stabilizer circuits give K = 4 so that the powers in this exponential sum belong to Zj4.
Generally R = 22 but its value is reduced if some nondeterministic y; variables are forced
to equal outputs.

The rules for calculating g are straightforward. Initially ¢ = 0 and each qubit line ¢ has its
current annotation u; defined by u; = x;. In general, let u; stand for the current annotation

of line 4, and let y1,...,ys—1 be the nondeterministic variables allocated thus far.

e Hadamard gate on line i: Allocate a new variable yp, do ¢ += 2u;yy, and reassign u; to

be yy.
e Phase gate S on line i: ¢ += u;, u; unchanged.
e CZ gate on lines 7 and j: ¢ += 2u,u;, no other change.
e At the end of each qubit line i, we can identify z; with the variable last denoted by ;.

2

Since we are concerned only with 0,1 as arguments, we can also do ¢ += u; in the case
of S, thus making all terms homogeneously quadratic. The conjugate polynomial ¢* does
g += 3“? instead, but does the same as ¢ for H and CZ.

The annotation u; becomes quadratic in the case of CNOT, but the degree does not rise
any higher: In rules where u; is multiplied, the multiplier contains a factor 2 which cancels
the 2u;u; modulo 4. The last subtlety is what happens when an annotation that is not a
single variable is to be equated with a variable z;. If it has the form w; + u; — 2u;u; then we
add to ¢ the term 2w(u; + uj — 2uuj — 2;) = 2wu; + 2wu; +2wz; (mod 4) where w is a fresh
variable. For binary values from the standard basis, if z; does not equal the XOR of u; and

u;j then the added term reduces to 2w. Because w appears nowhere else, assignments with
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w = 0 and those with w = 1 will globally cancel in (6.2]). Thus only cases with z; = u; ® u;

contribute. This proves

Theorem 6.1 ([RCG18]). When C is a stabilizer circuit, the polynomial q in becomes

a quadratic form over Zy in which all terms involving two variables have coefficient 2.

Another important ingredient in our work is the use of graph-state representation which
was first introduced by Raussendorf and Briegel [RB01]. Since then, this tool made a major
impact on quantum computing [RBB03, HEB04, [AB06, HDE™06] and quantum information
[SWO01l, LYGGOS§|. It has been proved [VANDDMO04, [GKR02, [Sch01] that every stabilizer
state is equivalent to a graph state. We follow the definition of graph states from [AB0G]:

Definition 6.2. Let G be a given graph (V, E) of |V| = n vertices. The corresponding n-qubit

graph state |G) is constructed as
&= [[ <z (H Hz‘) 0)°",
(i.j)€E eV

where CZ; ; is a controlled-Z gate applied to qubit line i and j, and H; is a Hadamard gate
applied to line 1.

In summary, graph-state circuits consist of:

e An initial n-ary Walsh-Hadamard transform H®"  effected by placing one Hadamard
gate at the start of each qubit line.

e For every edge (i,7) in the given graph G, place a CZ gate between lines ¢ and j. Order

does not matter because these operations commute.
e If G has a self-loop at node i, place an S gate there.

e A final H®",

Below Figure [6.1] is an example of a graph-state circuit and its corresponding graph:
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0) —{H] [H]—10) X
[H]—[0)
0) —{H] [H}—[0) g £

(a) (b)

ES
]

Figure 6.1: Example of graph-state circuit and its associated graph: x; corresponds to the

i-th qubit line, and each CZ gate is indicated by a vertical line joining two solid dots.

Note that the matrix representation of CZ is

100 0
010 0
CZ= :
001 0
000 -1

and the notation of CZ gate in Figure exhibits its symmetry: it does not matter which

of the two qubit lines serve as the control and the other as the target.

Let us bear in mind that since (6.2)) computes all amplitudes, the polynomial ¢ = g¢
includes all information about the quantum behavior of the circuit C'. Thus nothing is lost
by manipulating (only) go. As an application, we deduce the known fact that graph-state

circuits are entirely representative of stabilizer circuits with O(s 4+ n) overhead.

Proposition 6.3. There is an O(s+n)-time procedure that given any n-qubit stabilizer circuit
C with h Hadamard gates and x,z € {0,1}" constructs a graph state circuit C on h qubits
such that (z| C |z) = (0" Cg |0").

Proof. Build g¢ in real time as above and substitute for « and z. This leaves h variables yy,
from the Hadamard gates plus any w; variables that were employed. Now define the graph
G to have an edge (i, j) for every term 2y;y; (or 2y;w;) in gc, and a self-loops at ¢ for every
term ay?, a = 1,2,3. Note that the coefficients a of the self-loop terms may arise from the
substitutions for particular binary values of x and z. The corresponding graph-state circuit
has inputs 2/, 2’ of its own, but those are zeroed in forming (0"| C |0"). The leftover terms

in gc,, are identical to those of gc after the substitution. O

If h = ©(n) then the number of variables is linear in n. Our original aim was to use

this correspondence to be competitive with the above-cited O(n?) algorithms—and ones that
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improve then the graph is sparse—in the concrete sense of better leading constants and
simplified cases. For those algorithms previously not known to have time better than O(n?)
or similar, our practical objective in what follows is not so much reducing the exponent to
w but rather to O(n?) time given knowledge of the rank r, for contexts where r might be

foreknown or well approximated.

6.4 Classical Quadratic Forms Over Z,
From Section a classical quadratic form f in variables ¥ = (z1,...,x,) can be written as
f(@) =z"AZ (6.3)

with A to be a symmetric n x n integer matrix. Since every coefficient of a cross term z;z;
in f is even, and hence over Z4 all nonzero cross terms have coefficient 2. Such a form over
Z, treats arguments 0 and 2 the same, likewise 1 and 3, so we may regard it as a function
of {0,1}" into Z4. Then we want to regard as composed of matrix-vector operations
over [Fy plus some extra calculation to get the answer in Z4 where 2,3 as well as 0,1 may be
values.

First note that by the symmetry, every off-diagonal entry of A may without loss of
generality be 0 or 1. Next, define a binary vector ¥ by v; = 1 if the j-th main-diagonal entry
of Ais 2 or 3, else v; = 0. Finally define a binary matrix B from A by

B = A — 2diag(?). (6.4)

Then we have
f@=2"Bz+2z" - v (6.5)

with calculation in Z,. The #' BZ calculation is now valid in Fy, however. The quadratic
form is alternating if the main diagonal of B is all zero, else it is non-alternating. When B
comes from or is regarded as the adjacency matrix of a graph, alternating means the graph
is simple and undirected (as will hold in our reductions from rank using a simple bipartite
graph) and non-alternating means the graph is undirected but with one or more self-loops.
We note the general development of this decomposition and associated concepts by
Schmidt [Sch09] in a way not wedded to the standard basis. Since we fix 4 as the mod-
ulus throughout this section, we follow [Sch09] in now using K to denote {0, 1} as a subset of
Z4, defining an operation ® on K by a®b := (a+b)?, and defining V' as an n-dimensional vec-
tor space “over K” noting that (K, @®,-) is the same as the field Fy. Then classical quadratic

forms are equivalently defined as follows:
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Definition 6.4 (see [AIb38, [Sch09]). A symmetric bilinear form on V is a mapping B :
V xV = K that satisfies

L symmetry: B(¥,y) = B(Y,T);

II. bilinearity: B(ax & By,Z) = aB(Z,2) ® B(y,2) for a, € K.

B is alternating if B(Z,%) = 0 for all £ € V, else it is non-alternating. Let A = {A1,--- , \p}
be any basis for V over K. Then B is uniquely determined (relative to this basis) by the
n x n matrix B with entries b;; = B(\;, Aj). The rank of B is the rank of its matrix B.

Definition 6.5 (see [Bro72l [Sch09]). A Zj-valued classical quadratic form is a mapping
f:V — Z4 that satisfies:

I f(aZ) = a®f(T) fora € K;

II. f(Zey) = f(Z)+ f(§) +2B(Z, ), where B: V xV — K is a symmetric bilinear form.

Then f is alternating if the associated bilinear form B is alternating, non-alternating other-

wise, and its rank r is the rank of B.

Proposition 6.6 ([Sch09]). There is a vector v € K™ such that for all ¥ € K™ over the basis
A,
f(@) =2"Bz+2z2" - 7.

The point of dropping down to s is to leverage the notions of matrix similarity over Fo and
the following theorem about changes of basis in V. Over o the appropriate definition of
B and B’ being similar (from [AIb38]) is that there exists an invertible matrix Q such that
B’ = Q"BQ. This preserves the property that similar matrices have the same rank. The
notions of alternating and non-alternating are the same as given for the binary matrix B

above, depending on whether the main diagonal of B is all zero or not.

Theorem 6.7 ([AIb38]). Let A be a K-valued n X n symmetric matriz of rank r.

(a) If A is alternating, then A has even rank and is similar to a matriz that has zeros ev-
erywhere except on the subdiagonal and the superdiagonal, which are 1010 ---10100---0

with r/2 ones.
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(b) If A is non-alternating, then A is similar to a diagonal matriz, whose main diagonal

is of r-many ones.

With the representation of f(¥) = &' B + 2% - @, the paper [Sch09] uses this to define

normal forms with regard to Zy:

Corollary 6.8 ([Sch09]). Given a quadratic form f of rank r as above over the basis A, we
can find a basis M = (u1,...,pun) for V over K, mapping & = (x1,...,x,) over A in'V to
¥ = (y1,-..,Yn) such that:

(a) If f is alternating, then

r/2 n

F@) =2 yojayzy +2 ) wiyi,
j=1 i=1

for some W = (wy,- - ,wy) € K™.

(b) If f is non-alternating, then there is the equivalent linear form
T n
F@ =y +2> wiy,
j=1 i=1
for some @ = (wq,- - ,wy,) € K".

Schmidt actually retains the symbols  and ¥ in his statement but we have used ¥ and @ to
indicate the change of basis. Our analysis in the next section will, however, treat i as the
standard basis, so the generic symbols x1,...,x, will re-appear, and wi, ..., w, will just be
ordinary 0-1 values. This switch will be echoed in the next section in that once we substitute
for the input qubit values x; and output values z; in the quadratic form g¢ from Section
the actual variables of g¢ left over will be named y1, . .., y, where h = O(n). But to emphasize
that the counting lemmas preceding the main results hold apart from the quantum context,
we will revert to the standard symbols x1,...,x, in their statements and proofs.

Now we reference [DP18] to note some facts about matrix decompositions related to the
above normal forms. Note that the inverse of a non-singular lower triangular matrix is lower

triangular.

Lemma 6.9. (a) For every symmetric nxn matriz B overFy there is a permutation matriz
P such that the symmetric matric B = PTBP has the decomposition B’ = LDLT.
Here L is an n x n lower triangular matriz with unit diagonal and D is diagonal if B
is non-alternating, else D is block-diagonal as described in Theorem (a).
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(b) The matriz D in (a) is permutation-equivalent to any matriz D' fulfilling the corre-
sponding case of Theorem when applied to B’ or to B.

(¢c) The matriz D in (a) is unique among LDU decompositions applied to B’.

(d) When D' = L'PTAP(L™Y)T is computed over Zy rather than Fy, it may no longer
be diagonal or block-diagonal, but it represents the same quadratic form with arguments
in' V' and values Zy in as in Corollary [6.§ over the new basis. In both the alternating
and non-alternating cases, the main diagonal of D’ equals the main diagonal of D plus
2w where w is the vector in Corollary [6.8.

Proof. (a) This is known and noted in [DPI8§]. A key point from Gaussian elimination is that
if we alternate elementary matrices L; that do elimination in the ¢th column of the lower
triangle and swaps P j, of rows j and k, then we can rewrite P; ;L; where j, k > i as LiP; ;.
The matrix L] is obtained by interchanging the entries in rows j and & of column ¢ and those
in positions j and k on the main diagonal. (The latter is unnecessary when all diagonal entries
are 1) and is still lower-triangular. Since each L is still lower triangular and we can repeat
the switch for further row swaps, we obtain the lower-triangular matrix formally designated
as L™! as the product of the L and the matrix designated as P as the product of all swaps.
Since B is symmetric, corresponding events on the right give D = L™'PTBP(L™!)T of the
diagonal or block-diagonal forms stated in all of [AIb38| [Sch09, DP18§].

Part (b) follows simply because D and D’ have the same rank and the same block-diagonal
structure in the alternating case or diagonal structure in the non-alternating case).

The proof of (¢) is the following. Suppose B' = LDU = MEV where LM are lower
triangular and U,V are upper triangular, not even caring that U = LT and V = M but
just that they are invertible.

First consider the non-alternating case where D and E are diagonal but not necessarily
of full rank. They must have the same rank 7. Then M~ is also lower triangular, so that
C = M 'LD is lower triangular, and U~! is upper triangular, so that EVU~! is upper
triangular. C = MLD = EVU~!, and the only way a lower-triangular matrix can equal an
upper-triangular matrix is when both are diagonal. So C is diagonal, and we need only argue
that C = D ( = E). This follows because they have the same rank and for any ¢ such that
DJi,i] = 0, also CJi,i] = 0.

In the alternating case, M~1L is lower triangular but its product C' with D can also have a
non-zero diagonal above the main diagonal. The product EVU™! is upper-triangular except
for the diagonal below the main. Hence C' must be tri-diagonal. Every off-diagonal nonzero
element of C' equals a diagonal element of M 'L multiplied by the corresponding off-diagonal

entry of D and also equals a diagonal element of VU ™! multiplying the corresponding entry
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of E. By invertibility over Fo the diagonal entries are all 1, so we have proved that D and
E agree on all off-diagonal entries. The proof that they agree with each other (but not
necessarily with C) in their 1 x 1 blocks on the diagonal is similar to that for the alternating
case.

The point in (d) is that when computed over Zy, D’ = LT'PTAP(L™!)T represents the
same quadratic form f originally given by A in (Equation ) but over the transformed
basis that maps & to ¢. Thus

f@ =7 Dj=§"Dj+2> yawi. (6.6)

In the non-alternating case, this means any symmetric pairs d;»’ o

of D’ must sum to 0 modulo 4, and likewise off-diagonal elements in the alternating case

d;’ j of off-diagonal elements

apart from the block elements on the super-diagonal and sub-diagonal. The diagonal must

satisfy d); ; = d; ; + 2w; (mod 4) in either case. O

6.5 Algorithm and Examples

Recall the following algorithm described in Section[6.1]for computing the amplitude (0| C' [0™)

for any n-qubit quantum stabilizer circuit C:

I. Convert C to a classical quadratic form go over Z4 that retains all quantum properties
of C.

II. Take the matrix A of go over Z4 and associate a canonical n X n matrix B over o to
it.

III. Compute the decomposition B = PLDLTPT over Fy where P is a permutation matrix,

L is lower-triangular, and D is block-diagonal with blocks that are either 1 x 1 or 2 x 2.

IV. Take L™! over Fy but compute D’ = LT'PTAP(L™!)" over Z;. (Note PT =P~1)
If any diagonal 1 x 1 block of D has become 2 in D’, output (0" C' |0™) = 0. Else,

(0™ C |0™) is nonzero and is obtained by a simple O(n)-time recursion.

Here step 1 from [RCGI§| takes time linear in the number s of quantum gates in C, which for
standard-basis inputs can be bounded above by O(n?/logn) with O(n) quantum Hadamard
gates [AGO4]. Step 3 is computable in O(n*) time by [DPI8], where w is the exponent of
matrix multiplication and is at most n?37286% [Sto10, Will2, [Gall4]. This is also the best

known time for computing n x n matrix rank over any field and for the particular inverses
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and products in step 4 as well (see [CKL13|). However, when (0"| C' |0™) # 0 we show that,
in Section its absolute value is computable quickly from r alone after step 2.

Put more simply, the decomposition in [DP18] is the same as that obtained in [Sch09]
following [AIb38, Bro72], so the normal forms for classical quadratic forms over Z, in the

latter papers inherit the O(n*) time computability from [DP18] working over Fo.

Example 1. Consider the alternating form q(x1,x9, x3) = 2x129 + 2z123 + 22973. It gives

I

™

I
= = O
—_ O =
[ e

which is the adjacency matrix of the triangle graph. Gaussian elimination begins by swapping

row 1 and row 2, then no more swaps are needed. So we have:

010 10
P=Pi,=|1 0 0| =P", B=P'BP=B, and L'=L= |0
00 1 11
This gives over o,
1 0 0[ |01 1 0 1] |1 0 1 0
D=LBL ' =|0 1 0|-|1 0 1|-L"T=|1 -0 1 1|=11
1 1 1] |1 10 0 0] [0 0 1 0
But over Z,4, we get
011 1 01 01 2 010
LA=|1 0 1|, whichtimes |0 1 1| =1|1 0 2| =D'={[1 0 0
2 2 2 00 1 2 2 2 00 2

The presence of a 2 in the lower-right corner of D’, corresponding to a 1 x 1 block in the
diagonal matrix D, signals a cancellation in the 0-1 assignments a € K" giving g(a) = 0
versus those giving g(a) = 2. That is, Ny(q) — Na2(q) = 0. In Section we will call the
simple triangle graph a “net-zero” graph.

Now, however, let us define ¢’ = ¢ + 2x2. This corresponds to adding a self-loop at
node 1 to the triangle graph. This goes into the vector ¥ and does not change B or the
decomposition. At the end, however, we first get that over Z4, A’ = PT AP is no longer the

same as A: it moves the 2 from the upper left corner to the center. Then we get

0
LA = |1 =D =
2

S N =

1 1
1|, which times |0
2 0

o = O
—_ = =
Il

0
1
2

S N =
S O N
o = O
S N =
o o O
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There is a 2 on the main diagonal but it is tucked within a 2 x 2 block of D. Here in fact we
have No(¢') = 6 and Na(q') = 2.

An example of an alternating form ¢” with N2(¢") > No(q") is ¢" = 22% + 223 + 2z119,
which corresponds to a single edge with a self-loop at each end. Replacing each self-loop by
a triangle yields a 6-node simple undirected graph with Ny = 28 and Ny = 36. We will show
that when Ny # N» in the alternating case, the absolute difference is a simple function of the

rank r of B over Fs.

Example 2. Consider a more detailed example.

7 —{H}—— a

T2 22

H

[
Hf—

T3 z3

From Section Hadamard gates will introduce “nondeterministic varibles” which we will
use y;’s in the example. However, the introduced nondeterministic variables by the three
Hadamard gates at right are immediately equated to the output variables z1, 29, z3. Hence
we can skip those and only variables y1,y2,y3 from the three Hadamard gates at left. The
corresponding quadratic form is q(y1,v2,¥3) = 22191 + 22292 + 223y3 + 2y1Y2 + 2y2y3 + 247 +
2y1 21 + 2y229 + 2y3 23 with x;’s and z;’s being constants. Now consider input |zjzox3) = |000)
and output |z12923) = |000). This gives an alternating quadratic form q(y1, 2, y3) = 2y1y2 +
2y2y3 + 2y3 and

210
1 0 1
010

A=

)

which is the adjacency matrix of the path graph of length 2 on n = 3 vertices. Gaussian

elimination does not need any prior swaps, so we have over Fy,

100 (210 2 10| |1 01 2 1 2
D=LAL"' =0 1 0o|-|1 0 1|-L'"=1]1 0 1|-|0 1 o]=1{1 0 2
10 1] |01 0 2 2 0] |0 01 2 2 2
But
2 1 2 2 1 0
D=|10 2/=[1 0 0| =D
2 2 2 00 2

because ¢'(y) = y "Dy = y' D’y over F4. The 2 at upper left does not zero out the amplitude

since it is within a 2 x 2 blocks. However, the 2 at lower right constitutes a 1 x 1 block. By
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our counting lemmas and it signifies that output |000) is not a possible outcome.
Here in fact we have Ny(¢') =4 and Na(¢') = 4.

Example 3. To make |000) possible in the above example, we can apply phase gate S after

Z:
1 2

Analogously, after substitution we have the quadratic form q(y1,v2,y3) = 2y1y2 + 2y2y3 + 3y3

which becomes non-alternating. It gives

310
A=1|1 0 1},
010
and
1 00 310 310 111 300
D=LAL' =1 1 0 10 1|-L"T=1]0 11 0 1 1f{=1(0 1 2
01 1 010 0 2 1 0 01 0 2 3
Again we can ignore the off-diagonal 2’s and have
3 00 300
D=1|01 2|==1]01 0
0 2 3 0 0 3

Since this is non-alternating and no 2 on the main diagonal, we know that the amplitude is
non-zero. Lemma and gives the amplitude as 2;% = % and so the probability of
the output [000) is 3.

6.6 Main Results

Given any n-qubit stabilizer circuit C of size s with h nondeterministic gates, we can obtain
its associated quadratic form g¢ in O(s) time via the process in Section This form has
variables ¥ = x1,...,x, for inputs, 2 = z1,..., z, for outputs, and y1,...,y; for nondeter-
ministic variables (wlog. all coming from h Hadamard gates). It may also have the variables

Y

called “w;” in Section but those are introduced only to equate the final annotation term
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on a qubit line j with the output variable z; without thereby forcing a value restriction for
nondeterministic variable(s) on that line, and so preserve 21/2 as the value of the magnitude
divisor R in (Equation (6.2)). We can either treat w; as forced by z; without changing R, or
avoid introducing w; by reducing R. Since the circuits are allowed to have initial X gates on
some lines, treating & = (0,---,0) loses no generality. For any output b= (b1, ,by), the

quadratic form then becomes

a@ ) = O awi+ Y 2yw) + > 2yib; mod 4
= A7+ 7 2A7 mod 4

in the ¢ variables only. Here A is a diagonal matrix with A;; = b;. Because we will have
h = ©(n) for the most part, we still refer to “n” to denote the number of variables in quadratic
forms.

Finally, we also fix the outputs b; all to be 0. We denote by N = (No, N1, Na, N3) the
resulting distribution of values of gc over the 2" assignments to . Reviewing the discussion
surrounding Equation in Section we can abbreviate the numerator of the amplitude
by

—

ao(N) :No—N2+i(N1 —Ng). (67)

We use the N, and ag notation generally for linear and quadratic forms f without reference

to their coming from a quantum circuit. Then ag gives the value of the exponential sum

PN

Now the present the main lemmas that underlie the main theorems. Their proofs are
postponed to Section

Lemma 6.10. For any linear function f(x1,--- ,xp) = Y iy aix; over Zs, [Ny — Na| and

N1 — N3| are 0 or a power of 2.

Lemma 6.11. For any Zs-valued alternating quadratic form f :V — Zy of rank r, there is

a basis of V' over which f can be rewritten as
g n
f(f) =2 ngjflxgj + 2 szxz
j=1 i=1
for some W = (wy,--- ,wy) € K", and

No—Na=0 or (—1)¥2"9,

where 2g = r and k is the number of (wa;—1,ws;)-pairs in f such that (wej—1,ws;) = (1,1)
forje{1,---  g}. Also Ny = N3 =0.
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Lemma 6.12. For any Z4-valued non-alternating quadratic form f 1V — Z4 of rank r, there

is a basis of V' over which f can be rewritten as

n
ij+22wlxz—z 14 2wj)z; + 2 Z W;T;
7j=1

i=r41
for some W = (wy,---,wy). Define ¢ to be the number of w;’s such that w; = 0 with
i€ {r+1,---,n} and d to be the number of pairs such that (1 + 2w;,1 4+ 2wy) = (1,3)
with j,j7" € {1,--- ,r}. Also let m = n — ¢ — 2d and rewrite m = 4a + b, and define n such
that n = 0 if the rest m-many coefficients are all 1°s but n = 1 if they are all 3’s. Then the
differences Nog — No and N1 — N3 take one of the following values:

e ifb=0, then Ny — Ny = (—1)22("+9)/2 N} — N3 = 0;

o ifb=1, then Ny — Ny = (=1)%2(nte=D/2 Ny — Ng = (—1)@Fn2(nte1)/2;

e ifb=2, then Ny — No = 0, Ny — N3 = (—1)etn2(n+e)/2;

e ifb=3, then Ny — Ny = (—1)ot12(nte=1/2 Ny Ny = (—1)atng(nte=1)/2,

The connection between rank and solution counting is expressed by our main theorem

about quadratic forms after the normalization process in Lemmas to is applied:

Theorem 6.13. Given any normalized classical quadratic form f in n variables, we can
compute Ny, N1, Na, N3 and hence ag(N) in time O(n). Furthermore, |ag(N)|? is either 0 or

220" where 1 is the rank of f.

This means that the bulk of the computing time for the whole process goes into the decom-
position in Lemma [6.9] which is used to compute the normal forms asserted in Corollary [6.8]

After that, the up-to-n? denseness of the original form does not matter and the computation

needs only O(n) time.

Proof. We show this separately for the alternating and non-alternating cases. By Corol-

lary a normalized alternating quadratic form is of the form

r/2

Z Toj_1T25 + 2 Z wiz; (mod 4),

for some W = (wy, -+ ,wy) € K™. It is easy to see that N1 — N3 is always zero since there is
no assignment to ¥ = (z1,--- ,z,) that would give f(#) =1 or 3. Lemma gives out

No—No=0 or (—1)k2n9,
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which can be done in time O(n). Hence if this is non-zero, then we have
ap(N) = (=1)"2"79,
and
jag(N)[* = 2.

Similarly, a normalized non-alternating quadratic form is written as

T

f(@) = ij + QZwiUCi = Z(l + 2wj)x; + 2 Z wiz; (mod 4),
j=1 i=1

j=1 i=r+1
for some W = (wi,---,w,) € {0,1}". Things become trivial if 2w; = 2 for some i €
{r+1,---,n}. This makes Ny — No = N; — N3 = 0.
Now assume Ny — Ny and N7 — N3 are not both zero at the same time. Then we can
derive from Lemma [6.12] that

ag(N) = Ny — No +i(Ny — N3)
takes one of the following values:
e if b= 0, then ag(N) = (—1)22(+9)/2;
o if b =1, then ag(N) = (—1)*2(*Te=D/2 4 j(—1)atna(nte=1)/2,
e if b= 2, then ag(N) = i(—1)*+12(n+o)/2;
o if b = 3, then ag(NV) = (—1)*12(nte=D/2 4 j(1)atngnte=1)/2,
where a,b and c are as defined in Lemma Note that ¢ = n — r. Together we have
jag(V)[? = 22",
and again this can be computed in O(n) time. O

Now we rejoin the process of evaluating the stabilizer circuit C. It will normalize g to ¢
in one of the two forms in Corollary which will give a matrix D’ such that ¢/(i) = ' D'7.
With such D’, the acceptance probability can be derived directly by Theorem

Now we refine the statement of our main results described in Section and rephrase
our main theorem as follows, but split (b) into two pieces, proving part (bl) here and part

(b2) in the next section.

Theorem 6.14 (Main Theorem). (a) Strong simulation of n-qubit stabilizer circuits C with
h nondeterministic single-qubit gates on standard-basis inputs (amplitude as well as the
probability) is in time O(s +n + h*) where 2 < w < 2.3729.
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(b1) Computing n x n matriz rank over Fo reduces in linear time to computing one instance

of the strong simulation probability | (0" C |0™) |2.

(b2) Computing the strong simulation probability p = | (0" C |0™) |* reduces in linear time

to computing one instance of n X n matriz rank over Fo on the promise that p > 0.

Proof of (a) and (b1). (a) Let C be given, take A to be the matrix over Zy of its classical
quadratic form g¢, and take B be the associated symmetric matrix over Fo. By Lemma
and the algorithm of [DPI8] there is a decomposition B = PLDL'PT over Fy that is
computable in O(n*) time such that D is diagonal (in the non-alternating case) or 2 x 2
block-diagonal (in the alternating case) and equals the matrix D in Theorem This also
computes the rank r of B. Then compute D’ = LT'PTAP(L™!)T over Z, which again
takes O(n®) time. By Lemma [6.9(d), D’ and D yield the vector @ in the normal form of
Corollary for gc. Then Theorem yields not only the probability p = | (07| C |0™) |?
but also the entire distribution of phases as powers of ¢, and hence yield the amplitude
" Com).

(b1) To compute the rank r of an n x n matrix over Fy, make an equivalent symmetric
matrix A by the block-transpose trick in the introduction. Not only is A alternating but it
is the adjacency matrix of a bipartite graph G = (V, V', E). To see that the corresponding
graph state circuit C gives p = | (0| C |0™) |> > 0, consider any assignment a to the variables
in V. This reduces g¢ to a linear form 2¢(z’) of the variables 2’ corresponding to nodes of
the other partition. If £(2’) vanishes modulo 2, then all extensions of a to a’ on z’ contribute
0 modulo 4. Otherwise, 2¢(z") has a nonzero term 2z for some i. Assignments a’ to 2’ pair
off with canceling contributions 0 and 2 according to the value a; of z;. Thus there are never
more values of 2 than 0. Finally, the all-zero assignment to x makes ¢(z’) vanish, so the
difference between the numbers of 0 values and 2 values is positive. Thus the normal form
for gc with input and output 0™ cannot have global cancellation, so r is a simple function of
p. ]

To get the converse simulation in (b2) we must consider the non-alternating case, which
arises when the stabilizer circuit C' has an odd number of S or S* gates on some qubit line(s),
and allow for the possibility (0| C' |0") = 0. The algorithm for amplitude in the non-
alternating case needs knowledge of individual entries in the normal form over Z4 besides the

rank r of go.
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6.7

Proofs for Important Lemmas

Proof for Lemma The given f(x1,---,x,) will fall into one of the following cases:

(a)

(e)

If some a; = 0, it is safe to drop this j-th variable x; since Y . ;a; - z; mod 4 =

> ic1.zj @i-wi mod 4. Define Ng, Ni, N3, N3 with respect to &' = (x1, -+ , 21, Tjt1, -

We can see that N; = 2N/ for i = 0,1,2,3;

If some a; = 2, then for any o = (1, -+ ,2j-1,0,2j41, -+ ,Zp), it can be paired with
Z1 such that f(Z1) = f(z1, -+ ,zj—1, L, zj41, - ,2n) = f(Zo) +2 mod 4. That is, if
f(@) = 0, then f(#1) = 2, and vice versa. Same analysis goes to N; and N3. Hence,

the two differences are zero in this case;

If some a; = 1 and some aj = 3 (without loss of generality, assume j < k), then for any
Tro = (x1,@jmn, Lzjen, o -1, 0,41, -+, mn) and f(T0) = D000 00k
z;+1 mod 4, we have f(Zo1) => 1" itk Qi Tit3 mod 4, which will cancel in the

differences.

7xn)-

. — = n
While for Zoo = (1, ,2j-1,0, 2541, Tp—1, 0, Tp41, -+, @) and f(Zoo) = D111 52502k W0

x; mod 4, f(F11) = Z?:l,#L#k a; - x; +4 mod 4 = f(Zog). Hence, by dropping
both j-th and k-th variables (similar to case 1) and defining N/ with respect to ' =

/ - .
(wlv"' s Lj—1,Lj41y " 3 Tk—1y Th41," " " 7xn)7 NZ = 2NZ for i = 07172a37

If all z;’s are 1, then for i = 0,1, 2,3, we have

n
N; = .
‘ Z <4m—|—i>
m>0

Then Lemma [6.15] gives that both differences are powers of 2.

If all z;’s are 3, then

() e n ()

m>0 m>0
n n
! Z<4m+3>’ 3 Z<4m+1>
m>0 m>0

Then it can be reduced to case 4 and hence both differences are powers of 2.

Note that the above procedures can be applied to a given f(&) recursively. Overall, the
statement holds. O
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Lemma 6.15.

> (1) -Z ')
TZZO <4T’7:- 1) _g (47’2— 3)

are either 0 or a power-of-2.

Proof.It is known that with w be the d-th root of unity,

19~ .,
Z(dr—i—c) dzo W)

r>0

where 0 < ¢ < d. By simple substitutions with d =4 and a =0, 1, 2, 3, we get

b (2) 5 ()t
n= Z; <4rn+ 1) B ZO <4rn+ 3) = g @ D)

Rewrite n = 4a + b with a,b € Z and 0 < b < 4. Let go = >_,~¢ (ZILT) — >0 (4:;2) and
91 =2 >0 (4[—11) =D >0 (47,13). It is easy to verify that (1 4+ w3)* = —4 and hence we can

rewrite
1 a b 3\b
go = 541+ )1+ 6P,
1
g1 = 5 (-4~ (1 +P)
Now we can analysis them case by case.
L. b=0: go = (—4)* and g; = 0;
II. b=1: go = (—4)® and g1 = (—4)%
III. b=2: go=0and g1 =2 (—4)%
IV. b=3: go=(—2)(—4)* and g1 = 2 (—4)*. O

Proof for Lemma Since f is alternating, by Corollary and Theorem f has

even rank r and
r/2

=2 Z T2j—172j + 2 Z WiTq,
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for some basis for V over K and for some @ = (wy, - ,w,) € K". Let r = 2g for some g € Z

and we can further rewrite it as

n g
(oj—1 + waj)(xaj + woj—1) + 2 Z w;T; — 2 g Waj 1 W2
i=r+1 j=1

-

Il
i

f(@) =2
J
Without loss of generality, we first look at the variable pair (z1,z2) and its coefficient pair

(w1, ws). Denote

g

1(2) ZQE (woj—1 + waj)(wej + waj—1) + 2 E wiT; — QE Woj 1 W25,
Jj=2 i=r+1 7j=2

and write
f(@) = f(Z) 4+ 2(z1 + w2) (22 + w1) + 2w ws.

Note that f'(Z) only depends on (z3,- - ,x,), that is, f(¥) = f(zs3, - ,2,). There are only

four cases to consider for h(zy,z2) = 2(x1 + wa)(xe + wy):

o (wy1,w2) = (0,0): h(xy,z2) = 2x129, and h(0,0) = 0,h(0,1) = 0,h(1,0) = 0,h(1,1) =
2;

o (wi,wy) = (1,0): h(z1,z2) = 221(1 + x2), and h(0,0) = 0,h(0,1) = 0,A(1,0) =
2,h(1,1) = 0;

o (wy,we) = (0,1): h(xy,z2) = 2(1 + x1)z2, and h(0,0) = 0,h(0,1) = 2,h(1,0) =
0,h(1,1) = 0;

o (wi,wy) = (1,1): h(x1,z2) = 2(1 + 21)(1 + x2), and h(0,0) = 2,h(0,1) = 0,A(1,0) =
0, h(1,1) = 0.

Define Q% = {# € V|f(%) =i mod 4 and 71 = 0,22 = 0} and similarly Q", Q1°, Q}!. Then
we have Q; = QY U QM U QY U QM. Also define S = {# € V|f'(¥) =i mod 4 and z; =
0,79 = 0} and analogously S9!, 510 Sit.

Note that f/(Z) only depends on (z3,- - ,2,). Let S} = {(x3, - ,xn)|f (z3, -+ ,z0) = i},

and we have |S!| = |S%| = S| = |519] = |S!|. Now analyze the above four cases separately:

e (wy,ws2) = (0,0): we have
f(@) = /(@) + 2212,

If Zoo € Q, then f(Zoo) = f'(Too) = i, same for QM, QI°, while if 717 € Q}!, then
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f(#11) = f'(#11) + 2 and hence f'(#11) =i + 2. Now for some ¢ € {0,1},

Ne = Newz = Q2] +1Q2 +1Q2°] +1Qe'| — (1Q% 2] + Q2 a] + Qe | +1Qeia])
= |8+ [+ 15:°| + Setal — (1202] + [Seyal +1Scial +1S:M)
= 3|S¢] + [Sesal — (3[Seqal + 1Se])
= 2(|S2| = |Setal)-

e (w1,wz) = (1,0): by the similar analysis, |Q.| — [Qc+2| = 2(|SL| — |S +2])
o (wi,wa) = (0,1): |Qc| — [Qcra| = 2(|Se| — [Sei2l)-
o (w17w2) = (17 1): ‘QC‘ - ’Qc+2’ = _2("9/‘ ’ +2D

Hence, we can reduce the counting of |Q.| — |Qct2| over (z1,---,z,) to the counting of

|SL| — St o| over (z3,---,x,), and gradually after g-many such reduction, we can derive

|Qel = 1Qeral = (=1)™27(|Qc] — |Qc42l),

where QF, = {(zr41, -+, 2n)|2) i, wiz; = c} and m is the number of (wyj_1,w2;) pairs in
f(Z) such that (waj_1,ws;) = (1,1), hence 2wq;_1wa; = 2.

Now it is left to argue that ||QL| — QL || is either zero or a power of 2. Let g(z) =
> i 2wizi. Since w; € {0,1}, q(x) is linear with coefficient from {0,2}. Then we can
reduce it to the 1st and 2nd cases in Lemma In the 2nd case, it gives that |Q¢| —[QL 5| =
0if w; =1 for some i € {r+1,--- ,n}. Now assume non-zero case. Then we have w; = 0 for

allie {r+1,---,n}, which gives
QL — |Qhyo| = (—1)™292"77 = (—1)™2"9,
and hence it completes the proof. O

Proof for Lemma Since f is non-alternating, by Corollary there exists a basis

for V over K, determining the coordinates (x1,--- ,x,), such that
T n
j=1 i=1
for some @ = (wy, -+ ,wy) € K". By rearranging, we have
T n
f(@) = Z(l +2w;j)x; + 2 Z wiT; = Zw i+ 2 Z w;T;,
7=1 i=r+1 i=r+1

where wg» = 1+ 2w;. Note that w} can only be 1 or 3. Then we can reduce it to the 2nd,
3rd, 4th and 5th cases in Lemma [6.10
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The 2nd case gives the trivial case where both Ny — N2 and N; — N3 are zero. Now assume
non-zero case. Then we have w}, w; € {0, 1,3}.

Define ¢ to be the number of w;’s such that w; = 0 with i € {r +1,--- ,n} and d to be
the number of pairs such that (1 + 2wj, 1+ 2wj) = (1,3) with j,j' € {1,---,r}. Also let
m = n — ¢ — 2d and rewrite m = 4a + b, and define n such that n = 0 if the rest m-many
coefficients are all 1’s but n = 1 if they are all 3’s. Then the differences Ny — No and Ny — N3

are taking one of the following values:
e if b =0, then Ny — Ny = (—1)*2("+9)/2 N — N3 = 0;
o if b=1, then Ny — Ny = (—1)22(n+e=1D/2 N} — Ny = (—1)etn2(nte=1)/2.
e if b=2, then Ny — No =0, N; — N3 = (—1)*tn2(n+)/2,

e if b =3, then Ny — Ny = (—1)et12(vte=1/2 Ny — N, = (—1)etn2(nte=1/2 O

6.8 More Properties from the Simulation

Note that Lemmas[6.10] [6.11] and [6.12] and the proof method of Theorem [6.13] apply to more

general input @ and output b as well, so that we have the following supplementary result:

Theorem 6.16. Given a stabilizer circuit C' and its quadratic form qc (¥, Z), assume we know
Q,D; and Dy with entries in Fy such that ' QT AQy = g]T(Dl + 2Dy)y where

e if qc is alternating, Do is a diagonal matriz with entries in {0,1} and D1 =M1 - -- @

M, has even rank r = 2g over Fo;

e if qo is non-alternating, D1 and Dy are both diagonal matrices with entries in {0,1}.

Then we can compute | (b| C |0Y |2 for any output vector b to the circuit in O(en) time where

n = |y| and e is the number of ones in y.

Proof. Assume Q = (Q; ;) with Q;; € Fy and take any output vector b. Then qc (¥, 5) =
7' Ay + T Ay and we have

7 QTAQI+7'QTAQ) =i (D1 +2Do)j+ Y 2§ Eif

=7 D1+ 7 2(D2 + > E)if
i
where E; is a diagonal matrix diag(Qj 1, -, Qin) for i such that A;; =1 and D, varies de-
pending on whether it is alternating or non-alternating. Then each E; = diag(Qi 1, -, Qin)

can be obtained in O(n) time given the matrix Q.



CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 72

We also know that in both the alternating and non-alternating cases, the output prob-
ability | (b| C |0) |2 is determined by the rank of Dy if | (b| C |0) |2 # 0. Now we will show
that with the knowledge of such Q, we can tell | (5| C' |0) |2 =0 in O(en) time.

First suppose qc (7, ) is alternating and n = |7, then for output b we can rewrite

g n
7 D17 +7 2Da+ Y E)g=Y 2ys_1yz + Y 2wiy; mod 4,
i j=1 i=1
where w; € {0, 1}.
Once we finish updating the above equation (which takes O(en) time), we can by Lem-
ma get the value (b|C|0) and identify if | (b|C|0) |* = 0 which happens when w; = 0 for
some i € {r +1,--- ,n}. Analogously, this also can be done in O(en) time by Lemma

for non-alternating cases. O

Now consider a graph G = (V, E) and its adjacency matrix Ag. Assume we are also
given matrix P such that PTAgP = D where D is in normalized form. Let E; be the
matrix with only the (4,4)-th entry being 1 and others 0. Also let E; = diag(v1, - ,v,) with

7= (v1,--- ,vn). It is easy to check that PT2E,P is again a diagonal matrix. More precisely,
P'2E,P = 2diag(P;;--- ,Pi,) mod 4,

and we have

P2EP =2 ) diag(Pi1--,Pin) mod 4.

;=1

Suppose the vector set {0;} with cardinality rank(A¢) over Fa such that
P'2E;P = 2E;.

With Lemma Lemma and Lemma[6.12] we can check that the vector space spanned
by {0;} over Fy gives all the vector b such that (b|C|0™) # 0. The proof can be extended

directly from the proof for those lemmas. Hence we have the following:

Lemma 6.17. Given an adjacency matriz A for a stabilizer circuit, the set of all outputs of

non-zero amplitudes form a vector space (affine space) of dimension rank(A) over Fa.

Proof. For convenience, consider an adjacency matrix A for a bipartite graph. Assume given
matrices P and D such that PTAP = D over Z, where D is a normalized form (might be
with 0/2 on the diagonal). Say the rank of D is r. Note that this type of stabilizer circuits

always has non-zero amplitude on output 0. Then D has no non-zero entries on the diagonal
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from (r + 1)-th through n-th positions by Lemma since D corresponds to output 0”.

For other output I_;, we have

P (A+2E)P=D+2 Y diag(P;1--,Pin) =D; mod 4.
Zblzl

Again the amplitude on b is non-zero only when there is no non-zero entries on the diagonal
of Dy from (r+1)-th through n-th positions. We can see that for any two non-zero amplitude
by and by, the matrix D + 2 Zi:bu:l diag(Pi1--- ,Pin) +2 Zi:bzyizl diag(Piy -+ , P;p) will
never have non-zero entries on the diagonal from (r + 1)-th through n-th positions. Thus
the output b; + b_é is of non-zero amplitude as well. Hence the set of outputs with non-zero

amplitude forms a subgroup over F4y with 0" be the identity. 0

6.9 Interpretations and Conclusions

We have improved the asymptotic running time for strong simulation of n-qubit stabilizer
circuits (with typical size and nondeterminism) from O(n?) to O(n“). We have also shown a
linear time reduction from matrix rank over Fsy to strong simulation. One interpretation of

the latter is:

The time gap between weak and strong simulation for stabilizer circuits cannot be closed

unless n x n matriz rank over Fy is computable in O(n?) time.

The direction from the quantum simulation to matrix rank comes close to establishing a
complete equivalence of them, especially for the simulation probability p. Via analysis of “self-
dual” forms we have reduced the probability computation to the alternating case, in which
by Lemma and Theorem [6.13| we get a simple expression whose absolute value depends
only on the rank and whether p = 0. That puts focus on the complexity of deciding whether
p, or equivalently the amplitude a = (0"| C |0™), is zero, specifically in the alternating case
where a is always real.

Besides, we find further connections to graph theory and matroid theory as discussed

below:

e In Section [6.9.1] we define a new class of graphs, named net-zero graph, which is natu-

rally connected to the problem of whether (0" C' |0™) is zero or not.

e Section shows that (0"| C' |0™) is indeed an instance of general Tutte invariants.

We have shown tight connections to the fundamental problems of counting solutions to

quadratic forms f over Fy and Z4. For Fs we get that 2f is an alternating form over Zy4
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with the same solution count over {0,1}", so the near-equivalence to matrix rank applies.
In any event we have reduced the Fy case to matrix multiplication in a way that improves
the O(n3) running time stated in [EK90] to O(n“). For binary solution counting of non-
alternating classical quadratic forms over Z4, we obtain O(n“) runtime via methods that
multiply matrices as well as compute rank.

When the non-Clifford gate CS is added to create a universal set, the quadratic forms over
Z,4 have terms xy or 3zy. They are no longer classical and the connection to [y exploited by
[Sch09] no longer applies. No such connection can apply, nor any extension of the algorithm
in [DP18] a-fortiori, unless BQP = P. There is also the sharp dichotomy theorem of [CLX14]
that solution counting for these forms over all of Z} is in polynomial time, but over {0,1}"
it is #P-complete. This extends to affine versus non-affine forms over Z%, K = 2*. Deeper
understanding of why the dichotomy operates may illuminate exactly which elements of
quantum computations create hardness for classical emulation (for this, see [Bacl7, Bacl8]).

Nevertheless, perhaps these techniques can apply to heuristic or approximative methods
on general quantum circuits. The polynomial translation in [RCGI18] applies to quantum
circuits of all common gate types. There are questions about analyzing circuits that are
“mostly Clifford” or those from the Clifford plus T libraries that try to minimize the latter
gates, of which we mention[BG16, MFIBIS8, BBC™19]. For example, are there reasonably-
tight bounds for the numbers of the non-Clifford gates required to compute certain functions
that can be obtained efficiently by algebraic means, without resort to exhaustive search?

A closer look into Lemma [6.1T) and Lemma [6.12] suggests that the probability of a specific
output or the distribution over the entire output set can serve as a metric to test whether
two given quantum stabilizer circuits are (not) equivalent. Let h, hi be two corresponding
ho, hy differences for circuit C;/quadratic form f;(Z). Then we can define the following two

concepts accordingly.
Definition 6.18. Given two quantum circuits C1 and Co, we call C1 and Co are weakly
equivalent, denoted by C ~ Cs if
> P > 2\ (2
[z Crla) " = [ (2] Ca |2) |
for a fixed input d and all possible outputs Z.
Recall from Section the definition of N;j(¢(y)) as the number of arguments y giving

q(y) =J.

Definition 6.19. Given two quantum circuits Cv and Co, we call C1 and Csy are strongly

equivalent, denoted by Cq 2 Cy if for all @ and 5, the amplitudes of Cv and Co are the same,
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that is,

-,

[N;(Q1(a, 9, 6))| = |N;(Q2(@, 7, b))

Now consider C 2 C, for two given stabilizer circuits. The corresponding Q1 (Z, ¥, Z) and
Q2(Z, v, Z) will be of the forms as stated in Section Without loss of generality, assume 0.
Note that the resulting Q1 (7, 2) and Q2(¥, Z) can be associated with two graphs. Each graph
has two sets of nodes ¢ and Z. The nodes in i can be connected by edges in any way, while
there is no edge between nodes among Z and each node is connected by exactly one node
from ¢ without overlapping node. Hence, this should be a strict class among graphs and this
gives out another interesting question, does C X Cy implies that their associated graphs are
isomorphic? If this is true, we will have, Cy N Cs if and only if their associated graphs are
isomorphic. Note that C; &~ Cy says |N;(Q1)] = |N;(Q2)| for all possible outputs, which are

exponentially many. We ask:

o If |N;(Q1)| = |N;(Q2)] for all possible outputs, does Q1 (¥, b) £ Q2(7,b) for all possible
b?

w . . .
e For the case where C] =~ (U5, can we pose a similar question, but in terms of rank?

6.9.1 Net-Zero Graphs

The alternating case comes down to graph-state circuits Cg and can be framed in terms apart
from quantum computing. Consider black/white two-colorings (not necessarily proper) of the
n vertices of G, and count the number of edges whose two nodes are both colored black. Call
those B-B edges. Define ¢y to be the count of colorings that make an even number of B-B
edges and ¢; = 2™ — ¢y to be the count of colorings that make an odd number of B-B edges.
The following is called a(G) for “amplitude” and divides by 2" not 2"/2 because Cg has 2n
Hadamard gates.
Co —C1

a(G) = T

Definition 6.20. Call an undirected graph G net-zero if a = 0, net-positive if a > 0, and

net-negative if a < 0.

The connection between net-zero graphs and stabilizer circuits is bridged via classical
quadratic forms over Z4. Following the conversion rules in Section (and an example in
Section [6.5)), the connection shows that

(0®7| C |0®"™) is zero if and only if the associated graph G is net-zero.
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The following proposition collects some basic facts:

Proposition 6.21. (a) Every odd cycle graph is net-zero.
(b) Every bipartite graph is net-positive.
(c) A graph is net-zero if and only if one of its connected components is net-zero.

(d) If G is net-zero, then the graph G’ obtained by attaching a new node v only to one

existing node u, then attaching a second new node w only to v, is also net-zero.

Proof. Part (a) follows because every coloring has an even number of B-W edges. Hence
the number of monochrome edges is odd, and so complementing the coloring flips the parity
between B-B and W-W edges. Part (b) was part of the proof of Theorem [6.14b1). Part (c)
is intuitive from how the quantum state is a tensor product over the connected components,
so the events of all-0 output on each component are independent. The proof of (d) is that
whether u is colored black or white, exactly one of the four colorings of v and w creates one
more B-B edge. Thus | (0"2| Cg |0"12) |2 is directly proportional to | (07| Cg [0™) 2. O

The smallest net-zero graph is the triangle graph. The graph made by attaching a second
triangle is net-zero, as is the graph made by attaching a triangle to any of the latter’s four
outer edges. As observed at the end of section the six-node graph consisting of two
triangles connected by an edge is net-negative. Here are the connected net-zero graphs of 3,
4, and 5 nodes:

A e er X

An isolated self-loop is net-zero, while an edge with two self-loops is net-negative. This

includes the quadratic forms produced by Lemma 5.2 in our paper [GR19] and we conclude:

Corollary 6.22. If net-zero graphs of n nodes with self-loops allowed are recognizable in

O(n?) time then computing | (0" C |0"™) | for stabilizer circuits C' (of O(n?) size with O(n)

nondeterminism,) is O(N)-time equivalent to computing n X n matriz rank, where N = n?.
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6.9.2 Representation via General Tutte Invariant

The above concept of net-zero graphs can further be related to matroid theory. More precisely,
they extend to graphs with circles, which are isolated loops without a vertex and contribute a
multiplicative —1, and more generally to graphical 2-polymatroids with rank function fg(A)
defined for any set A C F to be the total number of vertices touched by edges in A.

We follow [Nob06] to give the definition of matroids. A matroid is defined by a set U and
a function f from finite subsets of U to N that obeys the following rules:

L f(0)=
IL foralla € U, f({a}) <1
IIL. if AC B then f(A) < f(B); and
IV. if AC Band ¢ ¢ B then f(AU{c}) — f(A) > f(BU{c}) — f(B).

The notion of rank in an ordinary vector space obeys these axioms, where we may identify
a matrix with its set A of row-vectors. The third axiom says that if B includes all the vectors
in A then its rank cannot be lower, and the fourth says that if adding a vector ¢ to B increases
its rank—meaning c is independent of B—then it is also independent of A and so the rank
of AU {c} likewise goes up (by 1). Thus matroids abstract the notions of rank and linear
independence in vector spaces.

The definition of a polymatroid simply wipes out rule 2. OK, a k-polymatroid replaces
it by the rule that for all singleton sets {a} have f({a}) < k. An important kind of 2-

polymatroid springs from the following idea:

The “f-rank” of a subset A of the edges in a graph G is the number of vertices
collectively touched by edges in A.

In a simple undirected graph, every edge has f-rank 2. In graphs with self-loops, however,
the loops have rank 1. We can also allow the universe U to include members of f-rank 0.
Those are visualized as loops without a vertex and called circles. We could also visualize
edges of rank 1 that stick out from a vertex v into empty space, but those are formally the
same as loops at v. This is how Noble defines a graphic(al) 2-polymatroid.

Then a( f¢) becomes a generalized Tutte invariant (see [OW93, [Nob06]) with parameters

(rys,t;a,b,c,d;m,n) = (1/2,-1,0;1,—-1,1,—1/2;1, —1/2).

This gives

n/2
a(G) = (—1> S(fa;—V'2i,V2i), where S(f;a,y)= Y o’ ) 2AI=F(A)

ACE
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by the main theorem of [OW93]. This in turn further simplifies to

—9)I4]
a(G) = Z (ZngA) )

ACE

Noble [Nob06] shows that computing S(fg;z,y) is #P-hard for any constant rational x,y
whenever 2y # 1. The complex irrational point (—v/2i,/27) has 2y = 2 but evades his proof
because having 4> = —2 makes a denominator vanish. Other connections between quantum
graph states and matroids have been shown by Sarvepalli [Sar14], and there is scope for

further development along these lines.

Before showing how to get the desired formula a(G) = (—%)n/2 S(fa; —v/2i,/2i), following

[Nob06], we need to define two operations on graphs: edge-deletion and edge-explosion.

ld | lexplode
: elete : E ) Q
(a) Deleting an edge e: G\e

(b) Exploding an edge e: G/e

Figure 6.2: Deletion and Explosion.

Edge-deletion G\e simply removes edge e from the graph. While in edge-explosion G/e,
two vertices disappear. Not only does the edge e = (u,v) disappear, but any other edge

“recoiled” into a loop at w.

incident to u or v from a vertex w # u, v gets
Following Noble’s paper, let M denotes the class of all graphic 2-polymatroids and let
Uo,1, U1 and Us 1 are the graphic polymatroids with precisely one edge e, which is respectively
a circle, loop or edge between two vertices. An edge e is called a separator in G if and only
if the endpoints of e and the set of endpoints of edges in E\e are disjoint, that is, e is an
isolated edge.
Then ¢ : M — C is said to be a generalized Tutte invariant (for graphic 2-polymatroids)

if there exist constants (r, s,t, a,b,c,d,m,n) € C? such that

d(Uz1) =7, 0(Uo, 1) = 5,0(Ur1) = t,

and for any graphic 2-polymatroid (F, f),

o(f) = o(f\(E\e))¢(f\e) if e is a separator of f;
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and if e is not a separator,

ap(f\e) +bg(f/e), if f(E\e) = f(E) and f(e) = 1;
¢(f) =9 co(f\e) +do(f/e), if f(E\e) = f(E)—1and f(e) =2;
mo(f\e) +no(f/e), if f(E\e) = f(E) and f(e) = 2.
Before plugging into the above equations, we need a 2-term recursion formula based on
edge-deletion and edge-explosion. Define ¢(G) = ¢y —¢; and then a(G) = ¢(G)/2!V]. Consider
a connected graph G = (V, E) and an edge e = (u,v) € E. The recursion formula can be

worked out as follows:

c(G) = (@) + c(G)
u,v are both black at least one of u, v is white
= c(Q) + c(G\e)
u,v are both black at least one of u, v is white
= c(G\e) - c(G\e)
at least one of u,v is white w,v are both black
=c(G\e) — 2¢(G\e)

u, v are both black
=c(G\e) —2¢(G/e),

and in turn
c(G\e) 2 c(GJe) 1
a(G) = SV T 1 vz = a(G\e) — ia(G/e).

If e is a self-loop, we can use a similar argument to derive

a(G) = a(G\e) — a(G/e).

Now we can start working out those constants for ¢(G) = a(G). Recall that the rank value

f(A) in a graph G is the number of distinct endpoints of edges in set A.

1
r = a(UQ,l) = 5
S = a(U(),l) =—1
t= a(U1,1) =0

If e is not a separator, we only have two cases to consider—if e is a self-loop or an edge

connecting two vertices:

o if f(E\e) = f(E) and f(e) =1, then this edge e is a self-loop and from above we have
a=1,0=—1;

o if f(E\e) = f(E)—1 and f(e) = 2, or f(E\e) = f(E) and f(e) = 2, then e is an

ordinary edge makingc=m=1and d=n = —%.
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Overall, this gives the set of parameters and hence the desired formula for a(G) as stated

above.



Chapter 7

Attack on Matrix Rank over [

The result of Chapter [0] gives some insights towards a possible breakthrough on the problem
of computing the rank of an m xn (dense) matrix over Fy. The best known time for computing
rank over any field is O(n%), and no better time is known over Fy in particular. Although
rank reduces to matrix multiplication, they are not known to be equivalent. So it is possible
that computing rank might be in O(n2) time where equivalently w = 2. The idea of possibly
putting rank in o(n“) time came from combining the quadratic form analysis (in Chapter
@ with Fourier analysis.

We prove a few special cases. The results of this chapter have not yet been incorporated

into a paper for submission. First we review the top-level algorithms and concepts.

7.1 Motivation

Recall the following algorithm for computing the rank r of an n x n matrix Ay over the field
FQ:

0 AO]

I. Form the symmetric block matrix A =
Al 0

II. Form the quantum graph state circuit C's for the bipartite graph with adjacency matrix
A.

III. Calculate p = the quantum probability that Ca (0?") = 02". The bipartite case assures
p > 0.

IV. Output r = logy(1/,/p).

Note that step 3 dominates the runtime, which is a counting problem over a graph.

81
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Consider the following 2 x 4 matrix

1 1 01
A(): )
1 01 0

and the corresponding bipartite graph G = (V, E):

vy V3
(2 Vs
Vs
Ve
Figure 7.1

Associate the graph with the polynomial

q(%) = Z T;xj = X124 + T125 + T1T7 + T224 + T2xe mod 2,
(i.j)eE
and define sg to be the cardinality of the set {Z : ¢(¥) =0 mod 2} and similarly, s; be that
for {#: q(£) =1 mod 2}. Then the wanted value in step 3 is

N So — S1 Zfng f(f)

vl on ’

where |V| =n and
£(@) = (1)1,
Hence, the problem of rank computing is reduced to the solution counting on f ().

To get more intuitions, we can consider the corresponding quantum circuit for this bi-
partite graph. In general, every graph can be converted into a quantum (stabilizer) circuit.
Recall that given an input, the outputs of a quantum circuit are associated with ampli-
tudes such that the probability of “seeing” an output is the square norm of its amplitude.
The above graph is transformed into the following circuit in Figure where the H’s are
Hadamard gates and the dots on different horizontal lines being connected by a vertical string
are control-Z gates (which are the edges in the graph). This circuit has all-zero input, and
we are concerned with what are the output vectors with non-zero amplitudes. A nice fact
(discussed in Section is that the set of output vectors with non-zero amplitude forms an
(affine) subspace.

We can thus relate the rank to the dimension of this (affine) subspace S. To be sure,

the rank is already definable as the dimension of the space R spanned by the rows of the
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vl 0>--[H]--g--g-—g-——————— [H]--<?
Lo
v2  0>--[H]--|--|--1--g-—@-- [H] --<2
B
B
B
v3  0>--[H]--0—|--1-—g-- -~ [H] --<2
o \
v4  0>--[H]-———- g——|-———— | ——[H]-—-<?

v5  0>——[H]-————————

|
|
|
|
ST Y o | PR—— Q- [H] --<?

original matrix A. The point of using S is that we might be able to attack the problem of

its dimension better using Fourier analysis iteratively /recursively.

7.2 Insights from Fourier Analysis

Now think of f(Z) as a function f : F§ — C with F} being a finite group of size 2" and define
the character of F} to be 1, (%) = (—1)%®%. By Fourier analysis, we have

p=_E [f@]= E [f(&)- (&)= f(0),

FeFy FeFy

where f is a Fourier coefficient of f, and a nice property—Plancherel Identity—can come in to

play. More precisely, let

(@) = (1)1 = (Zp)mreatads i (_)Rntite = fi(F) - fo(F)

and define inner product between two functions h, g : F5 — C to be (h, g) = Eyepy [2(T)g(T)].
Then

f0)=_E [f(@)]= fgn[fl(f)fz(f)] = (f1, f2)
and Plancherel Identity gives
(i, f2) = [i(@) fa(a)
a€Fy

That says that the counting problem over f can be broken into two smaller counting problems

(over two smaller subgraphs).

Can this help design an iterative/recursive algorithm for the counting problem with o(n*)

time?
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If so, we get an algorithm computing rank of a matrix over Fy with less time than matrix

multiplication.

Define Hy = {@: f1(a@) # 0} and Hy = {@: f2(&@) # 0}. The sum becomes Y acHiNHo f1(@) fo(a).
Indeed, both H; and Hs are subspaces (subgroups) of F4 (discussed in Section [6.8)), meaning
H; and Hs can be enumerated with two sets of bases. Moreover, fl(c_i) = :I:Q%1 for all @ € Hy
and 2h; equals the rank of the adjacency matrix of the corresponding subgraph (which is
illustrated in Figure ; analogous for f2 and Hj. This also means that dim(H;) = 2h; and
dim(Hsg) = 2hs.
V1 Vg
Vs

vy

Figure 7.3

For our example, dim(H;) = dim(Hy) = 2. Let Hy = span{¥1, U2} and Hy = span{wy, W }.

W) + f1(01 + 1) fo (Ui + U3)
() + f1(wh + ) fo () + 1i2).

F1(0)£2(0) + f2(61) fo(91) + f1(42) fo
2)

1)+ (
F1(0)£2(0) + fo(airt) fo () + f1(w) fo

There will be three cases to consider (more details in Section [7.4): dim(H;, N Hs) = 0,1 or 2.

Hence now, the question is further reduced to:
Given two sets of bases for two subspaces Hi and Ho, compute Hy N Ho.

From the discussion in Section if H1NH, is known, f (0) could be computed efficiently.
So is the basis for the subspace where f #0.

7.3 Fourier Analysis on Finite Groups

Let G be a finite abelian group. a character of G is simply a homomorphism v from G to the

multiplicative group of the complex numbers C* : ¢(a + b) = ¢ (a)(b), and (—a) = ﬁ

Since G is finite, we have that every element in the image of 1 is a root of unity, and thus

Characters form a group under multiplication. Define the dual group of GG to be the group
G of all characters of G. Let 1o be the trivial character, which maps all of G to 1; this is the
identity element of G.
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27i

Examples. Let G = Z, (p need not be prime) and w, = e » . For a € Z,, define ¢, : G — C
by:

Ya(T) = Wy
Here we can see that w, is the primitive p-th root of unity. Then G = {tala € Zp}. In our
case, G = Zon, and for a € Zon, define ¢, : G — C by:

wa@f) = (—l)aQI = (_1)2?:1 a;T;

Then G = {g]a € Zon}.

Inner Product. For two complex-valued functions f, g on GG, define the inner product to be
(.00 = 3 fla E [f(a)g(a)]:
| ‘ acG
Now we can see that every function f : G — C can be written as a linear combination of

characters of G.

Lemma 7.1. Fvery f : G — C has the following expression:
2) =Y fla)a(x)
ael
where
fla) = (f, 4a) = E [fe)dall]
Lemma 7.2 (Plancherel Identity.). Let f,g: G — C, then:
(frg) = 161(f,9) = 3 fla

acG
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Proof.

(f@),9@) = E | ( > ), <x>) ( S dlar)oe <w>) )

aleé’ GQEG'

= E1 > fla)ve (2)g(az)bu )]

a1,a2€G

= Y E [f(a1)du (2)5(a2)dus (@)
ai,az GG

= Y. f(a)§(a2) E [, (1), ()

al,az GG

= Z f(al)mlcu:(m

ai,as Gé
= fa)ja)
e

=G| E [f(a)§(a)]

acG

=|GI(f,9)-

Lemma 7.3 (Parseval Identity.). Let f : G — C, then

) =1F13=>_ If @)

ae@
7.4 Base Example

Consider a base case Figure an n-node bipartite graph G = (V, E) with two nodes on
LHS and arbitrary many nodes on RHS. Then the corresponding quadratic form will be

q(x) = 2z Z z; + 229 Z z; mod 4.

(15)eE (24)€eE

Moreover in bipartite cases, it is equivalent to

q(z) =z Z Ti + T2 Z x; mod 2.
(

(14)eFE 2,4)€E

Hereafter, we identify ¢(z) with the one over Fa. Define
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X1

X2

Figure 7.4

Now let
gi(2) = (~1)7 Tenee, gy(a) = (-1 Teace

We have f(z) = g1(x)g2(x).
Note that the amplitude (0"|C¢[0") = f(0) now equals o erﬂ?g 91(z)g2(x), and more

precisely, it is the following:

= in > gi(@)ga(z) = (g1.92) = Y dila
2

z€Fy acFy

where the last equality follows Plancherel Identity. More generally, we have

)= 55 3 @)

z€Fy

= (91,92 - )
Z gi(a)gs - wb a)
acFy

=Y dGi(a){g2- ¥, )
aEFg

= 37 Gi(@) (g2, Yora)
aclFy
Z gi(a)g2(b + a).
ackFy

Apparently, we also have f(b) = a€Fy g1(b+ a)g2(a) from commutativity.

Note that the rank of the adjacency matrix for component defined by ¢; is 2, and so is for
g2. Now suppose V = span({vi,v3}) (as defined and discussed in Section [6.8) for g such that
g1(c101 + c203) # 0 with ¢; € Fo, and W = span({w7, ws}) for go. Without loss of generality,
assume §1(0) = g1(v1) = g1(v2) > 0 and g1 (v1 ¥ v3) < 0. Same for go. Now we have

=Y Gi(a)@(b+a)

aclFy

1. - 1 - . 1 - _. 1 - _
= 592(5) 592(19 + 1) + 592(b+ 03) — 592(b+ U] + U3).
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There will be three different cases to consider:
L. V1IW
II. dim(VNW) =1

L dim(VNW) =2, ie, V=W

Case (1): V L W.

T TR DUPETE DI DUDSI B
f(0) = 592(0) + 592(0 +01) + 3 2(0 4 v3) — 592(54- 0] + v3) = 1= o2

because §2(vi) = g2(v5) = G2(vi + v3) = 0 and §2(0) = 3. Hence, the total rank is 4. We
can also see that the basis set {v7,v3, w1, wa} gives the vector space (V U W) such that
f(B)£0,Ybe VUW.

Case (2): dim(V NW) = 1. Let  be the basis vector of the intersection space. We do a

case-by-case analysis to all the possible situations as listed below:
(a) t =07 = wy: rank = 2, basis {wy,ws + v3}
(b) t = U5 = wh: rank = 2, basis {wa, wi + 01}
(c) t = 0] = wh: rank = 2, basis {wa, w) + 03}
(d) t = 05 = wy: rank = 2, basis {wr,ws + 01}
(e) =i 4+ 05 = w): not possible
(f) £= 0} + U5 = wh: not possible
(g) t =7 = W} + wh: not possible

—

(h) t=v3 = W) + h: not possible

—

(i) t =0 4+ 05 = Wi + wy: rank = 2, basis {w) + Wa,w) + 01} or basis {w) + v1,w] + 03}

Consider the situation: (2.a) £ = v] = .
R U N D D
f() = 592(5) + 592(17 + 1) + 592(5 +v2) — 592(5 + U1 + 03).

By plugging in b = 0, we get f(0) = % since Go(Ua) = §o(U1 +¥2) = 0 by the fact that v, € W.

Hence, rank remains to be 2.
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Now some insights for finding the basis for the space S such that f (5) #0 Vb € S are
(1) if b € W, both terms go(b 4 v3) and go(b+ 07 + 03) will be zero; (2) if b ¢ W, we need
§2(5+ v3) = —92(5—# U1 + v3) and not equal to zero. It is easy to check that {w},ws + v32} is
one valid basis for the space S such that f (w1 4+ ws + v3) has negative amplitude.

The same analysis can be applied to cases (2.b), (2.c) and (2.d) and derive what it shows
above. In more general words, the basis consists of (1) one member from the intersection
space and (2) one member produced by summing up the basis outside this intersection space.

Cases (2.e), (2.f), (2,g) and (2.h) are impossible because, for instance in (2.e),

~ o 1. - | 1. 1. .
f(0) = 592(0) + 592(1}1) + 592(112) — 592(01 +03) =

-0+

N | =

+

N | =
N —

where contradict the fact that f(0) > 0 for bipartite graphs.

As for the last case: t = 0] + U5 = W) + w. We know the rank is again 2 by f(ﬁ) = %

Following the same insights as above, we can derive a basis set {w] + w5, w) + v1 }. However,

fuw + wy) gives negative amplitude, and we would want a basis set {37,352} such that
f(§’1 + §3) < 0, because this will be consistent with the fact that both ¢;(v} + ¥2) and
G2 (W) + W) are negative. Hence, instead, we take the basis set {w} + v1,w) + v32} associated

with f.

Case (3): dim(V NW) = 2. Let {t1,f2} be the basis of the intersection space. We do a

case-by-case analysis to all the possible situations as listed below:

(a) t1: _i:_’l,QZ'U_’:_’Q rank = 0
(b) {1 = U] = Wh, g = U3 = wi: rank =
(c) {1 = U1 + U5 = W, by = U] = wWs: not possible

(d) {1 = U} + U3 = W), by = U3 = Wh: not possible

(e) 11 = Ui + U3 = W, ta = Ui = wi: not possible
(f) {1 = U} + U5 = Wh, by = U3 = w: not possible
(g) t; = 0] = Wy + Wy, Ty = ¥3 = 10}: not possible (same as (3.f))
(h) {1 = U7 = Wi + W, ty = U3 = Wh: not possible (same as (3.d))
(i) 1 = U5 = Wi + wh,ty = U] = W) not possible (same as (3.e))

(j) t1 = 03 = Wi + wa, ty = U] = Wh: not possible (same as (3.c))

(k) t1 =01 + 03 = W) + wh, to = ¥ = w): rank = 0 (same as (3.a))
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(1) t; = 0] + U5 = W + wh,ty = U] = wh: rank = 0 (same as (3.b))
(m) ;] = 0] + U5 = W) + wWh,ty = U5 = 7} rank = 0 (same as (3.b))
(n) {1 = U + 05 = W] + W, ty = U3 = Wh: rank = 0 (same as (3.a))
Consider (3.a): 1 =01 = Wi, 1ty = 0y = wh
N D . 1, L
f(0) = 592(0) + 592( 1)+ 592(112) - 592(1)1 + 03)
— 232(0) + 230(0%) + 330(7%) — 5 3o (7t + i)
—292 292 1 292 w2 292 w1 + w2
_1 1+1 1+11 1(1)
22 22 22 2 2
=1.

This means that the rank becomes 0. We can see that this actually corresponds to the
scenario that components g; and g2 have identical structure and hence cause cancellation in
the combined stabilizer circuit. The same argument works for case (3.b).

Now for (3.c): 1 = U1 + U5 = W, ty = U] = W

S 1 1 1

~ 1A R ., . R R B .
f(0) = 592(0) + 592(01) + 592(02) - 592(7)1 + %)
1. - 1 1 1
:—A O —0 [ _N N e _ A rd
292( )+292( 2)+292( 5+ wh) 292( 1)
R S U S SRS O
2 2 2 2 2 27 2 2
=0

contradicting the fact that f(0) > 0 for bipartite graphs. Using this argument on cases (3.d)
through (3.f) can lead to the same conclusion on them. Also note that (3.g) through (3.j) are
the same as (3.c) through (3.f), respectively. For instance, (3.g) is identical to (3.f) because
01 + U5 = 11 + ty = 1. Hence, they will again lead to zero rank.

_’ — —

Case (3.k): 1 =0 + 05 = wy + wa, ty = U1 = Wj.

a1 a0 1. . o
f(0) = 592(0) + 592( 1)+ 5 9(V3) — 592(7}1 + v3)
1. - 1. . 1. 1. .
= 592(0) + 592( 1) + 592(1”2) — —Go(w + wh)
R S U S O S S
22 2 2 2 2 2 2
=1.

Note that this case is exactly (3.a) because v3 = t1 + ty = wh. Similarly, we have that (1)
(3.1) corresponds to (3.b); (2) (3.m) to (3.b); (3) (3.n) to (3.a).
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7.5 Generalization and Thoughts
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As seen above, via Fourier analysis, the problem of computing general matrix rank over Fo

is further reduced to:

Given two sets of bases for two subspaces Hy and Hs, compute Hq N Hs.

Now we are ready to discuss two possible ideas for computing matrix rank over Fy: iterative

and recursive.

7.5.1 Possible Iterative Approach

Figure 7.5

Note that if we chop off a bipartite graph as in Figure the following formula still

works:
F0)=>" gi(a)g(b+a)
aEFS
= L00®) + 2026+ 1) + 25008+ 33) — 2ga(b + v + 1)
—22 22 U1 22 V2 292 1T V2),

where the vector space V' = span({v1,v3}) is associated with g; such that §;(c10] + cov3) # 0

with ¢; € Fa.

Now the steps of a possible iterative approach for computing matrix rank over Fo for

general matrix will be: (1) write f(Z) = [[, fi(Z); (2) first “compute and merge” f; and f,

then over that and f3, and so on.

This approach guarantees that the dimension of the intersection subspace is 0, 1 or 2,

which means that H; N Hy could be easier to compute. However, it will loop O(n) times.
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Hence it might only help for special cases such as sparse graphs (matrices). More details of

an explicit design of this approach will be one future work.

7.5.2 Possible Recursive Approach

Using the same insight from Fourier analysis, we can also try to design a recursing approach,
whose main steps will be: (1) write f(Z) = (f1(%) - fx(Z)) - (fos1(Z) - -+ fom)(¥)) with two
equal halves; (2) compute over (f1(Z)--- fx(¥)) and (fr11(Z) - -+ fon)(T)) recursively.

The main concern is apparently that H1 N Hy could be of large dimension and hence might
not be easy to compute. One can ask: (1) what kinds of graphs have a nice division, i.e., easy
to compute Hy N Ha? (2) can we find a (randomized way) to recurse and efficiently compute
H, N Hy?



Chapter 8

Conclusion, Future Research and

Speculation

The first main result (in Chapter [5)) in this thesis is a new logical emulation of general quan-

tum circuits. Our logical approach reduces computing quantum circuits to counting solutions

to a Boolean formula. This is potentially a whole paradigm of approaches to emulations. Here

are some possible future research problems:

1)

For which types of quantum circuits do the solvers work well?

In the experiment using SAT solvers on generated formulas, some quantum circuit
instances generated Boolean formulas that are “friendly” (i.e., be efficiently solved) to
SAT solvers, while others are not. From those statistics shown Section it would be
natural to ask what are the types of quantum circuits corresponding to boolean formula

instances that are “friendly” to existing SAT solvers.

Can SAT solvers be morphed to understand quantum identities?

Quantum identities is a property that a sequence of quantum gates will give an identity
operation as a whole. A straightforward example of quantum identities is that two
consecutive Hadamard gates cancel out (i.e., producing identity). However, cachet and
sharpSAT both are not able to recognize this phenomenon from the input boolean
formulas. If there is no existing SAT solver that can understand quantum identities
from input formulas, it would be interesting to investigate how the SAT solver can be

designed to identity quantum identities.

Can we identify larger subclasses of #SAT that are polynomial-time solvable?
It is known [Got98] that stabilizer circuits can be polynomial-time classically simulated.

Now from the perspective of our work, stabilizer circuits correspond to a class of boolean
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formulas. Now we can generalize this and ask: is there a subclass of #S AT which can
be efficiently solved? and What properties can be used to characterize the elements in
this subclass? Also note that this serves as a generalization of problem 1) in complexity

sense.

Can we classify subclasses whose counting problems correspond exactly to BQP?

The general intellectual challenge is that people have desired (non-quantum) charac-
terization of BQP, but dichotomy phenomenon [CCLLIO0, [CC12, [CGW16] developed
by Jin-Yi Cai et al. shows that in myriad cases the complexity jumps from P to #P-
complete with nothing in between. Roughly speaking, the dichotomy programme is
trying to establish the complete classification of natural counting problems such as
those associated to polynomials as being exactly either in P or # P-complete, which

conflicts with the goal of characterizing BQP.

A particularly ‘close shave’ is that counting the binary solutions of quadratic polyno-
mials when the coefficient of all terms of the form zy is 2 is easy while counting the
binary solutions in general is # P-complete. Recently, Cai et al. [CGW17] observed
that Clifford gates are indeed a special case of a known tractable class called affine
signatures, so that dichotomy results give an alternate proof of the Gottesman-Knill
Theorem [Got98]. Since counting the satisfying assignments to boolean formulas is
somewhat analogous to counting binary solutions, we may ask: Can we identify sub-
classes of boolean formulas whose counting problems are in BQP but beyond P? or even
is there a dichotomy theorem on boolean formulas between P and BQP? If either of the

answers is ’yes’, it may give intuitions for improving #SAT solvers?

The second main result (in Chapter @ improved the asymptotic running time for strong

simulation of n-qubit stabilizer circuits from O(n3) to O(n®). This result also shows almost

tight and new connections between strong simulation of stabilizer circuits and two bedrock

mathematical tasks: computing matriz rank and counting solutions to quadratic polynomials

(both over the field Fy). This says that any improvement on one will imply improvement

for the others. Our work also yields an apparently new class of undirected graphs: net-zero

graphs. The concept further extends to graphs with circles, which are isolated loops without

a vertex and contribute a multiplicative —1, and more generally to graphical 2-polymatroids

(more in Section . These connections also lead to some possible future research problems

listed as follows:

1)

What are the tractable subclasses of general Tutte invariant?
Noble [Nob06] shows that computing the general Tutte invariant S(fg;z,y) is #P-

hard for any constant rational x,y whenever zy # 1. Our case has the quantity
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S(fa; —v/2i,4/2i) and it can be computed in time O(n*). This complex irrational
point (—+/2i,+/2i) has 2y = 2 but evades his proof because having y> = —2 makes a
denominator vanish. Hence from the perspective of computational complexity, it would

be interesting to know what are the subclasses solvable in polynomial time.

2) Are there any other further applications of net-zero graphs?
Net-zero graphs are naturally connected to strong simulation of stabilizer circuits (as
shown in Section . One may ask what other classical or quantum problems this

class of graphs can be connected to.

3) Are the graphs isomorphic if their corresponding stabilizer circuits have identical am-
plitudes for all outputs of the circuits?
Our work use the graph-state representation of stabilizer circuits. Given two quantum
stabilizer circuits C7 and Cy. Without loss of generality, assume the inputs to both
circuits are all-zero vectors. Each graph has two sets of nodes ¢ and Z. The nodes in
i/ can be connected by edges in any way, while there is no edge between nodes among
Z and each node is connected by exactly one node from i without overlapping node.
Hence, this should be a strict class among graphs and this gives out a question, does
that Cy and Cy have identical amplitudes for all outputs implies that their associated
graphs are isomorphic? If this is true, we will have an if-and-only-if relation between

these two properties.

Besides those discussed above, we also want to speculate about more possible applications
of algebraic techniques in quantum computing in the next section. Algebraic techniques
have succeeded in many applications in computer science. These techniques seem to have

advantages in analyzing polynomial-represented problems.

8.1 Algebraic Geometric Methods and Measuring “Effort”

We want to ask

What would be a true measure of the effort required to implement a quantum

circuit?

One could imagine a measure built on the notion of coherence and entanglement because
they at the same time are sources of quantum advantages and hindrances for physical imple-

mentation. However, this would come with the following issues:

e High entanglement does not entail high complexity. For instance, stabilizer circuits can

have high entanglement because of Hadamard gates and controlled-NOT gates.
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e Entanglement simply is a property of a quantum state not of a circuit.

Hence entanglement by itself is not a useful complexity measure. What does it mean to
define the “entangling capacity” of a quantum circuit? Nevertheless, there are commonalities
between how we would expect certain axioms for entanglement measures E(C) to carry over

for circuits and axioms for complexity measures [PV14]. Below is an important one:
e If C1 and Cs are disjoint quantum systems, then E(C; ® Cy) = E(C1) + E(Cy).

This is the circuit analogue of the axioms called full additivity for tensor products of states.
This property needs to address another subtle issue: what happens if ¢/ = C'+ one single-
qubit gate. For instance, C+H cannot always have E(C+H) > E(C) because (C+H)+H = C.

There is one famous complexity bound on classical circuits which somewhat has this ad-
ditive property: Strassen’s theorem [Str73]. This is the one and only nonlinear lower bound
known on classical arithmetic circuits. It is an application of basic algebraic geometry. Hence,
we could have an alternative hypothesis: there is a nonlinearity that can be identified math-
ematically and that manifests physically as hindrances to maintaining quantum coherence.

To further motivate our point about the idea of nonlinearity, let us briefly review how
Strassen’s theorem is proved. For proving his theorem, Strassen used a powerful concept:
geometric degree.

Geometric degree is also usually called the degree of a variety X, which we will denote
by gdeg(X) just for avoiding confusion between this and the degree of a polynomial. In
particular, the geometric degree can be defined as the number of points of intersection of X
with a general (n — r)-plane when X is of dimension r [Gat14, Harl3].

The proof of Strassen’s lower bound applies Bézout’s Theorem. A slightly restricted

version of this theoremw can be stated as:

Bézout’s Theorem. Suppose we have r polynomials over an algebraically closed field K.
Say fi(x1,--- ,xy) has degree d;, for i = 1,...,r. Let S C K" denote the set of common
zeros of these polynomials. Then S is either infinite or |S| < [[;_; di. If the polynomials
are algebraically independent and if multiplicities are counted correctly, then the inequality

becomes an equality.

Strassen’s lower bound is as follows:
Strassen’s Theorem. Given any a tuple of polynomials (q1(z),q2(x), - ,qn(x)) of vari-

ables x1,x9,- -+ ,xn, every arithmetic circuit C computing (q1,q2,- -+ ,qn) must have size

Qlog(gdeg(V(gi, -+ ,qn))))-

Later Walter Baur extended Strassen’s result to lower-bound the circuit size of computing

a single polynomial f(z1,--- ,x,) with the following key lemma:
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Lemma (“Derivative Lemma” [BS83]): For any polynomial f(x1,--- ,x,) that can be com-
puted by an arithmetic circuit of size L, then there is a circuit of size at most 5L that computes

the following set of polynomials
of of
{f7 877 IR
T o0z,
A simple example is the polynomial f(z) = x¢ + 24 +---+2¢. By Strassen’s lower bound

and the above lemma, we have

S5L(f) > L(z$t, - 2271 > log(gdeg(V (y1 — 207, - L yn — 2%71))) > nlog(d — 1),

where L(f1,--+) is the size of a circuit computing polynomials (f1,-- ) and the last inequality
comes from the fact that if we restrict y; = 1 for all ¢ € [n] then there are (d — 1)™ complex
roots to {2971 = 1 :i € [n]}. Tt is worth pointing out that by taking the first and third

terms, the above inequality sequence also gives

L(f) = Q(log(gdeg(MJ(f))))-

Unfortunately, Bézout’s inequality also shows that (d — 1)™ is the highest possible gdeg
one can get not only for this simple f but any f(z1,---,zy,) of degree d. So what is still
often regarded as the only known general super-linear complexity lower bound learn us at a
fork in the road: either find new ideas needed to boost it or find new areas to apply its ideas.

We focus on the latter. It is natural to ask:

What ramifications does this nonlinearity phenomenon have on quantum

circuits?

Bacon, van Dam, and Russell [BvDRO8D] introduced and analyzed algebraic quantum
circuits that are defined over all finite integer rings Z,, and finite fields F,. This class of
quantum circuits uses algebraic operations of addition and multiplication, as well as the
quantum Fourier transform. They showed that the acceptance amplitudes (b| C' |@) of an
algebraic quantum circuit can be expressed as an exponential sum over the computational
paths between the input @ and output b of the circuit. They also showed that every algebraic
quantum circuit has a unique multivariate polynomial f associated with it that captures the
“action” of the circuit, where in general f will be a cubic polynomial but for linear circuits
(consisting of addition operations) f is only quadratic. With the polynomial f, they proved
that the norm of the output amplitude of a linear arithmetic quantum circuits is determined
by the dimension of the set of singular points on f. Hence in our problem, it is natural to

ask:
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What information or quantum property is significantly affected by singular
points? Can this (or some similar quantity) be extended to general quantum

circuits?
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