
i

Investigating Quantum Computing via Algebraic and Logical Tools

by

Chaowen Guan

September 6th, 2019

A dissertation submitted to the

faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

Abstract

“Quantum supremacy” or “quantum advantage” means demonstrating a quantum computer’s

ability to compute a task that no classical device can emulate in a comparable amount of time.

This raises the question: how can one determine such an advantage? Much work on studying

quantum supremacy has been done. In pursuing this question, this thesis takes a different

angle from the great recent efforts at achieving quantum supremacy. In particular, it develops

logical and algebraic tools for investigating how well classical computers can emulate/simulate

quantum computers.

The first part studies a logical approach to classically emulate general quantum circuits.

Specifically, we give a new explicit conversion from a quantum circuit C into a small set of

Boolean formulas such that the acceptance amplitude of the circuit (on a given input x) can

be computed from the numbers of satisfying assignments to the formulas. The fact of this

has been known for two decades, but our compact constructions promote the use of heuristic

#SAT solvers to perform emulation of quantum circuits. We implement a prototype of our

simulator in which #SAT solver can be utilized to compute the acceptance probabilities.

The second part’s main discovery is the tight connection between the strong simulation

of quantum stabilizer circuits and two bedrock mathematical tasks: computing matrix rank

and counting solutions to quadratic polynomials (both over the field F2). Precisely, it uses

quadratic forms to obtain a strong simulation (i.e. computing the probability for any input

and output) of stabilizer circuits. Our results improve the asymptotic running time from

O(n3) to O(nω), where ω = 2.372... is the known exponent of matrix multiplication, as well

as show a near-tight relationship to the task of computing matrix rank that was not known

before. They also improve the O(n3)-time algorithm for solution counting of quadratic forms

over F2 to O(nω). Besides, we also find further connections to graph theory and matroid

theory.

The third part builds on the second part to launch a direct attack on computing matrix

rank over F2. Although rank reduces to matrix multiplication, they are not known to be

equivalent. Getting any time better than O(nω) would be a major breakthrough. At a high-

level, it combines quadratic forms and Fourier analysis to improve the time in some very

ii

iii

special cases.

In the conclusion we close with a brief discussion of future research directions and then

speculate about further applications of algebraic geometry in search of measures of the effort

required to operate a quantum circuit that might explain the sustained difficult obstacles to

maintaining quantum coherence that have been encountered.

Acknowledgements

I feel lucky to have had Kenneth W. Regan as my advisor who is always inspirational,

supportive and generous. I have far too much to thank you for, Ken–I will always be indebted

to you for all that you have taught me; for your outstanding advice and your faith in me,

and so much more. Thanks for being an amazing advisor.

I thank my best friends: Si Chen, Zhan Qin, Jingyuan Fan, Zihao Shan, Michael Wehar,

Yinghao Fu, Tong Guan, James Clay, Minghua Wang, Chen Xu and Xiangyu Guo for their

supports through my entire graduate study. I thank the great committee members–Atri

Rudra and Shi Li. My memories of this city are filled with the times I shared with these

great people.

And above all I thank my family for their love, without which surely none of this would

have been possible.

iv

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Simulation of Quantum Circuits . 2

1.2 Technical Tools . 3

1.3 Logical Emulation of General Quantum Circuits 4

1.4 Algebraic Simulation of Stabilizer Circuits . 5

1.5 Outline of This Thesis . 6

2 Quantum Computing and Complexity Classes 8

2.1 Quantum Circuits . 8

2.1.1 Quantum State . 9

2.1.2 Unitary Transformation on Quantum Bits 10

2.1.3 Measurements . 11

2.1.4 More Examples . 13

2.2 Background on Complexity Classes . 15

3 Algebraic Methods 16

3.1 Polynomial Methods for Query Lower bounds 16

3.2 Simulating Circuits via Polynomials . 17

4 Matrix Rank, Solution Counting and Strong Simulation 20

4.1 Matrix Rank . 20

4.2 Solution Counting to Quadratic Polynomials 21

4.3 Near-Tight Connections to Stabilizer Circuits 21

v

CONTENTS vi

5 Logical Emulation of Quantum Circuits 23

5.1 Overview . 23

5.2 Binary Case . 25

5.3 More General Theorem . 30

5.4 Circuit Simulation By “Controlled-Bitflip” Clauses 34

5.5 Examples and Execution on Our Simulator 37

5.5.1 Single-qubit Example . 38

5.5.2 Quantum Fourier Transformation (QFT) 39

5.5.3 Demo of Shor’s Algorithm . 41

5.6 Probability Form and Sampling . 42

5.7 A Few Experimental Results . 43

5.8 Conclusions . 46

6 Stabilizer Circuits, Quadratic Forms, and Computing Matrix Rank 48

6.1 Overview . 48

6.2 Circuits and Quadratic Forms . 50

6.3 Quantum Stabilizer Circuits and Graph-State Circuits 51

6.4 Classical Quadratic Forms Over Z4 . 55

6.5 Algorithm and Examples . 59

6.6 Main Results . 62

6.7 Proofs for Important Lemmas . 67

6.8 More Properties from the Simulation . 71

6.9 Interpretations and Conclusions . 73

6.9.1 Net-Zero Graphs . 75

6.9.2 Representation via General Tutte Invariant 77

7 Attack on Matrix Rank over F2 81

7.1 Motivation . 81

7.2 Insights from Fourier Analysis . 83

7.3 Fourier Analysis on Finite Groups . 84

7.4 Base Example . 86

7.5 Generalization and Thoughts . 91

7.5.1 Possible Iterative Approach . 91

7.5.2 Possible Recursive Approach . 92

8 Conclusion, Future Research and Speculation 93

8.1 Algebraic Geometric Methods and Measuring “Effort” 95

CONTENTS vii

Bibliography 99

Chapter 1

Introduction

In the 1980s, Feynman [Fey82, Fey86] put forth the idea of quantum computation along with

Deutsch [Deu85, Deu89], with Albert [Alb83] independently introducing quantum automata.

The initial question that motivated Feynman to think up “quantum computers” was:

What kind of computer can we use to simulate (quantum) physics?

In principle, it is possible to use a classical computer to simulate the behavior of n-particle

systems evolving according to quantum laws. However, it seems to require exponentially

larger computing power. People have remarked that the particles seem to simulate themselves

efficiently—so how does Nature compute? This brought out the following question:

Can we do it with a new kind of computer—a “quantum computer”?

Instead of simulating (quantum) physics, why don’t we cluster the particles following their

natural quantum-mechanical behavior to build a computer? Imaginably, this “quantum com-

puter” would appear to be simulating a quantum system exponentially more efficiently than

a classical computer would.

From the perspective of quantum physics, this idea implies that a multi-particle quantum

system that computes like Nature (namely, quantum mechanics) will probably give exponen-

tial speedups for some natural computational problems. The most spectacular example that

really brought the idea of quantum computers to wide attention is Shor’s factoring algorithm

[Sho94]. This was an algorithm implementable on a quantum computer that can factor any

n-digit integer (with high probability) in roughly n2 time. In contrast, the fastest known

classical algorithm for factoring n-digit integer takes roughly 2n
1/3

time. As a consequence,

a quantum computer capable of performing Shor’s algorithm with moderate overhead would

be able to break an enormous number of current real-world cryptographic applications in a

matter of seconds.

1

CHAPTER 1. INTRODUCTION 2

This seemingly powerful nature of quantum computers has inspired researchers to explore

the nature and limitation of quantum computing for three decades. The goal of demonstrating

the ability of a quantum computer to perform important tasks that cannot be achieved

classically is called “quantum supremacy” or “quantum advantage”. Much work on studying

“quantum supremacy” has been done. In this thesis, we take a different angle from these to

show quantum supremacy. Particularly, this thesis develops logical and algebraic tools for

investigating how well classical computers can emulate/simulate quantum computers.

This topic directly pertains to a second question:

how do you design and debug circuits/algorithms that you cannot even simulate efficiently

with existing (classical) tools?

To debug circuits in the classical setting, programmers can add test conditions or read inter-

mediate data to find where problems occur. In the quantum setting, those similar standard

techniques would probably require measurements that destroy coherence. Furthermore, it

seems likely that we may still not be able to build large-scale quantum computers in the

short future, while physicists and chemists have long needed to simulate quantum systems.

All these problems leads to a desire for methods to simulate quantum circuits on a classical

computer.

1.1 Simulation of Quantum Circuits

Quantum circuits can efficiently perform n-bit computations that are commonly believed to

require time exponential in n on classical computers. The salient example is Shor’s algorithm

[Sho94] for factoring n-bit integers using roughly 2n qubits. Cryptographic standards for

hardness of factoring involve n on the order of 1, 000, while successful classical emulation-

s of quantum circuits considered difficult have recently been claimed for n approaching 50

[HSST16, BIS+16, HS17]. We are still a long way from implementing Shor’s algorithm in

practical time. By creating emulations of a quantum computer on classical systems we are

able to test, at least to some degree, the workings of such algorithms. There are already sev-

eral packages for simulating general quantum systems on classical computers: the quantum

programming language QCL by [Öme14], the QuIDD (Quantum Information Decision Dia-

grams) package by Viamontes et al. [VMH03, VRMH03], and the parallel quantum computer

simulator by Obenland and Despain [OD98].

Simulators and emulators use several forms. Aaronson and Chen [AC17] summarized that

the space of emulation strategies is bounded by two pure strategies they call “Schrödinger”

and “Feynman”. The Schrödinger approach is to encode (pure) quantum states by length-N

vectors, where N = 2n, under some hybrid of explicit and implicit representation. A direct

CHAPTER 1. INTRODUCTION 3

simulation implements the N ×N matrices defining (compositions of) gate operations under

sparse representations of these matrices. Thus the exponential penalty is paid up front but

additional operations only involve N ×N matrix computations with no further blowup. The

Feynman way is to calculate an amplitude as a sum of terms, where it first pre-process a given

circuit C in time scaling as nO(1). Only the final summation involves exponential blowup but

the number of items being summed can have order worse than N or N2.

1.2 Technical Tools

This thesis employs elementary mathematical tools that have been used to analyze quantum

circuits before but extends the analysis in new ways. Here is a preview.

• Boolean formulas. A Boolean formula is a string of symbols consisting of variables,

0/1 (0 means false and 1 means true) and Boolean logics. Basic Boolean logics include

∧ (conjunction), ∨ (disjunction) and ¬ (negation). In this thesis, we also use other

operations such as ⊕ (exclusive or) and ≡ (equivalence). Examples of using Boolean

logic to help synthesize quantum circuits include [LCJ13, Lin14, SRWDM17]. What

distinguishes the work is using Boolean formulas to effect an efficient reduction from

quantum simulation to #SAT (in Chapter 5).

• Polynomials. The first express conversion to (sets of) polynomials was by Dawson

et al. [DHH+04] and programmed by Gerdt and Severyanov [GS06]. It applied only

to the universal set {H,CNOT,Tof } of gates with ±1 entries, except for remarks in

[DHH+04] about “mixed mode (mod-2/mod-8) arithmetic.” Bacon, van Dam, and

Russell [BvDR08a] tailored a construction to (singly and doubly) controlled phase-

changing gates modulo various values. In Chapter 6, we use a special form, named

quadratic form, of polynomials to further improve the strong simulation of stabilizer

circuits and unveil its new connections with two fundamental problems: matrix rank

and counting solutions to quadratic polynomials, both over F2.

• Quadratic Forms [Sch09, O13]. A quadratic form is a polynomial with terms all of

degree two. For instance, 3x2 + xy − 2y2 is a quadratic form in variables x and y.

The coefficients usually belong to an integer ring or a field. More discussion on this is

in Section 6.2. Quadratic forms over Z4 are the main objects we are working with in

Chapter 6. To our knowledge, our level of applying the theory of quadratic forms is

new.

• Algebraic Geometry [CLO13, Har13]. Classically, this subject studies zeros of mul-

tivariate polynomials, which are called algebraic varieties. By relating the degree of

CHAPTER 1. INTRODUCTION 4

varieties to computational complexity, tools like Bézout’s Theorem have succeeded in

many applications in computer science. One of the most important results is Strassen’s

nonlinear lower bound on arithmetic circuits [Str73]. These techniques seem to have

advantages in analyzing polynomial-represented problems. It also finds applications

in the field of computational complexity. Mulmuley and Sohoni [MS01, MS07, MS08]

introduced the geometric complexity theory which is an alternating approach to the

P vs. NP problem. In quantum computing, Bacon, van Dam, and Russell [BvDR08a]

found that the amplitude of certain special class of quantum circuits is highly related

to the concept of singularity. Our discussion in Chapter 8 askes if we can find any

trail of nonlinearity using algebraic geometry.

1.3 Logical Emulation of General Quantum Circuits

This starts from the Feynman simulation approach. In Chapter 5 we give a new explicit

conversion from a quantum circuit C into a small set of Boolean formulas such that the ac-

ceptance amplitude of the circuit (on a given input x) can be computed from the numbers of

satisfying assignments to the formulas. The fact of this has been known for two decades, but

our compact constructions promote the use of heuristic #SAT solvers to perform emulation

of quantum circuits. More precisely, we propose to design small sets of Boolean formulas

φCk (z1, . . . , zr) (in conjunctive normal form) such that C can be simulated with exact knowl-

edge of the number of assignments in { 0, 1 }r that satisfy the φCk . The acceptance amplitude

involves formulas φ0, φ1 with some number r of variables—h of them “free”—and gives values

of the form
#sat(φ0)−#sat(φ1)

R
,

where R = 2h/2 rather than be of order 2h or 2r. The total numbers n0 and n1 of satisfying

assignments to φ0 and φn will each have order 2h, but their difference is a priori constrained

to be at most R. It will therefore not suffice to compute n0 to within a factor of (1 + ε),

say, nor likewise n1. This is why exact #SAT solving is sought. The main result can be

summarized as follows:

Theorem (Less formal description of Theorem 5.3.). Given C as a circuit of a common type

of size s with m qubits. Then we can efficiently build a Boolean formula φC of size O(s) and

find a fractional constant R such that for any input a ∈ { 0, 1 }m and output b ∈ { 0, 1 }m to

C:

• φC is a Boolean formula in variables ~w, ~x, ~y, ~z.

CHAPTER 1. INTRODUCTION 5

• The amplitude of C on input a and output b is equal to R times the sum over the number

of 0/1-assignments to ~y in φC with ~x = a, ~z = b and ~w be 0 through K − 1.

• For every assignment (a, c) to ~x, ~y there is exactly one pair (L, b) such that φC [~w =

L, ~x = a, ~y = c, ~z = b] holds and it can be found in O(s) time.

Moreover, the last bullet above implies a “clever” brute-force #SAT solvers. Prelimi-

nary computational trials show that some freely available #SAT solvers give considerable

advantage over brute-force and that this advantage scales non-linearly. Strategies for the

#SAT solvers might be tuned for the special nature of the clauses arising from the “parity of

AND” equations in our main technical theorem. Thus this can become a potential sub-field

of intelligent software simulation of complex systems.

1.4 Algebraic Simulation of Stabilizer Circuits

A salient subclass of quantum circuits that have a deterministic polynomial-time simulation

are stabilizer circuits. They can be generated by the following three gate matrices–Hadamard

gate, phase gate and controlled-Z gate, respectively:

H =
1√
2

[
1 1

1 −1

]
, S =

[
1 0

0 i

]
, CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

Their extensions to act on CN by tensor product with the identity. It is worth pointing out

that stabilizer circuits can also be generated with CZ gate replaced by CNOT gate, that is

Hadamard gate, phase gate and controlled-NOT gate.

Stabilizer circuits play an important role in fault-tolerant circuits because they can be

used to perform the encoding and decoding steps for a quantum error-correcting code. Besides

that, those gates–H, S and CNOT–has many other applications. They are powerful enough

to encompass most of the “paradoxes” of quantum mechanics, including the Greenberger-

Horne-Zeilinger (GHZ) experiment [GHZ89], dense quantum coding [BW92], and quantum

teleportation [BBC+93]. The original polynomial-time algorithm by Gottesman and Knill

[Got98] involved Gaussian elimination and so ran for all intents and purposes in order-of n3

time. Aaronson and Gottesman [AG04] improved this to O(n2) time with a tableau method

and also showed that every stabilizer circuit has an equivalent one with O(n2/ log n) gates.

Both of these two work were built on the idea of stabilizer groups Section 3.2.

Chapter 6 uses quadratic forms instead of stabilizer groups to obtain a strong simulation

(i.e. computing the probability p = | 〈0n| C |0n〉 |2 [JvdN14]) of stabilizer circuits. Our

CHAPTER 1. INTRODUCTION 6

results improve the asymptotic running time as well as show a near-tight relationship to the

task of computing matrix rank that seems not to be noticed in these papers. They also

improve the O(n3)-time algorithm for solution counting of quadratic forms over F2, as given

by Ehrenfeucht and Karpinski [EK90], to O(nω). Informally, our results are summarized as

follows:

Theorem (Less formal description of Theorem 6.14). (a) Strong simulation of n-qubit sta-

bilizer circuits on standard-basis inputs is in time O(nω) where 2 ≤ ω < 2.3729.

(b) Computing n × n matrix rank is linear-time equivalent to computing the probability p

on the promise that p is positive.

In view of the normal form of [AG04] and in practice, the restriction on h and s in (b)

is highly reasonable. Part (b) can be further rephrase as (Section 6.9): if membership in

a certain class of undirected n-vertex graphs can be decided in O(n2), then the following

problems all have the same time complexity:

• The strong simulation of quantum stabilizer circuits;

• The computation of rank of matrices over F2;

• The counting of solutions to classical quadratic forms modulo 4.

Note that the “promise” condition of (b) is ignorable in the direction from the rank r to p,

but not from p to r. The sense of the latter direction is that if rank for dense matrices comes

to have a lesser time t(n) with n2 ≤ t(n) < nω than matrix multiplication, then computing p

correctly in cases where p > 0 will have exactly the same time t(n), whereas computing p in

all cases might remain in nω time. We do not have a reduction from matrix multiplication

itself (over F2) to strong simulation, hence our results do not imply an asymptotic equivalence

between those. To be sure, we note as a practical caveat that among the known sub-cubic

algorithms for matrix multiplication, only Strassen’s original one [Str69], which runs in time

O(n2.81), is generally considered competitive for problem sizes in the range of thousands of

qubits that are addressed concretely in the above-cited papers.

We may ask (1) how far these techniques can apply to general quantum circuits, and (2)

can the tools achieve better general complexity results?

1.5 Outline of This Thesis

In Chapter 2 we present background knowledge on quantum computing and some corre-

sponding complexity classes.

CHAPTER 1. INTRODUCTION 7

In Chapter 3 we survey past applications of algebraic methods in quantum computing.

In Chapter 4 we mainly discuss the connections between strong simulation of stabilizer

circuits and two fundamental mathematical problems: computer matrix rank and count-

ing solutions to quadratic polynomials (both over F2). More details of how to prove these

connections are presented in Chapter 6.

In Chapter 5 we give a new explicit conversion from a quantum circuit C into a small

set of Boolean formulas such that the acceptance amplitude of the circuit (on a given input

x) can be computed from the numbers of satisfying assignments to the formulas. The fact

of this has been known for two decades, but our compact constructions promote the use of

heuristic #SAT solvers to perform emulation of quantum circuits. An alternate form facili-

tates uniform sampling of quantum outputs. The Boolean formulas assign one independent

variable to each Hadamard gate; all other variables are forced by any assignment to them.

Preliminary computational trials show that some freely available #SAT solvers give consider-

able advantage over brute-force and that this advantage scales non-linearly. Strategies for the

#SAT solvers might be tuned for the special nature of the clauses arising from the “parity of

AND” equations in our main technical theorem. Thus this can become a potential sub-field

of intelligent software simulation of complex systems.

In Chapter 6 we show that a form of strong simulation for n-qubit quantum stabilizer

circuits C of size s is computable in O(s + nω) time, where ω is the exponent of matrix

multiplication. Solution counting for quadratic forms over F2 is also placed into O(nω) time.

This improves previous O(n3) bounds. Our methods in fact show an O(n2)-time reduction

from matrix rank over F2 to computing an amplitude of C (hence also to solution counting)

and a converse reduction that is O(s + n2) except for matrix multiplications used to decide

whether p > 0. The current best-known worst-case time for matrix rank is O(nω) over F2,

indeed over any field, while ω is currently upper-bounded by 2.3728 . . . Our methods draw on

properties of classical quadratic forms over Z4. We study possible distributions of Feynman

paths in the circuits and prove that the differences in +1 vs. −1 counts and +i vs. −i counts

are always 0 or a power of 2. Further properties of quantum graph states and connections to

graph and matroid theory are discussed.

In Chapter 7 we launch a possible attack on computing matrix rank over F2. Built

on insights from the previous chapter, it combines quadratic forms and Fourier analysis to

improve the time in some very special cases.

In Chapter 8 we close with a brief discussion of future research directions and speculate

about more possible applications of algebraic methods in quantum computing.

Chapter 2

Quantum Computing and

Complexity Classes

2.1 Quantum Circuits

To study quantum computing, most of the time we don’t need to understand quantum physics.

A quantum circuit is a compact representation of a quantum system. It consists of some

number m of qubits represented by lines and some number s of gates acting on qubit lines.

Here is an example created using the popular visual quantum circuit applet by Davy Wybiral

[WH]:

Figure 2.1: A five-qubit quantum circuit that computes a Fourier transform on the first four

qubits.

The circuit C operates on m = 5 qubits. The input is the binary string x = 10010. The first

n = 4 qubits see most of the action and hold the nominal input x0 = 1001 of length n = 4,

while the fifth qubit is an ancilla initialized to 0 whose purpose here is to hold the nominal

output bit. The circuit has thirteen gates. Six of them have a single control represented by

a black dot; they activate if and only if the control bit receives a 1 signal. The last gate

8

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 9

has two controls and a target represented by the parity symbol ⊕. It is called a Toffoli gate.

This gate will set the output bit if and only if both controls receive a 1 signal. The two gates

before it merely swap the qubits 2 and 3 and 1 and 4, respectively. They have no effect on

the output bit (i.e., the fifth bit) and are included here only to say that the first twelve gates

combine to compute the quantum Fourier transform QFT4. This is nothing more than the

ordinary discrete Fourier transform F16 on 24 = 16 coordinates.

The actual output C(x) of the circuit is a quantum state Z that belongs to the complex

vector space C32. Nine of its entries in the standard basis are shown in Figure 2.1; seven

more were cropped from the screenshot. Sixteen of the components are absent, meaning Z
has 0 in the corresponding coordinates. Despite the diversity of the nine complex entries ZL
shown, each has magnitude |ZL|2 = 0.0625. In general, |ZL|2 represents the probability that

a measurement—of all qubits—will yield the binary string z ∈ { 0, 1 }5 corresponding to the

coordinate L under the standard ordered enumeration of { 0, 1 }5. Here we are interested in

those z whose final entry z5 is a 1. Two of them are shown; two others (11101 and 11111)

are possible and also have probability 1
16 each, making a total of 1

4 probability for getting

z5 = 1. Owing to the “cylindrical” nature of the set B of strings ending in 1, one can also

say that a measurement of just the fifth qubit yields 1 with probability 1
4 .

Below three important ingredients of quantum computing are summarized.

2.1.1 Quantum State

Each quantum state is a superposition. A quantum bit (qubit) is allowed to be in a superpo-

sition of the state 0 and 1. As is customary, we use the Dirac’s bra-ket notation and a qubit

with the label q can described by linear combination

|q〉 = α |0〉+ β |1〉 ,

where the normalization restriction |α|2 + |β|2 = 1 applies with the amplitude α, β ∈ C.

This representation formulates the state space of a single qubit as the unit vectors in the

two-dimensional Hilbert space H2.

Hence, for k qubits, there will be 2k basis states and the corresponding superposition

becomes a linear combination of all 2k possible strings of k bits:

|q1〉 ⊗ · · · ⊗ |qk〉 =
∑

i∈{0,1}k
αi |i〉 ,

where again as required, those amplitudes αi obey:
∑

i |αi|2 = 1. A pure state is any linear

combination of basis states.

A state is said to be entangled if it can be decomposed as a tensor product of all single-

qubit states. A famous entangled state is the Bell state 1√
2
(|00〉 + |11〉) which has no valid

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 10

decomposition as a tensor product of two single qubits. There are also mixed states, which

can be represented as classical distributions on pure states.

2.1.2 Unitary Transformation on Quantum Bits

Quantum mechanics only allows transformations of states that are linear and respect the

normalization restriction. For this purpose, the operations on an N -dimensional Hilbert

space are the N × N complex-valued norm-preserving matrices. Such matrices are called

unitary and the group of them is denoted by UN (C) (unitary group of degree N). Also this

meets the requirement that the inverse of U is the conjugate transpose U∗ of the matrix.

The effect of a unitary transformation U on a state |x〉 =
∑

i αi |i〉 is exactly described

by the corresponding rotation of the vector |x〉 in the appropriate Hilbert space. For this

reason, U stands both for the quantum mechanical transformation as well as for the unitary

rotation, which can be represented via matrix multiplication: U |x〉 = U ·


α1

α2

...

αN

 . Hence, the

associativity of matrix multiplication gives that the effect of two consecutive transformation

U and W is the same as the single transformation W ·U , and the non-commutativity of matrix

multiplication implies that the order of a sequence of unitary transformations matters.

Another important fact is that the tensor product of two unitary matrices is again unitary.

Then a single-qubit gate matrix M on qubit i can be represented with the operator U =

I⊗· · ·⊗ I⊗M⊗ I⊗· · ·⊗ I with M in position i. This also allows us to focus only on small-size

quantum gates.

Some common single-qubit gate matrices are the following:

H =
1√
2

[
1 1

1 −1

]
, Z =

[
1 0

0 −1

]
, S =

[
1 0

0 i

]
, T =

[
1 0

0 eiπ/4

]
, R8 =

[
1 0

0 eiπ/8

]
.

Adding controls is one way to extend effects to other qubits. The controlled form CG of

a gate G has the block-matrix representation

[
I 0

0 G

]
. The gate X =

[
0 1

1 0

]
, which is also

called the NOT gate for the negation it effects on the classical bit corresponding to the qubit

line, yields the controlled forms CX (aka. CNOT) and CCX (aka. Tof for the Toffoli gate) in

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 11

the first and third example below:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CS =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 , Tof =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


.

Following [DHH+04] a quantum gate is balanced if all nonzero entries in its unitary matrix

representation have the same magnitude. This means that all common gates like Hadamard,

CNOT, Tof, and rotation gates are balanced.

A classical gate set is said to be universal if, by combining enough gates from the set,

one can express any Boolean function on any number of bits. A set of quantum gates being

universal is defined analogously.

Definition 2.1. A set of quantum gates is called universal if any quantum computation can

be expressed by combining gates from the set.

There are two series of universal:

• approximating the amplitudes;

• approximating the probabilities.

One demand that for an quantum state |φ〉 produced by a general circuit of size s, there

is a circuit of gates from the set that produces a state |φ′〉 where vector distance from |φ〉
can be made as small as desired. The other series merely requires that |φ′〉 gives the same

(measured) output results as |φ〉. The set {H,Tof} is universal only in the latter, weaker

series, because it gives only real-valued entries. Nevertheless, it can emulate the real and

imaginary parts of |φ〉 separately. The set {H,CNOT,T} is universal in the stronger series.

It is worth mentioning that the controlled-S (CS) gate is important because it and H form

a universal set of gates. So do H and Tof, or H, CNOT and T, in similar sense to {NAND}
and {AND,NOT} are universal sets of Boolean gates.

2.1.3 Measurements

Mathematically, a single “measurement” is transforming a quantum state to one possible

outcome, which can be described as follows:

|z〉 =
∑
i

αi |i〉 −−−−−−−→
outcome mi

|i〉 .

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 12

The possible outcome “i” of z correspond to a set of orthogonal vectors {|mi〉} of the mea-

suring device. “Measuring z” (meaning “interacting with z”) will cause the state to collapse

according to the outcome “mi.” From a probabilistic point of view, when measuring the

state |z〉, the outcome “i” will be observed with probability |αi|2. This probability can be

computed via inner product.

Let |φ〉 =


a0

a1
...

aN−1

 and |ψ〉 =


b0

b1
...

bN−1

 with N = 2n and n is the number of qubits. The

complex conjugation in Dirac’s bra-ket notation is denoted as

〈φ| = |φ〉† =
∑
k

a∗i 〈i| =
[
a∗0 a∗1 · · · a∗N−1

]
.

Define the inner product over CN as

〈φ|ψ〉 =
∑
k

a∗kbk.

With this, we have the above probability |αi|2 = | 〈mi|z〉 |2. This also facilitates the calcu-

lation of measuring |z〉 in any general orthonormal basis {|vi〉}. (Note that |vi〉 and |vj〉 are

orthogonal if and only if 〈vi|vj〉 = 0.) Now if a measurement over |z〉 is done with respect

to the basis {|vi〉}, the probability of obtaining outcome “vi” will be | 〈vi|z〉 |2. Normally, we

have a quantum circuit C and its input state |x〉, and then the output state |z〉 = C |x〉 with

C be a product of a sequence of matrices representing quantum gates. With this notation,

the probability of seeing outcome “vi” becomes | 〈vi|C|x〉 |2.
Consider the basis {|+〉 , |−〉} with

|+〉 =
1√
2
|0〉+

1√
2
|1〉 , |−〉 =

1√
2
|0〉 − 1√

2
|1〉 .

Now measuring a state |z〉 with respect to this basis means that the outcomes can only be

|+〉 or |−〉, and the probabilities of seeing them are | 〈+|z〉 |2 and | 〈−|z〉 |2 respectively.

In Figure 2.1, nine of the possible outputs (in the standard basis) are shown along with

their corresponding probabilities and each probability is derived by squaring and summing

the real and imaginary parts.

With the notions of measurement and output probability, we can define what it means

in computational complexity, that a quantum algorithm solves a language. Since we focus

on the quantum circuit model, here we can identify a quantum algorithm with a family of

quantum circuits where each quantum circuit is an instance of the algorithm of certain input

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 13

size. A family (Cn) of quantum circuits is said to solve a language L if for all input size n

and all input x of size n

Pr[measuring the first qubit of Cn(x) equals L(x)] >
2

3
.

This is equivalent to saying that the family (Cn) can effectively identify L.

Another needed definition is cylinder. This definition of cylinder will be useful in simulat-

ing sampling over outputs of quantum circuits, and we will only be concerned with cylindrical

measurements in the standard basis, i.e., measuring some subset of the qubits.

Definition 2.2. Let a quantum circuit C of n-qubit output. Take some set I = {i1, · · · , i`} ⊆
{1, · · · , n} for some ` and a string w = w1 · · ·w` ∈ {0, 1}`. Then we call B ⊆ {0, 1}n is a

cylinder with respect to I and w if

B = { b ∈ { 0, 1 }n : bi1 = w1 ∧ bi2 = w2 ∧ · · · ∧ bi` = w` } .

Straightforwardly, a cylinder B represents outputs that are consistent with partial mea-

surement already made, and thus is important in sampling.

There are two kinds of classical simulations: weak simulation and strong simulation

[JvdN14].

Definition 2.3. A classical algorithm is said to be weakly simulating a quantum circuit if is

it able to simulate sampling from the output distribution of the quantum circuit.

Definition 2.4. A classical algorithm is said to be strongly simulating a quantum circuit if is

it able to calculate the probabilities of the output measurement outcomes with high accuracy.

Our work in Chapter 5 and 6 concentrate on strong simulation.

2.1.4 More Examples

Single-qubit Circuit Example.

|x〉 H T H |z〉

The input is a single qubit input x as a vector in ∈ C2. So is the output z. The first gate and

the last gate are Hadamard gates, and the middle T-gate creates a π
4 phase shift by mapping

|1〉 to eiπ/4 |1〉 and leaving |0〉 unchanged. To see what the circuit really does, we can use its

matrix representation, which is the following:

|z〉 = HTH |x〉 =
1

2

[
1 + eiπ/4 1− eiπ/4

1− eiπ/4 1 + eiπ/4

]
|x〉 .

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 14

Note that the matrix representation reads from right to left, for instance, the rightmost

matrix H corresponds to the first Hadamard gate in the circuit. Let C be HTH, and then

HTH |x〉 = C |x〉.

Write |x〉 =

[
x0

x1

]
with x0, x1 ∈ C and then

|z〉 =

[
x0(1+eiπ/4)+x1(1−eiπ/4)

2
x0(1−eiπ/4)+x1(1+eiπ/4)

2

]
.

Since |z〉 again belongs to C2, if we do a measurement, the squared norm of the first entry

equals the probability of seeing outcome bit 0, and the second one for outcome 1. In particular,

| 〈0|C|0〉 |2 ≈ 0.85 and | 〈1|C|0〉 |2 ≈ 0.15. The significance is that this disparity cannot be

explained by saying that each H gate is like a classical random coin. This is made formal in

the CHSH game.

CHSH Game [CHSH69]. There are two players, Alice and Bob, and a referee. The referee

chooses two bits r, s independently and uniformly at random and then sends bit r to Alice

and s to Bob. Alice and Bob must each answer a single bit: a for Alice, b for Bob. They win

this game if a⊕ b equals r ∧ s, i.e., the winning conditions are: if either r or s is 0, a and b

should be equal; if r = s = 1, a and b should be different.

The classical strategy to maximize winning probability is simply that Alice and Bob

always send the referee a = b = 0, regardless of what r and s are. In this case, Alice and

Bob win 75% of the time, losing only if r and s are both 1. This can be proved by easily

enumerating cases that this equation cant possibly hold for all 4 values of r and s. At best

it can hold for 3 of the 4 values, which is exactly what this trivial strategy gets.

The quantum strategy requires Alice and Bob to pre-share an entangled Bell state, 1√
2
|00〉+

1√
2
|11〉. Then it involves Alice and Bob measuring their respective qubits in different bases,

depending on whether their received bits r and s are 0 or 1, and then outputting bits a and b

respectively based on the outcomes of those measurements. If r = 0, Alice measures in basis

{|0〉 , |1〉}; if r = 1, she measures in basis {|+〉 , |−〉}. On the other hand, Bob measures in

basis {|u0〉 , |u1〉} if s = 0 and measures in basis {|v0〉 , |v1〉} where

|+〉 =
1√
2
|0〉+

1√
2
|1〉 , |−〉 =

1√
2
|0〉 − 1√

2
|1〉 ,

|u0〉 = cos
π

8
|0〉+ sin

π

8
|1〉 , |u1〉 = − sin

π

8
|0〉+ cos

π

8
|1〉 ,

|v0〉 = cos(−π
8

) |0〉+ sin(−π
8

) |1〉 , |v1〉 = − sin(−π
8

) |0〉+ cos(−π
8

) |1〉 .

At the end, Alice sets a to 0 if she sees |0〉 or |+〉 after measuring the pre-shared Bell state,

and 1 if she sees |1〉 or |−〉; while Bob sets b to 0 if he sees |u0〉 or |v0〉, and 1 otherwise.

CHAPTER 2. QUANTUM COMPUTING AND COMPLEXITY CLASSES 15

This strategy can make Alice and Bob win with probability cos2 π8 ≈ 85% for all possible

values of r and s. To see this, let’s consider the case where Alice gets r = 0 and measure.

She will set a = 0, and she and Bob will win if and only if Bob outputs b = 0. So what

are the odds that b = 0? Given that Alice measured her side of the Bell state already,

Bob’s side qubit collapsed to the |0〉 state as well. Now suppose s = 0. Then Bob measures

the |0〉 state with the basis {|u0〉 , |u1〉}, and outputs 0 if he sees |u0〉, whose probability is

| 〈u0|0〉 |2 = cos2 π8 . The same calculation can be applied to other cases. Hence, Alice and

Bob win the game with probability about 85% in all four cases. It turns out that cos2 π8 is the

maximum probability with which Alice and Bob can win the CHSH game using a quantum

strategy, a result known as Tsirelson’s bound [Cir80].

Nevertheless, in Chapter 5 we will give an exact logical translation of this single-qubit

quantum circuit that does represent each H gate by a classical binary variable. The quantum

analysis will come from cosines in Theorem 5.3.

2.2 Background on Complexity Classes

We assume familiarity with the classes P , NP and PSPACE. Below we briefly review the

probabilistic and counting classes most used in analyzing quantum computation.

BPP (Bounded-Error Probabilistic Polynomial-Time): the class of problems solvable

by a probabilistic classical polynomial-time algorithm, which given any instance, must output

the correct answer for that instance with probability at least 2/3. Thus P ⊆ BPP ⊆ PSPACE.

It is widely conjectured that BPP = P [IW96], but not even known that BPP ⊆ NP.

PP (Probabilistic Polynomial-Time): the class of problems solvable by a probabilistic

classical polynomial-time algorithm, which given any instance, need only output the correct

answer for that instance with probability greater than 1/2. The following problem is PP-

complete: given a Boolean formula φ, decide whether at least half of the possible truth

assignments satisfy φ. We have NP ⊆ PP ⊆ PSPACE and also BPP ⊆ PP.

P#P (pronounced “P to the sharp-P”): the class of problems solvable by a P machine

that can access a “counting oracle.” Given a Boolean formula φ, this oracle returns the

number of truth assignments that satisfy φ. We have PP ⊆ P#P ⊆ PSPACE.

BQP (Bounded-Error Quantum Polynomial-Time): the class of problems solvable by

a quantum polynomial-time algorithm, which given any instance, must output the correct

answer for that instance with probability at least 2/3. We have BPP ⊆ BQP ⊆ PP [BV97,

ADH97].

Chapter 3

Algebraic Methods

This chapter reviews literature on analyzing quantum circuits by polynomials in more detail

than was said in the Introduction (Section 1.2).

3.1 Polynomial Methods for Query Lower bounds

In the quantum query model, the goal usually is to compute some function f : {0, 1}n → {0, 1}
on a given input x = (x1, · · · , xn) ∈ {0, 1}n. The distinguishing feature of this model is the

way ~x is accessed: ~x is not given explicitly, but instead, the algorithm is being charged unit

cost for every query it makes to ~x. Informally, a query asks for and receives the i-th element

xi of the input. Let Of be a quantum query operation. Note that a quantum algorithm can

apply Of to a superposition of basis states and gain access to several bits xi at the same

time.

A T -query quantum algorithm starts in a fixed state, say the all-zero state |0 · 0〉, and

then interleaves unitary transformations U0,U1, · · · ,UT with queries. The final state of the

algorithm can be written as the following sequence of matrix-vector products:

UTOfUT−1Of · · ·OfU1OfU0 |0 · · · 0〉 .

This state depends on the input ~x only via the T queries. The output of the algorithm is

obtained by a measurement of the final state. For instance, if the output is Boolean, the

output could be the first bit of the final state measured in the computational basis.

Now the (bounded-error) quantum query complexity of some function f is defined as the

minimum number of queries needed for an algorithm that outputs the correct value f(x)

for every x in the domain of f , say with error probability at most 1/3, while treating all

the intermediate unitary transformations as costless. Note that in many cases, the overall

computation time (say measured by the total number of elementary quantum gates) of quan-

16

CHAPTER 3. ALGEBRAIC METHODS 17

tum query algorithms is not much greater than the query complexity, which justifies that it

suffices to just count the queries. Many fundamental quantum algorithms have this form,

including Deutsch-Jozsa [DJ92], Simon [Sim97] and Grover [Gro96].

In 1998, Beals et al. [BBC+01] observed that the bounded-error quantum query com-

plexity of a function f is lower bounded by (one half times) the approximate degree of f .

This work showed an alternate approach to understand quantum algorithms, which is called

the polynomial method, and its advantage led to a number of new lower bounds on quantum

query complexity [AS04, BKT18].

Write as follows the final state of a T -query algorithm with given input ~x ∈ {0, 1}n acting

on an m-qubit space ∑
z∈{0,1}m

αz(x) |z〉 .

The main observation by Beals et al. is that: the acceptance probability (i.e. |αz(x)|2 for

some output ~z) of a T -query quantum algorithm is a polynomial in x1, · · · , xn of degree at

most 2T . In particular, αz(x) is a multilinear polynomial in x of degree at most T and hence

|αz(x)|2 has degree at most 2T .

Consider a Boolean function f : {0, 1}n → {0, 1} and our algorithm acting on an m-qubit

state. Our final result is obtained by measuring the first qubit of the final state, whose

probability of outputting 1 is given by (using the representation above)

P (x) =
∑

z∈{1}×{0,1}m−1

|αz(x)|2.

Now if the quantum algorithm computes f with error ε (i.e. |P (x) − f(x)| ≤ ε for all

x ∈ {0, 1}n), then we say P (x) is an approximating polynomial for f and the ε-approximate

degree of f is the degree of P . Hence the (bounded-error) quantum query complexity of this

function f will be the smallest degree of any approximating polynomial for f . This gives

an idea of how to lower bound the query complexity of computing f : if one can show that

every approximating polynomial for f has degree at least 2T , then every quantum algorithm

computing f with error ε requires at least T queries.

The main difference in our work is that we analyze concrete circuits, not circuits with

oracle gates. As with Boolean complexity, the lower bounds for query complexity do not

carry over. The next section surveys some past work on concrete circuits.

3.2 Simulating Circuits via Polynomials

The first express conversion to (sets of) polynomials was by Dawson et al. [DHH+04] and pro-

grammed by Gerdt and Severyanov [GS06]. It applied only to the universal set {H,CNOT,Tof }

CHAPTER 3. ALGEBRAIC METHODS 18

of gates with ±1 entries, except for remarks in [DHH+04] about “mixed mode (mod-2/mod-8)

arithmetic.”

In their model for a quantum circuit C on m qubits with h Hadamard gates, each bit

zi of output ~z is represented by a polynomial zi(~x) in “path” variables variables x1, · · · , xh.

Then each assignment to x1, · · · , xh gives a path from input (a1, · · · , am) to some output

~z(~x) = (z1(~x), · · · , zm(~x)). Dawson et al. also defined a phase polynomial φ(x) in variables

x1, · · · , xh. Then the amplitude 〈~b| C |~a〉 is given by the following sum over paths from input

~a to output ~b:

〈~b| C |~a〉 =
1√
2h

∑
~x:~z(~x)

(−1)φ(~x).

Drawing on the analysis of Dawson et al. [DHH+04], Bacon, van Dam, and Russell

[BvDR08a] tailored a construction to (singly and doubly) controlled phase-changing gates

modulo various values of K, like those for K = 4, 8, 16 in the last section’s example, plus the

Fourier transform FK . More concretely, they introduced and analyzed algebraic quantum

circuits that are defined over all finite rings Zm and finite fields Fp. This class of quan-

tum circuits uses algebraic operations of addition and multiplication, as well as the quantum

Fourier transform. They showed that every algebraic quantum circuit has a unique multi-

variate polynomial f associated with it that captures the “action” of the circuit, where in

general f will be a cubic polynomial but for linear circuits (i.e. without multiplication) f is

only quadratic.

With such a unique action polynomial f , the acceptance amplitudes of an algebraic quan-

tum circuit again is expressed as an exponential sum over “paths” between the input and

output of the circuit, which is Feynman style as described in Chapter 1. Let C be an alge-

braic quantum circuit over the ring Zm with w wires, and h Fourier transforms, and define

n := k − w, they derived the acceptance amplitude as

〈~0| C |~0〉 =
1√
mh

∑
~x∈Znm

exp(2πif(~x)/m).

For such an algebraic quantum circuit over field Fpr , the acceptance amplitude is

〈~0| C |~0〉 =
1√
prh

∑
~x∈Fnpr

exp(2πiTr(f(~x))/p),

where it uses the standard trace operation Tr : Fpr → Fp with Tr : x→ x+ xp + · · ·+ xp
r−1

.

They prove several properties of algebraic quantum circuits.

Dawson et al.’s work [DHH+04] also motivated the work by Regan and Chakrabarti

[RC09]. They extended the polynomial constructions by Dawson et al. to (i) work for

any set of quantum gates obeying a certain “balance” condition and (ii) produce a single

CHAPTER 3. ALGEBRAIC METHODS 19

polynomial over any sufficiently structured field or ring. Hence their work also implies a new

proof of the Gottesman-Knill theorem [Got98].

The Gottesman-Knill theorem [Got98] was first proved using the idea of stabilizer groups,

which is formally stated as the following theorem [Got98, AG04]:

Theorem. Given an n-qubit state |ψ〉, the following are equivalent:

• |ψ〉 can be obtained from |0〉⊗n by H, S and CNOT only.

• |ψ〉 can be obtained from |0〉⊗n by H, S, CNOT and measurement gates only.

• |ψ〉 is stabilized by exactly 2n Pauli operators.

• |ψ〉 is uniquely determined by S(|ψ〉) = Stab(|ψ〉) ∩ Pn, the group of Pauli operators

that stabilize |ψ〉.

This theorem implies that any state |ψ〉 that can be obtained from |0〉⊗n via a stabi-

lizer circuit can be described uniquely by S(|ψ〉), in particular, the n generators of S(|ψ〉).
Building on this, the Gottesman-Knill theorem gives a constructive method for simulating an

n-qubit stabilizer circuit on a classical computer within polynomial time in n. Simulating a

single measurement gate takes O(n3) time, while other unitary gates take O(n) time for each

gate. Hence, a strong simulation using their method takes O(n4) since it needs to measure

all n qubits. Aaronson and Gottesman [AG04] improved the simulation time for a single

measurement gate to O(n2) at the expense of space and thus requires O(n3) time for strong

simulation.

In this thesis, we study the strong simulation (as defined in Definition 2.4) of stabilizer

circuits with algebraic method in Chapter 6, completely different from the above idea of

stabilizer groups.

Chapter 4

Matrix Rank, Solution Counting

and Strong Simulation

In this chapter, we mainly discuss the tight connection (in [GR19]) strong simulation of

stabilizer circuits and two mathematical problems: computing matrix rank and counting

solutions to quadratic polynomials (both over the field F2). Because these two fundamental

problems long preceded quantum computing, this chapter serves the purpose of explaining

these connections more explicitly than that later in Chapter 6. More details of how to prove

these connections are presented in Chapter 6.

4.1 Matrix Rank

Given an m × n matrix A over a field F , the rank of A, denoted by rk(A), is the maximum

number of linearly independent columns of A. The problem of computing matrix rank is a

basic computational problem in numerical linear algebra that is used as a subroutine for other

problems [VZGG13, TBI97]. It has a number of applications in graph theory [MS04, Har09,

Che97, CLL11, San07, Lov07, Lov06] and combinatorial optimization [Har09, CLL11].

The up to date work on this problem was done by Cheung et al. [CKL13]. They presented

a randomized algorithm to compute the rank in Õ(|A|+rω), where |A| denotes the number of

nonzero entries in A and ω < 2.38 is the matrix multiplication exponent. They also presented

a randomized algorithm that updates the rank in Õ(mn) field operations, supporting the

operations of rank one updates and adding and deleting rows and columns.

20

CHAPTER 4. MATRIX RANK, SOLUTION COUNTING AND STRONG SIMULATION21

4.2 Solution Counting to Quadratic Polynomials

Counting the number of solutions to a polynomial equation is another fundamental mathe-

matical problem. In many cases it is NP-hard, indeed NP-complete. However, some important

special cases belong to polynomial time. The simplest non-linear such case is that of quadrat-

ic polynomials over Z2. Ehrenfeucht and Karpinski [EK90] gave an O(n3)-time algorithm.

This runtime was best known until this thesis [Kar19].

The analogous problem over Z4 is at the crux of a remarkably fine-cut “dichotomy”

[CLX14, CGW17] between #P-completeness and back in P. In each case we have a quadratic

polynomial p(x1, · · · , xn) over Z4 of the following type:

I. The number of solutions in {0, 1, 2, 3}n is polynomial-time computable.

II. If all cross-terms xixj with i 6= j have coefficient 2, then the number of solutions in

{0, 1}2 is polynomial-time computable.

III. However, if p(x1, · · · , xn) can have cross-terms with coefficient 1 or 3, then counting

the number of binary solutions is #P-complete.

This is significant because stabilizer circuits give polynomials of type 2 whereas adding the

controlled-S (CS) gate creates polynomials of type 3. Thus the power of the universal set

{H,CS} versus {H,CNOT, S} creates this divide. The work by Ehrenfeucht and Karpinski

[EK90] applies to type (II) as well. That is, their algorithm can do binary solution counting on

type (II) in O(n3) time. Our work improved this to O(nω) time. Ehrenfeucht and Karpinski

also showed that exactly counting solutions to a degree-3 polynomial over F2 is #P-complete.

Woods [Woo98] proved a more general results for quadratic polynomials: there is a deter-

ministic n3 · poly(log q)-time algorithm for counting solutions to a quadratic polynomial over

Fq for every prime power q.

4.3 Near-Tight Connections to Stabilizer Circuits

The connections between counting solution of quadratic polynomials and quantum circuits

were noted in [RC09, CGW17]. This distinctive point of Chapter 6 in this regard is that

we give concrete running times for the polynomial cases that improve the previous results.

Moreover, the connection between matrix rank and strong simulation of stabilizer circuits is

new to our knowledge.

The connection between the above two problems and strong simulation of stabilizer cir-

cuits is implied by the work in Chapter 6. In other words, the connection can be rephrased

as follows:

CHAPTER 4. MATRIX RANK, SOLUTION COUNTING AND STRONG SIMULATION22

(a) Given a n-qubit stabilizer circuit C, if the amplitude of C on input 0n and output 0n is

not zero, then the time for strong simulation of circuit C is of the same magnitude order

as that for computing matrix rank and for solution counting to quadratic polynomials.

(b) Given arbitrary n × n matrix A over F2 and form A′ =

[
0 A0

A>0 0

]
, then the rank of

A′ is determined by the probability of seeing output 02n on C with input 02n, where C

is the stabilizer circuit transformed from A′.

Part (a) is implied by Theorem 6.13 and part (a) of Theorem 6.14. More precisely, Section 6.3

and 6.4 shows that the runtime for converting a given stabilizer circuit to a quadratic poly-

nomial and its corresponding matrix is O(n2). Then by Section 6.3 and Theorem 6.13, the

time for computing the amplitude is the dominated by the time for counting solutions on the

quadratic polynomial or that for computing matrix rank.

Part (b) follows from Theorem 6.13 and part (b1) of Theorem 6.14. In particular, the

conversion from a matrix to a stabilizer circuit can be done in O(n2) (as shown in Section 6.3),

and Theorem 6.13 gives the fact that computing matrix rank becomes performing strong

simulation of this obtained circuit, which would take at least O(n2). Hence, the running time

for computing the rank of the given matrix in this way is asymptotically the same as strong

simulation of stabilizer circuits.

Overall, via these connections, our improvement on the strong simulation of stabilizer cir-

cuits leads to improvement on the problem of solution counting to quadratic polynomial over

F2. These connections also suggests that any improvement on one will imply improvement

for the others.

Chapter 5

Logical Emulation of Quantum

Circuits

The results in this chapter are in the paper [RCG18].

5.1 Overview

In this chapter we give a new logical conversion from a quantum circuit C into a small set of

Boolean formulas φCk (z1, . . . , zr) (in conjunctive normal form) such that C can be simulated

with exact knowledge of the number of assignments in { 0, 1 }r that satisfy the φCk . That there

are such reductions has long been known, but there appears to be no work programming them

concretely, nor developing properties of the reductions that might aid heuristic simulations.

A reduction could be obtained by applying the generic Cook-Levin reduction to #SAT,

starting from the polynomials pC for instance. However, we seek the most efficient reductions,

ones that are natural, specific, and (ideally) tight. We will use the technique that produces pC

as a proof guide. Our main general theorem in Section 5.3 requires only the knowledge that

a quantum circuit with s gates computes a product of s large unitary matrices. Section 5.4

might need familiarity with quantum gates from sources such as [BDEJ95, BBC+95, NC00]

but we include the unitary matrices of the gates so it can be regarded as self-contained.

The salient property of our formulas is that they are all of the same form

pnew ≡ pold ⊕ a1 ∧ · · · ∧ am

This form is a controlled bit-flip (more details in Section 5.4). At qubit level, we already

know that controlled-bitflip gates (plus Hadamard gates) are universal: the CNOT gate flips

a qubit with one control, and the Toffoli gate flips with two. By going down to the level of

Boolean logic, we show that controlled-bitflip equations can efficiently describe all behavior

23

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 24

in quantum circuits. To begin, we show how they describe the behavior of Hadamard gates.

Incidentally, note that the discussion of the HTH example (in Section 2.1.4) is relevant here.

First consider an example of two consecutive Hadamard gates:

|x〉 H H |z〉

Note that these two Hadamard gates will cancel and together behave as an identity. We

can also see this behavior via our Boolean logic forms. Intuitively (from Section 5.2), the

resulting Boolean formula will be like (x ∧ y1) ⊕ (y1 ∧ y2) with each variable yi associated

with a Hadamard gate. This form can be converted into one as a conjunction of the above

clauses, i.e.,

(p1 ≡ p0 ⊕ (x ∧ y1))
∧

(p2 ≡ p1 ⊕ (y1 ∧ y2)),

where pi’s are newly introduced variables and p0 is fixed as 0. Denote the above equation as

φ. Then the amplitude

〈z|C|x〉 =
#sat(φ = 0)−#sat(φ = 1)

(
√

2)2
,

where #sat(φ = 0) is the number of assignments to yi’s making φ = 0, similar for #sat(φ =

1). Say the input |x〉 = |0〉 = |z〉 which means y2 = 0. We have 〈0|C|0〉 = 1 which

means the input deterministically stays unchanged, and we can verify that it also holds for

|x〉 = |1〉 = |z〉. However, if |x〉 = 0 and |z〉 = 1, #sat(φ = 0) = 1 = #sat(φ = 1) and hence

〈1|C|0〉 = 0. This means that it is impossible to get output 1 if the input is 0. Similarly

〈0|C|1〉 = 0. Overall, we can see the identity property from our Boolean logic analysis. We

will give more example later in Section 5.5, including how classical Boolean logic captures

the circuit H-T-H in the CHSH game.

For CNOT gate with source qubit line labeled with ui and target line with uk, it creates

the clause v ≡ uk ⊕ ui being conjoined into the above formula (here v is a new label for the

source line); similarly for Toffili gate, it creates v ≡ uk⊕ (ui∧uj). Note that Hadamard gate,

CNOT gate and Toffili gate constitute a universal quantum gate set. Hence we can say that

all quantum circuits will have Boolean formulas as conjunction of clauses of this form. More

concrete construction is presented in Section 5.2. We also extend the construction to other

gates in Section 5.3.

Two important technical points concern approximation and sampling. For the first point,

the acceptance amplitude involves formulas φ0, φ1 with some number r of variables—h of

them “free”—and gives values of the form

#sat(φ0)−#sat(φ1)

R
,

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 25

where R = 2h/2 rather than be of order 2h or 2r. The total numbers n0 and n1 of satisfying

assignments to φ0 and φn will each have order 2h, but their difference is a priori constrained

to be at most R. It will therefore not suffice to compute n0 to within a factor of (1 + ε), say,

nor likewise n1. This is why exact #SAT solving is sought.

On the other hand, many prominent quantum algorithms—Shor’s among them—use

quantum steps only to generate samples z from a distribution D on { 0, 1 }n. Here approxi-

mations z′ to z are often tolerated. Hence we are most narrowly interested in the sampling

problem for satisfying assignments which is related to uniform generation. Exact counting

generally implies uniform sampling, but when and whether the latter affords more slack is a

difficult problem in general. The second point is that to imitate the classical reduction from

uniform sampling to #sat we need results that give the acceptance probability, rather than

the amplitude, as a difference
#sat(ψ0)−#sat(ψ1)

R2
,

where ψ0 and ψ1 are copies of φ0 and φ1. Whether further savings can be realized by further

use of approximation will lead to further questions both about sampling and the workings of

individual heuristic #SAT solvers [SBB+04, SBK05a, SBK05b, Thu06]—and perhaps more

general settings of model counters involving algebra.

5.2 Binary Case

We will first consider the common universal quantum gate set of Hadamard (H), controlled-

NOT (CNOT) and Toffoli (Tof) gates. Then in the next section we will outline how to extend

the constructions and proofs for other gates.

When C is composed of only H, CNOT, and Tof, the nonzero entries are ±1 ignoring

factors of
√

2 and so the resulting values eiθ are likewise ±1. Paths giving +1 are positive

paths and those giving −1 are negative paths. For any basis value a ∈ {0, 1}m given as input

to the circuit and basis value b ∈ {0, 1}m as a targeted output, we can isloate the paths that

begin in row a of M1 and end with column b of Ms. The number of those paths that are

positive is denoted by p+(a, b), the number of negative paths by p−(a, b). If h ≤ s is the

number of Hadamard gates then the amplitude of obtaining b as output by C(a) is given by

the product

〈a| C |b〉 =
p+C(a, b)− p−C(a, b)

2h/2

(ignoring complex conjugation since the values are all real). Our goal is hence to build two

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 26

boolean formulas φ0, φ1 such that

#p−(a, b) = # assignments satisfying φ0

#p+(a, b) = # assignments satisfying φ1.

Before presenting the theorem for this case, it is worth pointing out some intuitions behind

that:

• CNOT and Toffoli gates don’t have effect on the sign of paths. The generated clauses

for these two gates should always output 1 as long as the variable assignment is valid,

i.e., preserving the input/output consistency.

• Only when both input qubit and output qubit to a Hadamard gate are 1’s does the

path’s sign change. The binary basis values of these bits are represented by the variable

pairs uj , vj .

• Accordingly, a path is positive if and only if it changes sign in Hadamard gates an

even number of times (including zero). Such a path corresponds to an assignment that

satisfies an even number of the terms (uj ∧ vj).

• Whereas, the path is negative if and only if it corresponds to an assignment that satisfies

an odd number of the terms (uj ∧ vj), and so satisfies µ with w = 1.

• Assuming all other clauses (associated with CNOT and Toffoli gates) constantly have

value 1, the formula φ1 thus outputs 1 with assignments from the set of negative paths

(denoted by S−), while φ0 outputs 1 with assignments from the set of positive paths

(denoted by S+).

• From above, the acceptance probability can be computed as

(|S+| − |S−|)2

2h
.

Before presenting the main theorem of this section (Theorem 5.2), we first show the

following lemma which is a more preliminary version of the theorem. The proof for this

lemma gives a inductive construction procedure, while Theorem 5.2 mainly serves the purpose

of being extended to other cases better.

Lemma 5.1. We can convert C into a formula ψC of the form µ ∧ η, where

µ = (w̄ ⊕ (u1 ∧ v1)⊕ (u2 ∧ v2)⊕ · · · ⊕ (uh ∧ vh)).

Here some ui variables may coincide with a vj variable, but the {ui} and {vj} are individually

distinct.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 27

Proof. Let ui, uj , uk stand for the current labels on the qubits i, j and/or k involved in a

gate.

I. Label the inputs with variables x1, · · · , xn. If there are ancilla qubits, then continue

labeling them xn+1, · · · , xm, although if they will always be initialized to 0, then one

can label them 0 straightaway.

II. Label the outputs with variables z1, · · · , zn, again using more if there are more qubits.

III. Let h be the number of Hadamard gates in the circuit, and allocate variables y1, · · · , yh.

IV. Initially, set a formula ψ = 1.

V. For the next Hadamard gate Hj on some qubit line i, allocate a new variable yj and

then

• when counting positive paths, calculate ψ = ψ⊕(¬(ui ∧ yj)), and make yj the new

label on line i. Here ⊕ means the complement to exclusive-or operation, that is,

exclusive-or-then-negation.

• when counting negative paths, calculate ψ = ψ ⊕ (ui ∧ yj), and make yj the new

label on line i.

VI. For a CNOT gate, leave the control label ui unchanged, but uj to ui⊕uj . There is no

change to ψ.

VII. For a Toffoli gate with controls on line i, j, leave ui and uj alone, but change the target

uk to (ui ∧ uj)⊕ uk. There is no change to ψ.

VIII. When done with all the gates, for each i, create the measurement constraint e(ui, zi),

where ui is the last label on line i and

e(ui, zi) = (ui ∨ zi) ∧ (ui ∨ zi).

Note that e(0, 0) = e(1, 1) = 1, while e(0, 1) = e(1, 0) = 0, so these enforce equality of

the final labels.

IX. The final boolean formula φ is defined by taking the conjunction between ψ and all the

measurement constraints. That is,

φ = ψ
n∧
i=1

e(ui, zi).

Note that one boolean formula can be constructed only for counting either positive

paths or negative paths, not both. Hence, to keep track of both positive paths and

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 28

negative paths at the same time, we need two boolean formulas. Take a closer look, we

can see that the two ψ terms in the formula for positive paths is actually complement

to that in the formula for negative paths. In particular,

ψ1 ⊕ ψ2 = ψ1⊕ψ2 = ψ1⊕ψ2

Therefore, if we maintain a boolean formula for positive paths, and we can derive the

boolean formual for negative paths from it (which would be ψ
∧
e(ui, zi)), and vice

verse.

For any cylinder B (as defined in Definition 2.2) of target output values, we can define

p+(a,B) =
∑

b∈B p
+(a, b) and define p−(a,B) similarly. We will find it convenient to maintain

these sets of paths when B is a cylinder. Singleton sets b have this form with w = b as do sets

Bi = {b : bi = 1} which represent measuring the single qubit i to test for a 1 value. Cylinders

are important because b1, . . . , bm as well as a1, . . . , am will stand for variables in our Boolean

formulas whose values may selectively be substituted by 0-1 bit values.

Theorem 5.2. Given any m-qubit circuit C of h Hadamard gates and s−h Toffoli and CNOT

gates, input a ∈ { 0, 1 }m, and cylinder B ⊆ { 0, 1 }m, we can construct a Boolean formula φC

of size O(s+m) in conjunctive normal form with variables y1, . . . , yh, v1, . . . , vs−h, w, . . . , wh

together with x1, . . . , xm and z1, . . . , zm such that

p+C(a,B) = #sat(φ[~x = a, ~z ∈ B,wh = 0])

p−C(a,B) = #sat(φ[~x = a, ~z ∈ B,wh = 1]).

Moreover, no two satisfying assignments agree on y1, . . . , yh.

Proof. We start with variables xi, letting “ui” initially refer to xi on each line, and start with

the equation w0 = 0, i.e., w̄0. We let ` run from 1 to h this time, not 1 to s.

I. For each Hadamard gate on line i, increment `, allocate fresh variables w` and y`, and

conjoin the equation
(w` = w`−1 ⊕ (ui ∧ y`)).

To set up the next stage we note that “ui” now refers to y`.

II. For each Toffoli gate with sources i, j and target k, increment o, allocate a fresh variable

vo and conjoin the equation
(vo = uk ⊕ (ui ∧ uj)).

Now “uk” refers to vo.

III. For a CNOT gate with source i and target k, we conjoin (vo = uk ⊕ ui) instead. Note

this is the same as fixing uj = 1 in the Toffoli case.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 29

After placing the last gate, we conjoin the output-equating clauses (ui = zi) for each

qubit line i. Note again that in the case h = 0 we have wh = w0, and so φC [wh = 1] is

unsatisfiable—in keeping with there being no negative paths.

To finish the proof, we can use either of the following conversions to CNF. We can convert

to 4CNF without introducing any more variables by applying to each equation the conversion

(q = p⊕ (u ∧ y))

≡ (ū→ p = q) ∧ (ȳ → p = q) ∧ ((u ∧ y)→ p 6= q)

≡ (u ∨ p ∨ q̄) ∧ (u ∨ p̄ ∨ q) ∧ (y ∨ p ∨ q̄) ∧ (y ∨ p̄ ∨ q) ∧ (ū ∨ ȳ ∨ p ∨ q)

∧ (ū ∨ ȳ ∨ p̄ ∨ q̄).

(5.1)

To obtain 3CNF we need to introduce a new variable t and equation t = u∧y. Doing so does

not increase the number of satisfying assignments. The clauses thus obtained are:

(q = p⊕ t) ∧ (t = u ∧ y)

≡ (t̄→ p = q) ∧ (t→ p 6= q) ∧ (ū→ t̄) ∧ (ȳ → t̄ ∧ ((u ∧ y)→ t)

≡ (t ∨ p ∨ q̄) ∧ (t ∨ p̄ ∨ q) ∧ (t̄ ∨ p ∨ q) ∧ (t̄ ∨ p̄ ∨ q̄) ∧ (u ∨ t̄)

∧ (y ∨ t̄) ∧ (ū ∨ ȳ ∨ t).

(5.2)

The end equations ui = zi become clause pairs (ui∨ z̄i)∧ (ūi∨zi). Overall, if C has m qubits,

h Hadamard gates, and s− h Toffoli plus CNOT gates, then the 4CNF formula has:

• h Hadamard variables y1, . . . , yh;

• h+ 1 indicator variables w0, . . . , wh;

• s− h line variables v1, . . . , vs−h;

• m input variables x1, . . . , xm—which, however, are substituted for when presenting any

input a ∈ { 0, 1 }m; and

• up to m output variables z1, . . . , zm per the discussion of cylinders above.

These variables form 6h+ 6t = 6s 3-clauses and 4-clauses, plus the 1-clause w̄0 plus up to

2m output clauses, making O(s+m) clauses in all. The 3CNF formula adds s more variables

and has 7s clauses besides (w̄0) and the output ones. As observed above, the formulas meet

the requirements of Theorem 5.2 for any B.

The Hadamard and Toffoli gates form a universal gate set for approximating quantum

probabilities [Shi03] by themselves. It is striking that each adds one 4-ary cBF, though

different roles for the variables. The Hadamard and CNOT gates do not form a universal set,

but adding either T or CS creates a set that is capable of approximating quantum amplitudes

(with complex values) not just probabilities.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 30

5.3 More General Theorem

The result of the previous section suffices to describe a family of universal quantum compu-

tations. Thus it is good enough in theory. However, besides this universal family, there are

many other commonly used gates, such as T, controlled-S, controlled-Z, and so on. Hence, for

general use, in this section we want to show that we can efficiently represent a wide variety of

quantum gates and circuits. The logic will represent the complex amplitude of every compo-

nent of the state vector. Every nonzero component is the final “location” of some Feynman

path(s). Some zero components may be final locations of paths that cancel.

First, we give a translation for completely general unitary gates (of any arity). Then we

show that for a wide range of quantum gates, the general construction naturally gives small

sets of controlled-bitflip equations for each gate.

Let C be a quantum circuit on m qubits with s gates and put M = 2m. Consider the

formal product of the s-many unitary M×M matrices U`, one for each gate in C. It expands

to a sum of s-fold products of matrix entries. Every nonzero product of entries in this sum

can be called a Feynman path through the object described by C. The value of the product

is a complex number reiθ with phase θ. Our general theorem will describe θ and r in binary

notation via Boolean coding, i.e., Boolean formulas.

One thing to note is that (as already seen in Section 2.1.4) it is customary to write the

input a to C on the left and list the gates/gate-matrices left-to-right as U1, . . . , Us, but the

matrix computations are

C(a) = UsUs−1 · · ·U2U1a; 〈b| C |a〉 = 〈b, C(a)〉.

If a path begins in row i of a, then it enters U1 through column i and exits through some

row j, whereupon it enters U2 through column j. For better intuition we might wish to see

it using either the transposed computation or the conjugate transpose,

C(a) = aTUT1 · · ·UTs−1UTs or C(a)∗ = a∗U∗1 · · ·U∗s−1U∗s ,

and talk about the path entering row i of the first matrix and exiting via column j, etc., so

as to align with how we read the circuit. At any stage, the path is in (row i, column j) of

some matrix and has a current phase θ. We call this i the location of the path. The core of

the proof is to write logical formulas that describe allowed changes in locations and phases

of paths.

We make the following two mild assumptions about U` and θ.

• All nonzero entries of U` have the same magnitude, which means that U` is balanced

as defined by Section 2.1.2.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 31

• Phase θ is an integer multiple of 2π/K, say c2π/K, where K = 2k for some k and some

constant c.

This property of being balanced is preserved under tensor products, so it suffices to verify it

for the 2r × 2r matrix defining an r-ary gate locally. Denote ω = e2πi/K a primitive K-root

of unity. The second assumption makes eiθ as a primitive K-root of unity as well. We also

call either 2π/K or 1/K the min-phase of the circuit, and then the phases identified with

0, . . . ,K − 1 modulo K. These two assumptions won’t hurt the generality of our theorem

because: (1) all common gates are balanced, and (2) with min-phase, any phase θ can be

represented in binary notation.

If x = x1, . . . , xn are variables in a Boolean formula φ and a ∈ { 0, 1 }, then φ[x = a]

stands for the formula obtained by substituting ai for xi for each i and simplifying operations

involving constants. Now we can state and prove the main general theorem:

Theorem 5.3. Let C be a circuit of m qubits and s balanced gates of minphase 1/K = 2−k

and maximum arity r ≤ m qubits. Then we can efficiently build a Boolean formula φC of size

O(m+ sk22r) in variables ~w, ~x, ~y, ~z and find a constant R such that for all a, b ∈ { 0, 1 }m:

〈a| C |b〉 =
1

R

K−1∑
L=0

#sat(φC [~w = L, ~x = a, ~z = b])ωL

=
1

R

∑
L,c

φC(~w = L, ~x = a, ~y = c, ~z = b])ωL.

Moreover, for every assignment (a, c) to ~x, ~y there is exactly one pair (L, b) such that φC [~w =

L, ~x = a, ~y = c, ~z = b] holds and it can be found in O(s) time.

Proof. We track paths in stages ` = 1 to s as they begin in a column a = J0 ∈ { 0, 1 }m

of U1 and terminate in row b = Is of Us. We allocate s + 1 suites W0, . . . ,Ws of variables

w0,`, . . . , wk−1,` which collectively track the phase L ∈ { 0, . . . ,K − 1 } of a path by L =∑k−1
j=0 wj,`2

j . At each stage ` we identify m location references u1, . . . , um on the qubit lines

whose values determine an entry column J ∈ { 0, 1 }m to the matrix U`. Initially the ui refer

to the input variables x1, . . . , xm, R = 1, and w0,0 = · · · = wk−1,0 = 0. The ui are not actual

literals. For stage ` we allocate up to m fresh variables y1, . . . , ym whose values I ∈ { 0, 1 }m

stand for possible exit rows I`, which become either the entry column J`+1 for the next stage

or are equated with the output variables z1, . . . , zm. 1

If J is any column value in { 0, 1 }m, then uJ denotes the unique conjunction of signed

literals ±ui (over i = 1 to m) whose value is 1 on J and 0 for all J ′ 6= J . For instance, if

1Note that the “ui” will be meta-symbols, and extended constructions will allow them to be negated

variables. We will also later distinguish between allocated variables yi whose values are forced not free, calling

them vi instead.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 32

J = 01101 then uJ = (ū1∧u2∧u3∧ ū4∧u5). We denote row conjuncts vI similarly. Entering

stage ` of the circuit, we consider all possible current phases p`−1 coded by the variables

W`−1 = w0,`−1, . . . , wk−1,`−1. For all pairs I, J we add clauses as follows:

• If U`[I, J] = 0 then we add ¬(uJ ∧ vI), which becomes a clause of 2m disjoined literals.

• If U`[I, J] = reiθ, then by balance, r 6= 0 is independent of I, J and θ = 2πid/K for

some d < K. Then R is multiplied by r and we add for j = 0 to k − 1 the clause

((uJ ∧ vI)→ (wj,` = wj,`−1 ⊕ Fd(W`−1))),

where Fd is the fixed function true on all c < K such that c+ d causes a flip in bit j.

Note that Fd can be a function of the variables w0,`−1, . . . , wj,`−1 alone. We can alternately

consider that over j = 0 to k − 1 alone we have added the single clauses

wj,` = wj,`−1 ⊕ F ′(u1, . . . , um, v1, . . . , vm, w0, . . . , wj),

where F ′ takes into account all the phases d that arise in the matrix entries U`[I, J] as

specified by the value J for u1, . . . , um and I for v1, . . . , vm. Economizing F ′ will occupy

much of the remainder of the paper, but for this proof we reason about Fd for all the uJ and

vI .

Finally we note that v1, . . . , vm become “u1, . . . , um” for the next stage if there is one,

else we conjoin the clauses ∧mi=1(vi = zi) (or just substitute z1, . . . , zm directly). The last act

is to add the clauses ∧jw̄j,0 and declare ~w in the theorem statement to refer to the terminal

wj,s phase variables. Then ~y in the theorem statement ranges over wj,` for 1 ≤ ` ≤ s− 1 and

variables vi,` introduced as “vi” in the corresponding stages `. (We will pin it down further

in specific instances later.) This finishes the construction of φC .

To see that it is correct, first consider any path P from a to b whose phase changes by L.

First we substitute ~x = a and ~z = b and Ws = L. In the base case s = 0 with empty circuit,

P can only be a path from a to b = a with L = 0. Then we have Ws = W0 and substituting

L gives > if b = a and L = 0, ⊥ otherwise. For s ≥ 1, to P there corresponds a unique

assignment of row and column values

a = J1, I1 = J2, . . . , Is−1 = Js, Is = b

to literals designated “ui” and “vi” at each stage `. For all (I, J) 6= (I`, J`), all clauses

(uI ∧ vJ)→ . . .) are vacuously satisfied. This leaves the clause

((uJ` ∧ vI`)→ (wj,` = wj,`−1 ⊕ Fd(W`−1))),

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 33

where d is the phase of the nonzero entry U`[I, J]. By induction, the values of W`−1 in

the assignment either have the phase c of the path entering that stage or the assignment

is already determined to be unsatisfying. These determine the value Fd(W`−1) and hence

collectively over j these clauses determine that W` must have the correct value c+ d modulo

K, else they are not satisfied. Since the values of the variables in W` are forced, we have a

unique continuation of a satisfying assignment. In the last stage, the current phase value must

become L. Hence we have mapped P to one satisfying assignment of φC [~x = a, ~z = b, ~w = L]

(with W0 already substituted to zeros).

Going the other way, suppose y is any satisfying assignment to φC (again with W0 = 0).

We argue that y maps uniquely to a path Py. We get a = J1 from the values assigned to ~x,

then the values J2, . . . , Js of the other column entries, and finally the exit row Is which gives

a b. The values of phases along the path are likewise determined by the assignment and must

be correct. Hence the assignment yields a unique path. The path must be legal: at any stage

the left-hand side of one clause of the form (uJ ∧ vI)→ . . . holds so its consequent must be

made true.

Thus the correspondence of counting paths and counting satisfying assignments is par-

simonious for each phase value L, so the equation in Theorem 5.3 follows. Finally, we may

observe that if U` is a tensor product of a 2r × 2r matrix and identity matrices, then when-

ever I and I ′ vis-à-vis J and J ′ agree on the r qubit lines touched by the gate, their clauses

can be identified, leaving at most 22r distinct clauses added at stage `. The rest of the size

estimation is straightforward.

As already remarked, the main purpose of the work in this chapter is to find the most

economical (and elegant) formulas for specific families of quantum gates. We also note that

any initialization L0 can be used for W0 provided the corresponding target for Ws is shifted to

be L+L0. Here we finish this section by noting one further general feature of the emulation

that already follows from this proof.

For any setB of target output values and phase L, we can define pLC(a,B) =
∑

b∈B p
L
C(a, b),

where pLC(a, b) denotes the number of paths from a to b having phase L. We will find it con-

venient to maintain these sets of paths when B is a cylinder (as defined in Definition 2.2).

Singleton sets { b } have this form with I = { 1, . . . ,m } and c = b, as do sets Bi = { b : bi = 1 }
which represent measuring the single qubit i to test for a 1 value. Cylinders are important

because we can choose not to substitute all z1, . . . , zm variables by values b1, . . . , bm.

Note must however be taken that a path to b and path to b′ do not interfere—because

they have different “locations.” Hence in particular, taking weighted sums of pLC(a,B) is not

the same as measuring outcomes in B. One needs to sum them for all b ∈ B. We will fix this

issue by proving a parallel theorem for the acceptance probability. We state it here just for

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 34

circuits of gates whose phases are multiplies of i:

Theorem 5.4. Let C be a circuit of m qubits and s balanced gates of min-phase π/2 and

maximum arity r ≤ m qubits. Then we can efficiently build a Boolean formula ψ of size

O(m+ s22r) in variables ~v, ~w, ~x, ~y, ~z and find a constant R such that for all a ∈ { 0, 1 }m and

cylinders B ⊆ { 0, 1 }m:∑
b∈B
| 〈a| C |b〉 |2 =

1

R2
(#sat(ψ′)−#sat(ψ′′)), (5.3)

where ψ′ and ψ′′ are projections of ψ depending on B. Moreover, for every assignment (a, c)

to ~x, ~y there is exactly one completion to an assignment that satisfies ψ′ or ψ′′ (never both)

and it can be found in O(s) time.

It is best to prove this after (in Section 5.6) gaining a concrete understanding of the

efficiency issues for the cases K = 2, 4, 8 and the motivation for sampling and uniform gener-

ation. The next section segregates the variables ~y of the general case into Hadamard variables

y1, . . . , yh and other variables v1, . . . , vs−h, whence “~v” in the above statement.

5.4 Circuit Simulation By “Controlled-Bitflip” Clauses

Now we show how the construction of Theorem 5.3 when applied to common quantum gates,

yields Boolean equations e of the controlled-bitflip kind:

p′ = p⊕ ∧ji=1ui. (5.4)

When j = 0 this becomes p′ = ¬p (not p′ = p) since an empty AND defaults to true. So

then when j = 1 and u1 = 1, it is a bitflip. In general, with the ui’s presence, 5.4 is essentially

a controlled bitflip. All ui’s in the aggregate term ∧ji=1ui are control bits, and p is the target.

But in the implementation of our prototype simulator, we introduces new variables to restrict

the length of ∧ji=1ui to be 2. More details can be seen in the examples in Section 5.5.

The fact that CNOT and Toffoli gates alongside Hadamard gates have a universal set says

that all quantum computers can be represented as using only controlled bitflips and quantum

measurements. The essence of our Boolean equations is that all quantum gate behavior and

the dense set of complex amplitudes can be naturally described via controlled bitflips alone.

Moreover, the controls naturally alter “phase sign”. The literals in e are all positive. Negative

literals enter only when e is converted into (e.g.) conjunctive normal form. We call a clause

of the form (5.4) a controlled-Bit-Flip equation, cBF for short, of arity j.

Lemma 5.5. A cBF of arity j is equivalent to a conjunction of two (j + 2)-clauses and 2j

3-clauses.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 35

Proof. The two j-clauses are (ū1 ∨ · · · ūj ∨ p∨ p′) and (ū1 ∨ · · · ūj ∨ p̄∨ p̄′). They make p and

p′ have opposite sign in case all ui are true. The 3-clauses are (ui ∨ p ∨ p̄′) ∧ (ui ∨ p̄ ∨ p′) for

i = 1 to j. They make p and p′ equal in case some ui is false.

We show next that all of the most commonly used quantum gates—including those

mentioned in the recent frontier references [HSST16, BIS+16, HS17]—translate efficiently

controlled-bitflip equations. The entries of their defining matrices are all powers of ω = eiπ/4

which we identify with the phases 0, . . . , 7 (modulo 8). First we describe the Boolean variables

in full:

• Variables x1, . . . , xm are input variables assigned a1, . . . , am. The line designators

u1, . . . , um initially denote x1, . . . , xm, respectively.

• The output variables z1, . . . , zm are respectively set equal to the variables designated by

u1, . . . , um upon finishing the circuit, and may be substituted by any subset of target

output values b1, . . . , bm to fix measurements.

• The top-phase variables p0, . . . , p`, . . . distinguish the top of the circle (phases 0,1,2,3

for p` = 0) from the bottom of the circle (phases 4,5,6,7 for p` = 1).

• Quarter-phase variables q0, . . . , q`, . . . distinguish the quadrants 0,1 and 4,5 (q` = 0)

from 2,3 and 6,7 (q` = 1).

• The variables r0, . . . , r`, . . . tell whether the current phase of a path is even (r` = 0) or

odd (r` = 1).

• Free variables y1, . . . , yh, . . . each represent a bit of nondeterminism. Initially h = 0,

R = 1.

• Bound variables v1, . . . , vs, . . . are placed on qubit lines i and become the new ui when

placed.

The triple (p`, q`, r`) combines to specify the current phase of a path, while the vector

of values of the variables currently pointed to by u1, . . . , um represents the path’s current

location. All paths on input a = (a1, . . . , am) begin at location a with phase 0 represented by

the initializations p0 = 0, q0 = 0, and r0 = 0. To illustrate the encoding scheme for phases,

consider counter-clockwise rotations by π, π/2, and π/4 in the unit circle when the current

phase is denoted by (p`−1, q`−1, r`−1):

• By π: p` = ¬p`−1; no change to q`−1, r`−1.

• By π/2: q` = ¬q`−1; p` = p`−1 ⊕ q`−1; no change to r`−1.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 36

• By π/4: r` = ¬r`−1; q` = q`−1 ⊕ r`−1; p` = p`−1 ⊕ (q`−1 ∧ r`−1).

Note how the update to p` under rotation by π/4 represents a two-place “carry” when

incrementing the phase in binary notation with r`−1 holding the least significant bit. A

rotation by π/8 would involve new phase variables s` distinguishing parity modulo 16 with

r` re-defined as false for phases 0, 1, 4, 5, 8, 9, 12, 13 and true for 2, 3, 6, 7, 10, 11, 14, 15. None

of these changes the location, and in consequence applying these rotations does not change

the amplitude of any output b on the qubit lines. Thus the cBF format captures the effect

of carrying.

Gates with diagonal matrices do not change the location or allocate a new line variable

yr or vr. Gates whose non-zero entries are all 1 (possibly divided by a normalizing constant)

do not change any phase variable, while those with non-zero off-diagonal entries can change

the location as well as phase. Here are the details for individual gates:

• Hadamard gate H = 1√
2

[
1 1

1 −1

]
on line i: Allocate new top-phase variable p`, allocate

new free variable yh on line i, add equation p` = p`−1 ⊕ (ui ∧ yh), set ui := yh, and

multiply R by
√

2.

• Pauli gate X (aka. NOT) =

[
0 1

1 0

]
on qubit line i: Allocate new line variable vs on

line i, add equation vs = ¬ui, update ui := vs, no change to other variables or R.

(Alternately we could just flip the sign on ui, but we prefer to keep it referring to a

variable—in our C++ code it is an array pointer.)

• CNOT (aka. CX or just C) =

[
I 0

0 X

]
with control on line i and target on line j: Allocate

new vs on line j, add equation vs = uj ⊕ ui, update uj := vs, no other changes.

• Toffoli gate Tof (aka. CCX) =

[
I 0

0 CX

]
with controls on i, j and target on k: Allocate

new vs on line k, add equation vs = uk ⊕ (ui ∧ uj), update uk := vs, no other changes.

• Pauli gate Z =

[
1 0

0 −1

]
on qubit line i: Allocate new top-phase variable p`, add

equation p` = p`−1 ⊕ ui, no other change.

• Pauli gate Y =

[
0 −i
i 0

]
on qubit line i: Since Y = iXZ, we can compose the actions

for Z and X, with the final scalar multiplication by i being optional.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 37

• Phase gate S =

[
1 0

0 i

]
: Allocate new p`, q` with equations q` = q`−1 ⊕ ui and p` =

p`−1 ⊕ (ui ∧ q`−1). No other change.

• T =

[
1 0

0 ω

]
, where ω = eiπ/4 = 1+i√

2
: Allocate all new p`, q` with equations:

r` = r`−1 ⊕ ui
q` = q`−1 ⊕ (r`−1 ∧ ui)

p` = p`−1 ⊕ (q`−1 ∧ r`−1 ∧ ui).

• V (aka.
√

NOT or X1/2) = 1
2

[
1 + i 1− i
1− i 1 + i

]
= 1√

2

[
ω ω7

ω7 ω

]
: Directly transcribing this

per the last section does not yield a single cBF, but we can use V = HSH which does it

with four cBF ’s.

• Y1/2 = 1+i
2

[
1 −1

1 1

]
: Use Y = HZ · ω, where again the scalar multiplication by ω (i.e.,

counter-clockwise phase shift by π/4) can be ignored.

• CS =

[
I 0

0 S

]
with source i and target j: Allocate p`, q` and add equations q` = q`−1 ⊕

(ui ∧ uj) and p` = p`−1 ⊕ (ui ∧ uj ∧ q`−1).

• CV =

[
I 0

0 V

]
with source i and target j: This is equavalent to placing H on line j,

then CS with source i and target j, and finally H on line j again.

• CZ =

[
I 0

0 Z

]
with source i and target j: As with CS (and with an equivalent formula

for CV), it just adds ui as a conjunct to the equation for Z on line j.

5.5 Examples and Execution on Our Simulator

Ultimately all the free variables are assigned when placing Hadamard gates. The sequence

of cBF ’s, as gates are placed in left-to-right order (with matrices composed in right-to-left

order), obeys the following invariant:

Lemma 5.6. For any truth assignment c = (c1, c2, . . . , ch) to the Hadamard variables y1, . . . , yh,

input a = a1 · · · am to the variables xi, and initialization of p0, q0, r0, the sequence of cBF’s

can be evaluated in order with all right-hand side values defined in the initialization or in

previous steps.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 38

This enables an “intelligent backtrack” brute-force solution counting routine that, when

incrementing c ∈ { 0, 1 }h to the next c′ in standard order, need only roll back to the first

cBF containing yg, where c and c′ agree in the first g − 1 bits. Roughly speaking, this saves

a factor of h when carrying out the brute-force iteration through c to tabulate the results of

each path. This idea is implemented in a prototype of our simulator.

From Section 5.4, T gate uses one 5-ary cBF, which becomes two 5CNF clauses under

Lemma 5.5 and a conversion similar to 5.1. In the prototype of our simulator, we restrict all

controlled-bitflip equations to have only two control bits and this enables all clauses to be

eventually in 3CNF or 4CNF forms (as discussed in 5.2 and 5.1). Hence before presenting

our experimental results, we show some examples of the construction of Boolean formulas

and discuss how those controlled-bitfilp equations transform eventually in our simulator.

5.5.1 Single-qubit Example

Section 2.1.4 shows a basic but typical example of single-qubit circuit H-T-H.

|x〉 H T H |z〉

With the techniques developed in Section 5.3, this single-qubit circuit will be converted into

the following set of Boolean formulas, with the initializations p0 = 0, q0 = 0, and r0 = 0:

phase π
4 : phase π

2 : phase π:

r1 ≡ r0 ⊕ y0 q1 ≡ q0 ⊕ (r0 ∧ y0) p1 ≡ p0 ⊕ (y0 ∧ x)

p2 ≡ p1 ⊕ (q0 ∧ r0 ∧ y0)

p3 ≡ p2 ⊕ (y1 ∧ y0).

In the implementation of our simulation system, the equation p2 ≡ p1⊕ (q0∧r0∧y0) becomes

p2 ≡ p1 ⊕ (q0 ∧ t) ∧ (t ≡ r0 ∧ y0)

which is similar to 5.2.

Let ri’s be variables associated with phase π
4 , qi’s for π

2 , and pi’s for π. Below Figure 5.1

shows how the set of Boolean formulas looks like in our simulator.

Figure 5.1: Boolean formulas for single-qubit circuit H-T-H.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 39

The main difference from above lies in p2 ≡ p1 ⊕ (q0 ∧ r0 ∧ y0) which becomes p2 ≡
p1 ⊕ (q0 ∧ c1) in the simulator, with c1 ≡ r0 ∧ y0. Hence all the controlled-bitflip equations

can convert into 3CNF or 4CNF forms.

We know that | 〈0|C|0〉 |2 ≈ 0.85 and | 〈1|C|0〉 |2 ≈ 0.15. This disparity cannot be ex-

plained by saying that each H acts like a classical random coin. This phenomenon is made

more formal in the CHSH game (referred to Section 2.1.4). In particularly, Bell’s Theorem

behind the CHSH game is often interpreted as saying that one cannot use classical binary

random variables to analyze quantum probability. However, this work shows that one can

use such variables internally–one classical Boolean variable per H gate–provided that the

external analysis is correct. Here the external factors are the cosine terms in Theorem 5.3.

5.5.2 Quantum Fourier Transformation (QFT)

Adding variables standing for phases 1/16, 1/32, . . . can code an even wider range of gates

used in some well-known exact recursions for the quantum Fourier transform on n qubits,

whose matrix is given by

QFTN =
1√
N



1 1 1 1 · · · 1

1 ω ω2 ω3 · · · ωN−1

1 ω2 ω4 ω6 · · · ω2(N−1)

1 ω3 ω6 ω9 · · · ω3(N−1)

...
...

...
...

...
...

1 ωN−1 ω2(N−1) ω3(N−1) · · · ω(N−1)(N−1)


where N = 2n and ω = e−2πi/N . (It is worth noting that with K = 8 this is the same ω as

used in defining T and V above.) However, these recursions involve Θ(n2) gates each needing

Θ(n)-many cBF ’s of arity Θ(n), giving formulas of size Θ(n4) overall. An asymptotically

better way notes that if the incoming phase is H then the new phase is H ′ = H+I ·J modulo

N . This string relation has Boolean circuits of size O(n log n log logn) via the Schönhage-

Strassen integer multiplication algorithm [SS71] and its conversion to circuits. (Ironically,

this uses F2n.) Concrete quantum circuits for the relation were presented by Markov and

Saeedi [MS12], but we can simply convert each Boolean circuit gate into a cBF.

The construction of the circuit for QFT over 4 qubits is the one in Figure 2.1. For the

sake of illustration, we also show its set of Boolean formulas generated by our prototype in

Figure 5.2.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 40

(a) (b)

Figure 5.2: Boolean formulas QFT over 4 qubits

The construction follows the convention rules in Section 5.4 together with one extra step (as

analogous to the single-qubit example above) which introduces new ci’s variables to shorten

the number of control bits. This makes all controlled-bitflip forms have only two direct

control bits at the expense of extra controlled-bitflip equations, and it results in the set of

controlled-bitflip equations as shown collectively in Figure 5.2. From the ideas in Section 5.4,

variables pi’s are associated with phase π, qi’s with phase π
2 , ri’s with phase π

4 , and si’s with

phase π
16 . They are enough because from the matrix representation, this QFT will be QFTN

with N = 24, where ω = e−2πi/16, and the finest phase for the amplitude 〈a| C |b〉 can only

go as small as π
16 .

Generally, let b(c) denote the final location of a path c and f(c) the final phase. The

amplitude of the outcome C(a) = b ∈ { 0, 1 }m is given by

〈a| C |b〉 =
∑

c:b(c)=b

ωf(c) =

N−1∑
J=0

| { c : b(c) = b ∧ f(c) = J } |ωJ (5.5)

with ω = e2πi/N . What the right-hand side of (5.5) finally means is that we can get the

amplitude by counting the number of satisfying assignments to each of the formulas φJ

obtained from the basic φ = φC by substituting the binary representation of each J for the

phase variables.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 41

5.5.3 Demo of Shor’s Algorithm

H⊗`

ax mod M

QFT−1
2`

...
...

...

...
...

Figure 5.3: The quantum subroutine in Shor’s algorithm.

Figure 5.3 shows the main quantum component in Shor’s algorithm [Sho94] for factoring a

given n-bit integerM starts by choosingQ = 2` where ` = 2n+1, so thatM2 < Q < 2M2, and

a random a < M which we may presume is relatively prime to M (else it succeeds at once).

On the left hand side, there are 2n Hadamard gates being applied to 2n qubits separately,

while the right hand side is a QFT over 2n qubits. In the middle, it places a deterministic

circuit C0 that maps any binary-encoded number x < Q to fa(x) = ax (mod M). More

precisely, C0 maps x · 0` to the concatenation x · y where y = fa(x) as an `-bit number. The

combination with the Hadamard gates creates the functional superposition

Φ =
1√
Q

∑
x

|xfa(x)〉 .

The quantum part then applies QFT` to the first ` lines and measures them to get an output

b < Q. The rest is a classical attempt to use b to find a period r such that fa(x) = fa(x+ r)

for all x, and then use r to find a factor of M to tumble out. Failure means re-starting the

outer loop with another a′, but the analysis shows that with high probability it needs only

O(log n) restarts. The sampling routine in Section 5.6 can emulate the inner loop. It will be

interesting to see if this can attack moderately large numbers M . The brute-force method is

OK for M < 100. For comparison, libquantum [BW03, WML+10, WB11] complied on the

same hardware can work up to about M = 5000. More is discussed in Section 5.7.

Since the conversion of Hadamard gate and QFT have been discussed in preview sections

(Section 5.4 and Section 5.5.2), we restrict our attention to the modular exponentiation

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 42

gate (ax mod N) in this section. Instead of simulating this classical ax mod N directly, we

emulate this gate with Montgomery multiplication [Mon85] which has been used to implement

Shor’s algorithm before [PG12, RNSL17]. Montgomery multiplication computes modular

exponentiation using only addition, multiplication, and operations modulo a power of 2, and

hence it is often the most efficient choice if the modulus is not being too close to a power of

2.

5.6 Probability Form and Sampling

We give a revision of the main theorem tailored for the probability on a cylinder (Defini-

tion 2.2), rather than amplitude. The advantage is that it can be used for sampling.

To discuss sampling, first we review the classical reduction from counting to uniform

generation. It starts with one call to #sat to compute the cardinality of the solution set S.

• Using one call to #sat , compute |S0| = | {x ∈ S : x1 = 0 } | and |S1| = | {x ∈ S : x1 = 1 } | =
|S| − |S0|.

• Set x1 = 0 with probability |S0|/|S| and x1 = 1 otherwise.

• Substitute the value of x1 into φ and recurse on x2 and so on.

The quantum sampling task is to generate outputs b—belonging to { 0, 1 }m or some

(cylindrical) subset B thereof—according to the probability distribution | 〈a| C |b〉 |2. A

naive attempt to emulate the above process beginning with B = ({1}, 0) would substitute

z1 = 0 but leave the variables z2, . . . , zm open in the first formula φ0. Applying the counting

in (5.3) to the phase-shifted formulas derived from φ0 would fail, however, because it would

attempt to cancel counts of solutions with different final locations b2, . . . , bm whose waves do

not interfere. The fix is to maintain the probabilities directly rather than the amplitudes in

a way that preserves the cylindrical structure. We state the binary case first:

Theorem 5.7. Let C be a circuit of m qubits, h Hadamard gates, and s − h Toffoli and

CNOT gates. Then we can efficiently build a Boolean formula ψC of size O(m+s) in variables

~v, ~v′, ~w, ~w′, ~x, ~y, ~y′, ~z and find a constant R such that for all a ∈ { 0, 1 }m and cylinders B ⊆
{ 0, 1 }m, Pr[C(a) ∈ B] =

∑
b∈B | 〈a| C |b〉 |2 =

1

2h
(#sat(ψC [~x = a, ~z = b] ∧ wh = w′h)−#sat(ψC [~x = a, ~z = b] ∧ wh 6= w′h). (5.6)

Moreover, for every assignment (a, c, c′) to ~x, ~y, ~y′ there is exactly one completion to an

assignment that satisfies ψC and it can be found in O(s) time.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 43

The proof is subsumed by that of Theorem 5.4. Note that for +i,−i phases, we get

exactly the same equation since i and −i cancel. Now we can make the uniform generation

procedure work by using ψ0 = ψC [z1 = 0] in place of φ0. We need two calls to the #sat oracle

to evaluate #sat(ψ0 ∧ wh = w′h) and #sat(ψ0 ∧ wh 6= w′h). Their difference over 2h gives

the correct probability because by summing over assignments to z2, . . . , zm we are summing

(5.6) over b ∈ B0. We do not need to make separate calls for the case z1 = 1. Thus the

efficiency in the number of oracle calls is the same as in the classical iterative reduction. The

resulting binary string b is generated with the same probability distribution DC as measuring

all registers of C(a) would give, and the time needed is O(mhT2s+m) where Tn is the time

for calls to the #sat oracle on an n-variable formula.

A second elegant point, after what we have noted about the equations for Hadamard

vis-à-vis Toffoli gates, is that ψC is virtually the same as φC′ for the circuit C ′ that computes

the standard “compute-uncompute trick” [BBC+95]. For K = 4 we again get a difference of

two calls to #sat :

Proof of Theorem 5.4. Here by the constructions in Section 5.4 the formula φC has variables

ph, qh denoting the final phase, with ph = 0 for 1 and i versus ph = 1 for −1 and −i, and

qh = 0 for 1,−1 versus qh = 1 for i,−i. Again we make a copy φ′C with final phase variables

p′h < q′h. For a final state α = a+ bi− c− di we have

|α|2 = (a2 + b2 + c2 + d2)− (2ac+ 2bd).

The positive term is expressed by conjoining (p′h = ph) ∧ (q′h = qh). The negative term is

expressed by the combinations (phqh, p
′
hq
′
h) = (00, 10), (10, 00), (01, 11), or (11, 01). The

conjunction allowing exactly these combinations is (p′h 6= ph) ∧ (qh = q′h).

5.7 A Few Experimental Results

The tasks of counting the number of solutions to a given polynomial equation and the number

of satisfying assignments to a Boolean formula belong to #P as defined above. The general

cases of these tasks are both NP-hard. Although NP-hardness has generally been regarded

as strong evidence of asymptotic intractability, recently there have been broad advances on

solving concrete cases of these tasks. Most of this success has come from so-called SAT-

solvers asked to find just one satisfying assignment, but #SAT solvers charged with counting

the number of satisfying assignments exactly have gained traction.

We show the experimental results from the performance of solving the generated boolean

formulas using our brute-force (BF) method and current versions of the Cachet [SBB+04,

SBK05a, SBK05b] and sharpSAT [Thu06] solvers. For consistency, we use m to denote the

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 44

Table 5.1: CNOT staircase (microsecond (us))

m BF sharpSAT Cachet

4 34.817 7409.250 35869.500

8 618.083 8020.500 36244.500

12 12238.524 8292.250 35244.875

16 122063.122 8099.500 34120.375

20 2101033.678 9594.000 39993.500

24 62935719.848 9024.125 42994.000

number of qubit lines in a quantum circuit. All the circuits we are testing on are first having

a bank of Hadamard-gates applied to the input vector, and subsequently differ as follows:

• CNOT staircase: apply CNOT gates with control n and target n + 1 followed by a T-

gate on line n for n = 1, · · · ,m − 1. Concretely, a sequence of applied gates would be

CNOT(1, 2),T(2),CNOT(2, 3),T(3), . . . ,T(m),CNOT(m, 1).

• CNOT staircase with appended CZ and CV gates that alternate: After the bank of H

gates and the above CNOT staircase, apply CV and CZ alternately to lines n, n+ 1 and

n+ 2. Concretely, a sequence of applied gates would be:

CNOT(1, 2),T(2),CNOT(2, 3),T(3), . . . ,T(m),CNOT(m, 1)

CV(1, 2),CZ(2, 3),CV(3, 4),CZ(4, 5), · · · ,CZ(n− 2, n− 1),CV(n− 1, n).

• Initial segments of circuits proposed in [BIS+16] to be hard for classical simulations.

The following results were run from C++ code on a Dell PowerEdge R720 departmental

machine. Our code represents each element of a cBF by a pointer to an unsigned integer

standing for a Boolean value. The brute-force times are single-threaded; the others use

compilations of the official current source code releases of sharpSAT and Cachet.

Table 5.1 shows the results of solving the generated boolean formulas for circuits consisting

of a “staircase” of m Hadamard and CNOT gates producing entanglements. While the brute-

force (BF) running time grows exponentially in m as expected, the running times of sharpSAT

and Cachet change little. This suggests that the solvers are able to figuratively flatten the

staircase so that the transformed solutions are easy to count. The next experiment tries to

frustrate this by sprinkling controlled gates of non-binary phases amid the lines. The CV

gates add extra nondeterminism in the standard basis.

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 45

Table 5.2: CNOT staircase with CZ and CV (microsecond (us)

m BF sharpSAT Cachet

4 409.706 8,373 42,744

8 91,534.342 8,486 49,493

12 13.858 s 10,400 64,300

16 14587.857 s 18,500 52,000

20 � 5 hours 145,700 s 106,000

24 � 5 hours 1,196,100 362,700

In Table 5.2, the relations between them are similar to that in 5.1 until the line for m = 16.

The BF running time balloons up even more owing to the extra nondeterministic variables.

The sharpSAT solver seems to have special difficulty with the circuits of 20 and 24 qubits.

We also tried initial sets of layers from the circuits treated in [HS17] based on indications

from [BIS+16] of their being hard to simulate classically. Those circuits had too much non-

determinism for BF but gave results within a few hours for sharpSAT and Cachet until the

circuits reached 6 or 7 layers of 24 to 36 qubits—well short of the 40-layer simulations on

massively parallel hardware announced by [HS17].

The results show that sharpSAT and Cachet give better scalability on these circuits.

They as yet do not, however, even “recognize” the identity HH = I in the sense of having

similarly close running times when extra HH pairs are added to these circuits. Of course, our

BF method has its time compounded by a factor of 4 for each pair since it blindly tries all

combinations. This points to the goal is tuning the solvers for a repertoire of basic quantum

simplifications, in the hope that this will boost the heuristics already employed.

The final preliminary experiment, just at press time, emulated the circuits for Shor’s

algorithm that are constructed by libquantum [BW03, WML+10, WB11]. The libquantum

package and its shor routine are distinguished among quantum simulation software by being

part of the SPEC CPU2006 benchmark suite [SBH06]. We modified the v1.1.1 release code

so that it prints out each quantum gate in the readable format of our emulator. The circuits

are generated specially for each M and choice of random seed a. For M = 2021 and a = 7

the circuit built by the shor routine uses 22 principal qubits, 35 ancillas, and has 98,135

elementary gates. By far the largest block is for the modular exponentiation step which

consists entirely of deterministic gates (only NOT, CNOT, and Toffoli). They are somewhat

larger than the original circuits for Shor’s algorithm detailed in [BCDP96]. They are far

from optimal; indeed, Markov and Saeedi [MS12, MS13] showed 6-to-8-fold improvements by

high-level means and other gate-level improvements have been made [Bea03, PG14, HRS17].

The SPEC CPU2006 benchmark consists of one run of shor on M and a, which does

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 46

just one iteration of the quantum circuit—no restarts in case it doesn’t succeed. It uses a

numerical gate-by-gate simulation. For M approaching 10,000 our compile of shor overflows

its hash table of over 500MB. It functioned correctly on M = 2021 = 43 ∗ 47, which is

just under 211. Our emulator’s brute-force routine reaches its limit for numbers larger than

29 = 512, which entails running through 236 = 64 billion assignments for each of 9 sampled

bits. Optimizing the initial modular exponentiation stage would make very little difference

in our brute-force routine because only one in every 218 assignments backtracks beyond the

final QFT step which has 18 Hadamard gates of its own. Runs with the #SAT solvers

succeeded for M = 15 and M = 21 but bogged down for M = 55, with sharpSAT expanding

to over 34GB of system resources. This evidently owes to the second copy of φ in the proof

of Theorem 5.7 doubling the count of Hadamard gates again. The brute-force compilation

needed only the single copy and stayed within 71MB, under 0.1% of system memory, per

billion assignments tried.

5.8 Conclusions

We have defined a natural emulator in the sense of [HSST16]. Preliminary experimental

work shows that it is competent even in brute-force simulation and enables distinctly high

performance through #SAT solvers in several instances. It has a high memory footprint

only in the accumulation of final results. The sampling procedure of Section 5.6 essentially

eliminates that footprint but at double the cost in nondeterminism and a squaring of brute-

force simulation time. Overall the architecture is markedly different from that of commonly

employed systems.

Higher performance may come from software advances in #SAT solvers. These might be

tailored to leverage the “controlled-bitflip” form of the equational clauses before conversion

to conjunctive normal form. At the very least, our work has supplied a new class of natural

instances by which to challenge these solvers.

We close with an analogy to elaborate the main issue with our architecture. Solvers that

represent whole state vectors in some form and emulate circuit levels sequentially figuratively

have the memory footprint of a giant. Once the giant gets going, however, it walks with

a steady gait. Our model instead employs an army of fleet-footed mice and can send one

‘mouse’ (i.e., evaluate one Feynman path) at a time with zero footprint—except for housing

the results of the mice at the end. The issue is that each intermediate nondeterministic gate

doubles the size of the mouse army. The brute-force simulation does intelligent backtracking

but does not carry out simplifications that might reduce the implicit army.

The formulas manipulated by SAT and #SAT solvers, insofar as they expand via resolu-

tion and other techniques, are between the mice and the giant. The further success of this

CHAPTER 5. LOGICAL EMULATION OF QUANTUM CIRCUITS 47

approach may depend on how much implicit combination they can achieve. For some sam-

pling steps of quantum algorithms, certain tradeoffs between accuracy of the counting and

size can be tolerated. How this can possibly interact with the deep tradeoff of approximation

and hardness in sampling, over which the argument over “quantum supremacy” is currently

centered, remains to be seen.

Chapter 6

Stabilizer Circuits, Quadratic

Forms, and Computing Matrix

Rank

The results in this chapter are in our paper [GR19].

6.1 Overview

The main discovery of the work in this chapter is the tight connection between the strong

simulation of stabilizer circuits and two bedrock mathematical tasks: computing matrix rank

and counting solutions to quadratic polynomials (both over the field F2).

In particular, we show how strong simulation of a stabilizer circuit C can be reduced to

the problem of computing matrix rank with the promise that 〈0n| C |0n〉 is nonzero, and

the same reduction can be reverted directly, which overall gives the almost tight connection

between these two problems. They can be summarized as follows:

(a) Strong simulation of n-qubit stabilizer circuits of size s with h Hadamard gates (or other

nondeterministic single-qubit gates) on standard-basis inputs is in time O(s+ n+ hω)

where 2 ≤ ω < 2.3729. This works for amplitude as well as probability.

(b) Computing n × n matrix rank is linear-time equivalent to computing the probability

p (for circuits where h = Θ(n) and s = O(n2)) on the promise that p is positive, and

equivalent to computing p on the narrower promise that the graphs underlying the

circuits are bipartite.

Moreover, the proofs for item (a) and (b) respectively, imply the following two algorithms.

48

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 49

Consider the following algorithm for computing the rank r of an n × n matrix A0 over the

field F2:

I. Form the symmetric block matrix A =

[
0 A0

A>0 0

]
.

II. Form the quantum graph state circuit CA for the bipartite graph with adjacency matrix

A.

III. Calculate p = the quantum probability that CA(02n) = 02n. The bipartite case assures

p > 0.

IV. Output r = log2(1/
√
p).

All steps except 3 take O(n2) time. Hence, for dense matrices, this is a linear-time reduction

from r to p. In the converse direction, the following algorithm is for computing the amplitude

〈0n| C |0n〉 for any n-qubit quantum stabilizer circuit C:

I. Convert C to a classical quadratic form qC over Z4 that retains all quantum properties

of C.

II. Take the matrix A of qC over Z4 and associate a canonical n× n matrix B over F2 to

it.

III. Compute the decomposition B = PLDL>P> over F2 where P is a permutation matrix,

L is lower-triangular, and D is block-diagonal with blocks that are either 1×1 or 2×2.

IV. Take L−1 over F2 but compute D′ = L−1P>AP(L−1)> over Z4. (Note P> = P−1.)

If any diagonal 1 × 1 block of D has become 2 in D′, output 〈0n| C |0n〉 = 0. Else,

〈0n| C |0n〉 is nonzero and is obtained by a simple O(n)-time recursion.

Here step 1 from [RCG18] takes time linear in the number s of quantum gates in C, which for

standard-basis inputs can be bounded above by O(n2/ log n) with O(n) quantum Hadamard

gates [AG04]. Step 3 is computable in O(nω) time by [DP18], where ω is the exponent of

matrix multiplication and is at most n2.372865 [Sto10, Wil12, Gal14]. This is also the best

known time for computing n × n matrix rank over any field and for the particular inverses

and products in step 4 as well (see [CKL13]). However, when 〈0n| C |0n〉 6= 0 we show that

its absolute value is computable quickly from r alone after step 2.

The connections used in our proof run through the real-time conversion of quantum cir-

cuits C to “phase polynomials” qC over ZK for K = 2k, k ≥ 1 in [RC09, RCG18], which ex-

tended results by [DHH+04] for k = 1, and the analysis of quadratic forms over Z4 by Schmidt

[Sch09] drawing on [Alb38, Bro72]. In the case of graph-state circuits and stabilizer circuits

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 50

more generally, qC becomes a classical quadratic form over Z4, as treated also in [CGW18].

Our approach is related to ones involving Gauss sums [BvDR08a, CCLL10, CGW18, Bk18]

but exploits the availability of normal forms. For bipartite A as above, it further devolves

into a quadratic form q′C over F2 that is alternating (as defined below) plus an ancillary vec-

tor v. A linear change in basis—which also sends v to a vector w but leaves the probability

computation unaffected—gives over Z4 the normal form

q′C = y1y2 + y3y4 + · · ·+ y2g−1y2g +
n∑
j=1

2yjwk. (6.1)

Here the rank r must be even and g = r/2. This corresponds to block-diagonal matrices D

with g-many 2 × 2 blocks as produced by [DP18], together with 1 × 1 blocks coming from

w. The 1 × 1 blocks matter most for j > r. The matrix D′ over Z4 may no longer be

block-diagonal but its diagonal reveals w.

Hereafter, let Nc(q) stand for the number of arguments x ∈ {0, 1}n giving q(x) = c

(mod 4) for c = 0, 1, 2, 3. Along the way to our main theorem, we prove that for any classical

quadratic form q over Z4, the differences |N0(q)−N2(q)| and |N1(q)−N3(q)| are either zero

or a power of 2. This resolves the effects of the “w” part of the normal form (Equation (6.1))

for the alternating case in particular.

6.2 Circuits and Quadratic Forms

Let R be a commutative ring with unity 1. A quadratic form in n variables over R is a

homogeneous polynomial

q(x1, · · · , xn) =
∑

1≤i≤j≤n
ai,jxixj

of degree two with coefficient ai,j in R. The study of particular quadratic forms dates back

many centuries [BFLR00, Hah08]. The Babylonians in the 18th century B.C. had insight into

the ways that the quadratic form x21 + x22 − x23 over the integer Z represents 0. However, the

reasonably systematic study of quadratic forms begins with Diophantus and his Arithmetica

[Hea64] in 3rd century A.D. Since then, many famous mathematician figures appeared in

the development of theories over quadratic forms, including Pierre de Fermat, Leonhard

Euler, Luigi Lagrange and so on. Not until 19th century, the famous treatise Disquisitiones

Arithmeticae [Gau66] of 1801 by Carl Friedrich Gauss brought that theory to essentially its

modern state.

Quadratic forms can be categorized as classical and non-classical. A classical quadrat-

ic form f in variables ~x = (x1, · · · , xn) is one whose coefficients of crossing terms are all

even, while non-classical one has odd coefficients over cross product terms. Being a classical

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 51

quadratic form means that f can be induced by a symmetric n× n integer matrix A as

f(~x) = ~x>A~x,

and this is the form that this chapter concentrates on. More precisely, we will deal with

classical quadratic forms over Z4 with ~x ∈ {0, 1}2.
Classical quadratic forms are indifferent between 0 and 2 as arguments, likewise 1 versus

3, because 22 = 0, 32 = 1, and 2 · 1 = 2 · 3 = 2 modulo 4, so counting solutions over Zr4 and

over {0, 1}r is equivalent for them. An amazing “Dichotomy” phenomenon studied by Jin-yi

Cai et al. [CLX14, CGW17] show that counting solutions to (all) quadratic forms in Zn4 is in

P. However, counting binary solutions to non-classical quadratic forms is NP-hard, indeed,

#P-complete, while counting binary solutions to classical quadratic forms over Z4 is in P,

and we improved the time from O(n3) to O(nω) (more in Section 6.6).

A high-level idea of how we associate stabilizer circuits with classical quadratic forms is

discussed in Section 6.4. Adding the controlled-S gate CS to the family of stabilizer circuits

makes it a universal quantum set. Those general quantum circuits will have non-classical

quadratic forms over Z4, over which (as mentioned above) in general it is intractable to count

binary solutions.

6.3 Quantum Stabilizer Circuits and Graph-State Circuits

Recall that the family of stabilizer circuits can be generated by the following three gate

matrices:

H =
1√
2

[
1 1

1 −1

]
, S =

[
1 0

0 i

]
, CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .
The original polynomial-time algorithm by Gottesman and Knill [Got98] involved Gaussian

elimination and so ran for all intents and purposes in order-of n3 time. Aaronson and Gottes-

man [AG04] improved this to O(n2) time with a tableau method and also showed that every

stabilizer circuit has an equivalent one with O(n2/ log n) gates. Anders and Briegel [AB06]

improved the running time concretely and for circuits of size s = o(n2) using a graph-state

representation, as we will also do. Dehaene and De Moor [DM03] described quantum states

produced by stabilizer circuits via linear and quadratic forms over F2 in ways simplified and

extended by van den Nest [vdN09].

We seek even simpler and faster methods that lend themselves to further algorithmic

properties, such as quick update when changes are made to C in the sense of “dynamic

algorithms.” We employ the theory of classical quadratic forms over Z4 as developed by

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 52

Schmidt [Sch09] and more recently by Cai, Guo, and Williams [CGW18]. The quadratic

forms are built using the real-time algorithm of [RC09, RCG18] for computing what we call

the additive partition polynomials qC for quantum circuits C that meet a mild “balance”

condition. Related works involving low-degree polynomials and counting complexity include

[BvDR08a, BJS10, Mon17, KPS17].

The polynomial qC has variables x1, . . . , xn corresponding to binary input values, z1, . . . , zn

for the binary output values, and y1, . . . , yh representing nondeterminism from Hadamard

(and possibly other) gates. For any a, b ∈ {0, 1}n, letting qab denote q with those values

substituted for the xi and zj variables, we have for some R > 0:

〈b| C |a〉 =
1

R

∑
y∈{0,1}h

ωqab(y), (6.2)

where ω is a K-th root of unity such that all phases produced by the circuit are powers of

ω. Stabilizer circuits give K = 4 so that the powers in this exponential sum belong to Z4.

Generally R = 2h/2 but its value is reduced if some nondeterministic yj variables are forced

to equal outputs.

The rules for calculating q are straightforward. Initially q = 0 and each qubit line i has its

current annotation ui defined by ui = xi. In general, let ui stand for the current annotation

of line i, and let y1, . . . , y`−1 be the nondeterministic variables allocated thus far.

• Hadamard gate on line i: Allocate a new variable y`, do q += 2uiy`, and reassign ui to

be y`.

• Phase gate S on line i: q += ui, ui unchanged.

• CZ gate on lines i and j: q += 2uiuj , no other change.

• At the end of each qubit line i, we can identify zi with the variable last denoted by ui.

Since we are concerned only with 0, 1 as arguments, we can also do q += u2i in the case

of S, thus making all terms homogeneously quadratic. The conjugate polynomial q∗ does

q∗ += 3u2i instead, but does the same as q for H and CZ.

The annotation uj becomes quadratic in the case of CNOT, but the degree does not rise

any higher: In rules where ui is multiplied, the multiplier contains a factor 2 which cancels

the 2uiuj modulo 4. The last subtlety is what happens when an annotation that is not a

single variable is to be equated with a variable zj . If it has the form ui + uj − 2uiuj then we

add to q the term 2w(ui +uj − 2uiuj − zj) = 2wui + 2wuj + 2wzj (mod 4) where w is a fresh

variable. For binary values from the standard basis, if zj does not equal the XOR of ui and

uj then the added term reduces to 2w. Because w appears nowhere else, assignments with

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 53

w = 0 and those with w = 1 will globally cancel in (6.2). Thus only cases with zj = ui ⊕ uj
contribute. This proves

Theorem 6.1 ([RCG18]). When C is a stabilizer circuit, the polynomial q in (6.2) becomes

a quadratic form over Z4 in which all terms involving two variables have coefficient 2.

Another important ingredient in our work is the use of graph-state representation which

was first introduced by Raussendorf and Briegel [RB01]. Since then, this tool made a major

impact on quantum computing [RBB03, HEB04, AB06, HDE+06] and quantum information

[SW01, LYGG08]. It has been proved [VdNDDM04, GKR02, Sch01] that every stabilizer

state is equivalent to a graph state. We follow the definition of graph states from [AB06]:

Definition 6.2. Let G be a given graph (V,E) of |V | = n vertices. The corresponding n-qubit

graph state |G〉 is constructed as

|G〉 =

 ∏
(i,j)∈E

CZi,j

(∏
i∈V

Hi

)
|0〉⊗n ,

where CZi,j is a controlled-Z gate applied to qubit line i and j, and Hi is a Hadamard gate

applied to line i.

In summary, graph-state circuits consist of:

• An initial n-ary Walsh-Hadamard transform H⊗n, effected by placing one Hadamard

gate at the start of each qubit line.

• For every edge (i, j) in the given graph G, place a CZ gate between lines i and j. Order

does not matter because these operations commute.

• If G has a self-loop at node i, place an S gate there.

• A final H⊗n.

Below Figure 6.1 is an example of a graph-state circuit and its corresponding graph:

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 54

|0〉 H • • H |0〉

|0〉 H • • S H |0〉

|0〉 H • • H |0〉

(a) (b)

Figure 6.1: Example of graph-state circuit and its associated graph: xi corresponds to the

i-th qubit line, and each CZ gate is indicated by a vertical line joining two solid dots.

Note that the matrix representation of CZ is

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 ,
and the notation of CZ gate in Figure 6.1 exhibits its symmetry: it does not matter which

of the two qubit lines serve as the control and the other as the target.

Let us bear in mind that since (6.2) computes all amplitudes, the polynomial q = qC

includes all information about the quantum behavior of the circuit C. Thus nothing is lost

by manipulating (only) qC . As an application, we deduce the known fact that graph-state

circuits are entirely representative of stabilizer circuits with O(s+ n) overhead.

Proposition 6.3. There is an O(s+n)-time procedure that given any n-qubit stabilizer circuit

C with h Hadamard gates and x, z ∈ {0, 1}n constructs a graph state circuit CG on h qubits

such that 〈z| C |x〉 = 〈0h| CG |0h〉.

Proof. Build qC in real time as above and substitute for x and z. This leaves h variables yk

from the Hadamard gates plus any wj variables that were employed. Now define the graph

G to have an edge (i, j) for every term 2yiyj (or 2yiwj) in qC , and a self-loops at i for every

term ay2i , a = 1, 2, 3. Note that the coefficients a of the self-loop terms may arise from the

substitutions for particular binary values of x and z. The corresponding graph-state circuit

has inputs x′, z′ of its own, but those are zeroed in forming 〈0h| CG |0h〉. The leftover terms

in qCG are identical to those of qC after the substitution.

If h = Θ(n) then the number of variables is linear in n. Our original aim was to use

this correspondence to be competitive with the above-cited O(n2) algorithms—and ones that

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 55

improve then the graph is sparse—in the concrete sense of better leading constants and

simplified cases. For those algorithms previously not known to have time better than O(n3)

or similar, our practical objective in what follows is not so much reducing the exponent to

ω but rather to O(n2) time given knowledge of the rank r, for contexts where r might be

foreknown or well approximated.

6.4 Classical Quadratic Forms Over Z4

From Section 6.2, a classical quadratic form f in variables ~x = (x1, . . . , xn) can be written as

f(~x) = ~x>A~x (6.3)

with A to be a symmetric n× n integer matrix. Since every coefficient of a cross term xixj

in f is even, and hence over Z4 all nonzero cross terms have coefficient 2. Such a form over

Z4 treats arguments 0 and 2 the same, likewise 1 and 3, so we may regard it as a function

of {0, 1}n into Z4. Then we want to regard (6.3) as composed of matrix-vector operations

over F2 plus some extra calculation to get the answer in Z4 where 2, 3 as well as 0, 1 may be

values.

First note that by the symmetry, every off-diagonal entry of A may without loss of

generality be 0 or 1. Next, define a binary vector ~v by vj = 1 if the j-th main-diagonal entry

of A is 2 or 3, else vj = 0. Finally define a binary matrix B from A by

B = A− 2diag(~v). (6.4)

Then we have

f(~x) = ~x>B~x+ 2~x> · ~v (6.5)

with calculation in Z4. The ~x>B~x calculation is now valid in F2, however. The quadratic

form is alternating if the main diagonal of B is all zero, else it is non-alternating. When B

comes from or is regarded as the adjacency matrix of a graph, alternating means the graph

is simple and undirected (as will hold in our reductions from rank using a simple bipartite

graph) and non-alternating means the graph is undirected but with one or more self-loops.

We note the general development of this decomposition and associated concepts by

Schmidt [Sch09] in a way not wedded to the standard basis. Since we fix 4 as the mod-

ulus throughout this section, we follow [Sch09] in now using K to denote {0, 1} as a subset of

Z4, defining an operation ⊕ on K by a⊕b := (a+b)2, and defining V as an n-dimensional vec-

tor space “over K” noting that (K,⊕, ·) is the same as the field F2. Then classical quadratic

forms are equivalently defined as follows:

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 56

Definition 6.4 (see [Alb38, Sch09]). A symmetric bilinear form on V is a mapping B :

V × V → K that satisfies

I. symmetry: B(~x, ~y) = B(~y, ~x);

II. bilinearity: B(α~x⊕ β~y, ~z) = αB(~x, ~z)⊕ βB(~y, ~z) for α, β ∈ K.

B is alternating if B(~x, ~x) = 0 for all ~x ∈ V , else it is non-alternating. Let Λ = {λ1, · · · , λn}
be any basis for V over K. Then B is uniquely determined (relative to this basis) by the

n× n matrix B with entries bij = B(λi, λj). The rank of B is the rank of its matrix B.

Definition 6.5 (see [Bro72, Sch09]). A Z4-valued classical quadratic form is a mapping

f : V → Z4 that satisfies:

I. f(α~x) = α2f(~x) for α ∈ K;

II. f(~x⊕~y) = f(~x) + f(~y) + 2B(~x, ~y), where B : V ×V → K is a symmetric bilinear form.

Then f is alternating if the associated bilinear form B is alternating, non-alternating other-

wise, and its rank r is the rank of B.

Proposition 6.6 ([Sch09]). There is a vector ~v ∈ Kn such that for all ~x ∈ Kn over the basis

Λ,

f(~x) = ~x>B~x+ 2~x> · ~v.

The point of dropping down to F2 is to leverage the notions of matrix similarity over F2 and

the following theorem about changes of basis in V . Over F2 the appropriate definition of

B and B′ being similar (from [Alb38]) is that there exists an invertible matrix Q such that

B′ = Q>BQ. This preserves the property that similar matrices have the same rank. The

notions of alternating and non-alternating are the same as given for the binary matrix B

above, depending on whether the main diagonal of B is all zero or not.

Theorem 6.7 ([Alb38]). Let A be a K-valued n× n symmetric matrix of rank r.

(a) If A is alternating, then A has even rank and is similar to a matrix that has zeros ev-

erywhere except on the subdiagonal and the superdiagonal, which are 1010 · · · 10100 · · · 0
with r/2 ones.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 57

(b) If A is non-alternating, then A is similar to a diagonal matrix, whose main diagonal

is of r-many ones.

With the representation of f(~x) = ~x>B + 2~x> · ~v, the paper [Sch09] uses this to define

normal forms with regard to Z4:

Corollary 6.8 ([Sch09]). Given a quadratic form f of rank r as above over the basis Λ, we

can find a basis M = (µ1, . . . , µn) for V over K, mapping ~x = (x1, . . . , xn) over Λ in V to

~y = (y1, . . . , yn) such that:

(a) If f is alternating, then

f(~y) = 2

r/2∑
j=1

y2j−1y2j + 2
n∑
i=1

wiyi,

for some ~w = (w1, · · · , wn) ∈ Kn.

(b) If f is non-alternating, then there is the equivalent linear form

f(~y) =
r∑
j=1

yj + 2
n∑
i=1

wiyi,

for some ~w = (w1, · · · , wn) ∈ Kn.

Schmidt actually retains the symbols ~x and ~v in his statement but we have used ~y and ~w to

indicate the change of basis. Our analysis in the next section will, however, treat ~y as the

standard basis, so the generic symbols x1, . . . , xn will re-appear, and w1, . . . , wn will just be

ordinary 0-1 values. This switch will be echoed in the next section in that once we substitute

for the input qubit values xi and output values zj in the quadratic form qC from Section 6.3,

the actual variables of qC left over will be named y1, . . . , yh where h = O(n). But to emphasize

that the counting lemmas preceding the main results hold apart from the quantum context,

we will revert to the standard symbols x1, . . . , xn in their statements and proofs.

Now we reference [DP18] to note some facts about matrix decompositions related to the

above normal forms. Note that the inverse of a non-singular lower triangular matrix is lower

triangular.

Lemma 6.9. (a) For every symmetric n×n matrix B over F2 there is a permutation matrix

P such that the symmetric matrix B′ = P>BP has the decomposition B′ = LDL>.

Here L is an n× n lower triangular matrix with unit diagonal and D is diagonal if B

is non-alternating, else D is block-diagonal as described in Theorem 6.7(a).

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 58

(b) The matrix D in (a) is permutation-equivalent to any matrix D′ fulfilling the corre-

sponding case of Theorem 6.7 when applied to B′ or to B.

(c) The matrix D in (a) is unique among LDU decompositions applied to B′.

(d) When D′ = L−1P>AP(L−1)> is computed over Z4 rather than F2, it may no longer

be diagonal or block-diagonal, but it represents the same quadratic form with arguments

in V and values Z4 in as in Corollary 6.8 over the new basis. In both the alternating

and non-alternating cases, the main diagonal of D′ equals the main diagonal of D plus

2w where w is the vector in Corollary 6.8.

Proof. (a) This is known and noted in [DP18]. A key point from Gaussian elimination is that

if we alternate elementary matrices Li that do elimination in the ith column of the lower

triangle and swaps Pj,k of rows j and k, then we can rewrite Pj,kLi where j, k > i as L′iPj,k.

The matrix L′i is obtained by interchanging the entries in rows j and k of column i and those

in positions j and k on the main diagonal. (The latter is unnecessary when all diagonal entries

are 1) and is still lower-triangular. Since each L′i is still lower triangular and we can repeat

the switch for further row swaps, we obtain the lower-triangular matrix formally designated

as L−1 as the product of the L′i and the matrix designated as P> as the product of all swaps.

Since B is symmetric, corresponding events on the right give D = L−1P>BP(L−1)> of the

diagonal or block-diagonal forms stated in all of [Alb38, Sch09, DP18].

Part (b) follows simply because D and D′ have the same rank and the same block-diagonal

structure in the alternating case or diagonal structure in the non-alternating case).

The proof of (c) is the following. Suppose B′ = LDU = MEV where LM are lower

triangular and U,V are upper triangular, not even caring that U = L> and V = M> but

just that they are invertible.

First consider the non-alternating case where D and E are diagonal but not necessarily

of full rank. They must have the same rank r. Then M−1 is also lower triangular, so that

C = M−1LD is lower triangular, and U−1 is upper triangular, so that EVU−1 is upper

triangular. C = MLD = EVU−1, and the only way a lower-triangular matrix can equal an

upper-triangular matrix is when both are diagonal. So C is diagonal, and we need only argue

that C = D (= E). This follows because they have the same rank and for any i such that

D[i, i] = 0, also C[i, i] = 0.

In the alternating case, M−1L is lower triangular but its product C with D can also have a

non-zero diagonal above the main diagonal. The product EVU−1 is upper-triangular except

for the diagonal below the main. Hence C must be tri-diagonal. Every off-diagonal nonzero

element of C equals a diagonal element of M−1L multiplied by the corresponding off-diagonal

entry of D and also equals a diagonal element of VU−1 multiplying the corresponding entry

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 59

of E. By invertibility over F2 the diagonal entries are all 1, so we have proved that D and

E agree on all off-diagonal entries. The proof that they agree with each other (but not

necessarily with C) in their 1× 1 blocks on the diagonal is similar to that for the alternating

case.

The point in (d) is that when computed over Z4, D′ = L−1P>AP(L−1)> represents the

same quadratic form f originally given by A in (Equation (6.3)) but over the transformed

basis that maps ~x to ~y. Thus

f(~y) = ~y>D′~y = ~y>D~y + 2
n∑
i=1

yiwi. (6.6)

In the non-alternating case, this means any symmetric pairs d′j,k, d
′
k,j of off-diagonal elements

of D′ must sum to 0 modulo 4, and likewise off-diagonal elements in the alternating case

apart from the block elements on the super-diagonal and sub-diagonal. The diagonal must

satisfy d′j,j = dj,j + 2wj (mod 4) in either case.

6.5 Algorithm and Examples

Recall the following algorithm described in Section 6.1 for computing the amplitude 〈0n| C |0n〉
for any n-qubit quantum stabilizer circuit C:

I. Convert C to a classical quadratic form qC over Z4 that retains all quantum properties

of C.

II. Take the matrix A of qC over Z4 and associate a canonical n× n matrix B over F2 to

it.

III. Compute the decomposition B = PLDL>P> over F2 where P is a permutation matrix,

L is lower-triangular, and D is block-diagonal with blocks that are either 1×1 or 2×2.

IV. Take L−1 over F2 but compute D′ = L−1P>AP(L−1)> over Z4. (Note P> = P−1.)

If any diagonal 1 × 1 block of D has become 2 in D′, output 〈0n| C |0n〉 = 0. Else,

〈0n| C |0n〉 is nonzero and is obtained by a simple O(n)-time recursion.

Here step 1 from [RCG18] takes time linear in the number s of quantum gates in C, which for

standard-basis inputs can be bounded above by O(n2/ log n) with O(n) quantum Hadamard

gates [AG04]. Step 3 is computable in O(nω) time by [DP18], where ω is the exponent of

matrix multiplication and is at most n2.372865 [Sto10, Wil12, Gal14]. This is also the best

known time for computing n × n matrix rank over any field and for the particular inverses

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 60

and products in step 4 as well (see [CKL13]). However, when 〈0n| C |0n〉 6= 0 we show that,

in Section 6.6, its absolute value is computable quickly from r alone after step 2.

Put more simply, the decomposition in [DP18] is the same as that obtained in [Sch09]

following [Alb38, Bro72], so the normal forms for classical quadratic forms over Z4 in the

latter papers inherit the O(nω) time computability from [DP18] working over F2.

Example 1. Consider the alternating form q(x1, x2, x3) = 2x1x2 + 2x1x3 + 2x2x3. It gives

A = B =


0 1 1

1 0 1

1 1 0

 ,
which is the adjacency matrix of the triangle graph. Gaussian elimination begins by swapping

row 1 and row 2, then no more swaps are needed. So we have:

P = P1,2 =


0 1 0

1 0 0

0 0 1

 = P>, B′ = P>BP = B, and L−1 = L =


1 0 0

0 1 0

1 1 1

 .
This gives over F2,

D = LBL> =


1 0 0

0 1 0

1 1 1

 ·


0 1 1

1 0 1

1 1 0

 · L> =


0 1 1

1 0 1

0 0 0

 ·


1 0 1

0 1 1

0 0 1

 =


0 1 0

1 0 0

0 0 0

 .
But over Z4, we get

LA =


0 1 1

1 0 1

2 2 2

 , which times


1 0 1

0 1 1

0 0 1

 =


0 1 2

1 0 2

2 2 2

 = D′ ≡


0 1 0

1 0 0

0 0 2

 .
The presence of a 2 in the lower-right corner of D′, corresponding to a 1 × 1 block in the

diagonal matrix D, signals a cancellation in the 0-1 assignments a ∈ Kn giving q(a) = 0

versus those giving q(a) = 2. That is, N0(q) − N2(q) = 0. In Section 6.9.1 we will call the

simple triangle graph a “net-zero” graph.

Now, however, let us define q′ = q + 2x21. This corresponds to adding a self-loop at

node 1 to the triangle graph. This goes into the vector ~v and does not change B or the

decomposition. At the end, however, we first get that over Z4, A′ = P>AP is no longer the

same as A: it moves the 2 from the upper left corner to the center. Then we get

LA′ =


0 1 1

1 2 1

2 0 2

 , which times


1 0 1

0 1 1

0 0 1

 =


0 1 2

1 2 0

2 0 0

 = D′ ≡


0 1 0

1 2 0

0 0 0

 .

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 61

There is a 2 on the main diagonal but it is tucked within a 2× 2 block of D. Here in fact we

have N0(q
′) = 6 and N2(q

′) = 2.

An example of an alternating form q′′ with N2(q
′′) > N0(q

′′) is q′′ = 2x21 + 2x22 + 2x1x2,

which corresponds to a single edge with a self-loop at each end. Replacing each self-loop by

a triangle yields a 6-node simple undirected graph with N0 = 28 and N2 = 36. We will show

that when N0 6= N2 in the alternating case, the absolute difference is a simple function of the

rank r of B over F2.

Example 2. Consider a more detailed example.

x1 H • Z H z1

x2 H • • H z2

x3 H • H z3

From Section 6.3, Hadamard gates will introduce “nondeterministic varibles” which we will

use yi’s in the example. However, the introduced nondeterministic variables by the three

Hadamard gates at right are immediately equated to the output variables z1, z2, z3. Hence

we can skip those and only variables y1, y2, y3 from the three Hadamard gates at left. The

corresponding quadratic form is q(y1, y2, y3) = 2x1y1 + 2x2y2 + 2x3y3 + 2y1y2 + 2y2y3 + 2y21 +

2y1z1 +2y2z2 +2y3z3 with xi’s and zi’s being constants. Now consider input |x1x2x3〉 = |000〉
and output |z1z2z3〉 = |000〉. This gives an alternating quadratic form q(y1, y2, y3) = 2y1y2 +

2y2y3 + 2y21 and

A =


2 1 0

1 0 1

0 1 0

 ,
which is the adjacency matrix of the path graph of length 2 on n = 3 vertices. Gaussian

elimination does not need any prior swaps, so we have over F4,

D = LAL> =


1 0 0

0 1 0

1 0 1

 ·


2 1 0

1 0 1

0 1 0

 · L> =


2 1 0

1 0 1

2 2 0

 ·


1 0 1

0 1 0

0 0 1

 =


2 1 2

1 0 2

2 2 2

 .
But

D =


2 1 2

1 0 2

2 2 2

 ≡


2 1 0

1 0 0

0 0 2

 = D′

because q′(y) = y>Dy = y>D′y over F4. The 2 at upper left does not zero out the amplitude

since it is within a 2× 2 blocks. However, the 2 at lower right constitutes a 1× 1 block. By

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 62

our counting lemmas 6.10 and 6.11, it signifies that output |000〉 is not a possible outcome.

Here in fact we have N0(q
′) = 4 and N2(q

′) = 4.

Example 3. To make |000〉 possible in the above example, we can apply phase gate S after

Z:

x1 H • Z S H z1

x2 H • • H z2

x3 H • H z3

Analogously, after substitution we have the quadratic form q(y1, y2, y3) = 2y1y2 +2y2y3 +3y21

which becomes non-alternating. It gives

A =


3 1 0

1 0 1

0 1 0

 ,
and

D = LAL> =


1 0 0

1 1 0

0 1 1

 ·


3 1 0

1 0 1

0 1 0

 · L> =


3 1 0

0 1 1

0 2 1

 ·


1 1 1

0 1 1

0 0 1

 =


3 0 0

0 1 2

0 2 3

 .
Again we can ignore the off-diagonal 2’s and have

D =


3 0 0

0 1 2

0 2 3

 ≡=


3 0 0

0 1 0

0 0 3

 .
Since this is non-alternating and no 2 on the main diagonal, we know that the amplitude is

non-zero. Lemma 6.10 and 6.12 gives the amplitude as 2−2i
8 = 1−i

4 and so the probability of

the output |000〉 is 1
8 .

6.6 Main Results

Given any n-qubit stabilizer circuit C of size s with h nondeterministic gates, we can obtain

its associated quadratic form qC in O(s) time via the process in Section 6.3. This form has

variables ~x = x1, . . . , xn for inputs, ~z = z1, . . . , zn for outputs, and y1, . . . , yh for nondeter-

ministic variables (wlog. all coming from h Hadamard gates). It may also have the variables

called “wj” in Section 6.3, but those are introduced only to equate the final annotation term

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 63

on a qubit line j with the output variable zj without thereby forcing a value restriction for

nondeterministic variable(s) on that line, and so preserve 2h/2 as the value of the magnitude

divisor R in (Equation (6.2)). We can either treat wj as forced by zj without changing R, or

avoid introducing wj by reducing R. Since the circuits are allowed to have initial X gates on

some lines, treating ~x = (0, · · · , 0) loses no generality. For any output ~b = (b1, · · · , bm), the

quadratic form then becomes

q(~y,~b) = (
∑

αiyi +
∑

2yiyj) +
∑

2yibj mod 4

= ~y>A~y + ~y>2∆~y mod 4

in the ~y variables only. Here ∆ is a diagonal matrix with ∆i,i = bj . Because we will have

h = Θ(n) for the most part, we still refer to “n” to denote the number of variables in quadratic

forms.

Finally, we also fix the outputs bj all to be 0. We denote by ~N = (N0, N1, N2, N3) the

resulting distribution of values of qC over the 2h assignments to ~y. Reviewing the discussion

surrounding Equation (6.2) in Section 6.3, we can abbreviate the numerator of the amplitude

by

a0(~N) = N0 −N2 + i(N1 −N3). (6.7)

We use the Nc and a0 notation generally for linear and quadratic forms f without reference

to their coming from a quantum circuit. Then a0 gives the value of the exponential sum∑
x i
f(x).

Now the present the main lemmas that underlie the main theorems. Their proofs are

postponed to Section 6.7.

Lemma 6.10. For any linear function f(x1, · · · , xn) =
∑n

i=1 aixi over Z4, |N0 − N2| and

|N1 −N3| are 0 or a power of 2.

Lemma 6.11. For any Z4-valued alternating quadratic form f : V → Z4 of rank r, there is

a basis of V over which f can be rewritten as

f(~x) = 2

g∑
j=1

x2j−1x2j + 2
n∑
i=1

wixi

for some ~w = (w1, · · · , wn) ∈ Kn, and

N0 −N2 = 0 or (−1)k2n−g,

where 2g = r and k is the number of (w2j−1, w2j)-pairs in f such that (w2j−1, w2j) = (1, 1)

for j ∈ {1, · · · , g}. Also N1 = N3 = 0.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 64

Lemma 6.12. For any Z4-valued non-alternating quadratic form f : V → Z4 of rank r, there

is a basis of V over which f can be rewritten as

f(~x) =

r∑
j=1

xj + 2

n∑
i=1

wixi =

r∑
j=1

(1 + 2wj)xj + 2

n∑
i=r+1

wixi

for some ~w = (w1, · · · , wn). Define c to be the number of wi’s such that wi = 0 with

i ∈ {r + 1, · · · , n} and d to be the number of pairs such that (1 + 2wj , 1 + 2wj′) = (1, 3)

with j, j′ ∈ {1, · · · , r}. Also let m = n − c − 2d and rewrite m = 4a + b, and define η such

that η = 0 if the rest m-many coefficients are all 1’s but η = 1 if they are all 3’s. Then the

differences N0 −N2 and N1 −N3 take one of the following values:

• if b = 0, then N0 −N2 = (−1)a2(n+c)/2, N1 −N3 = 0;

• if b = 1, then N0 −N2 = (−1)a2(n+c−1)/2, N1 −N3 = (−1)a+η2(n+c−1)/2;

• if b = 2, then N0 −N2 = 0, N1 −N3 = (−1)a+η2(n+c)/2;

• if b = 3, then N0 −N2 = (−1)a+12(n+c−1)/2, N0 −N2 = (−1)a+η2(n+c−1)/2.

The connection between rank and solution counting is expressed by our main theorem

about quadratic forms after the normalization process in Lemmas 6.10 to 6.12 is applied:

Theorem 6.13. Given any normalized classical quadratic form f in n variables, we can

compute N0, N1, N2, N3 and hence a0(~N) in time O(n). Furthermore, |a0(~N)|2 is either 0 or

22n−r where r is the rank of f .

This means that the bulk of the computing time for the whole process goes into the decom-

position in Lemma 6.9, which is used to compute the normal forms asserted in Corollary 6.8.

After that, the up-to-n2 denseness of the original form does not matter and the computation

needs only O(n) time.

Proof. We show this separately for the alternating and non-alternating cases. By Corol-

lary 6.8, a normalized alternating quadratic form is of the form

f(~x) = 2

r/2∑
j=1

x2j−1x2j + 2

n∑
i=1

wixi (mod 4),

for some ~w = (w1, · · · , wn) ∈ Kn. It is easy to see that N1 −N3 is always zero since there is

no assignment to ~x = (x1, · · · , xn) that would give f(~x) = 1 or 3. Lemma 6.11 gives out

N0 −N2 = 0 or (−1)k2n−g,

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 65

which can be done in time O(n). Hence if this is non-zero, then we have

a0(~N) = (−1)k2n−g,

and

|a0(~N)|2 = 22n−r.

Similarly, a normalized non-alternating quadratic form is written as

f(~x) =

r∑
j=1

xj + 2

n∑
i=1

wixi =

r∑
j=1

(1 + 2wj)xj + 2

n∑
i=r+1

wixi (mod 4),

for some ~w = (w1, · · · , wn) ∈ {0, 1}n. Things become trivial if 2wi = 2 for some i ∈
{r + 1, · · · , n}. This makes N0 −N2 = N1 −N3 = 0.

Now assume N0 − N2 and N1 − N3 are not both zero at the same time. Then we can

derive from Lemma 6.12 that

a0(~N) = N0 −N2 + i(N1 −N3)

takes one of the following values:

• if b = 0, then a0(~N) = (−1)a2(n+c)/2;

• if b = 1, then a0(~N) = (−1)a2(n+c−1)/2 + i(−1)a+η2(n+c−1)/2;

• if b = 2, then a0(~N) = i(−1)a+η2(n+c)/2;

• if b = 3, then a0(~N) = (−1)a+12(n+c−1)/2 + i(−1)a+η2(n+c−1)/2,

where a, b and c are as defined in Lemma 6.12. Note that c = n− r. Together we have

|a0(~N)|2 = 22n−r,

and again this can be computed in O(n) time.

Now we rejoin the process of evaluating the stabilizer circuit C. It will normalize qC to q′

in one of the two forms in Corollary 6.8, which will give a matrix D′ such that q′(~y) = ~y>D′~y.

With such D′, the acceptance probability can be derived directly by Theorem 6.13.

Now we refine the statement of our main results described in Section 6.1 and rephrase

our main theorem as follows, but split (b) into two pieces, proving part (b1) here and part

(b2) in the next section.

Theorem 6.14 (Main Theorem). (a) Strong simulation of n-qubit stabilizer circuits C with

h nondeterministic single-qubit gates on standard-basis inputs (amplitude as well as the

probability) is in time O(s+ n+ hω) where 2 ≤ ω < 2.3729.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 66

(b1) Computing n×n matrix rank over F2 reduces in linear time to computing one instance

of the strong simulation probability | 〈0n| C |0n〉 |2.

(b2) Computing the strong simulation probability p = | 〈0n| C |0n〉 |2 reduces in linear time

to computing one instance of n× n matrix rank over F2 on the promise that p > 0.

Proof of (a) and (b1). (a) Let C be given, take A to be the matrix over Z4 of its classical

quadratic form qC , and take B be the associated symmetric matrix over F2. By Lemma 6.9

and the algorithm of [DP18] there is a decomposition B = PLDL>P> over F2 that is

computable in O(nω) time such that D is diagonal (in the non-alternating case) or 2 × 2

block-diagonal (in the alternating case) and equals the matrix D in Theorem 6.7. This also

computes the rank r of B. Then compute D′ = L−1P>AP(L−1)> over Z4 which again

takes O(nω) time. By Lemma 6.9(d), D′ and D yield the vector ~w in the normal form of

Corollary 6.8 for qC . Then Theorem 6.13 yields not only the probability p = | 〈0n| C |0n〉 |2

but also the entire distribution of phases as powers of i, and hence yield the amplitude

〈0n| C |0n〉.
(b1) To compute the rank r of an n × n matrix over F2, make an equivalent symmetric

matrix A by the block-transpose trick in the introduction. Not only is A alternating but it

is the adjacency matrix of a bipartite graph G = (V, V ′, E). To see that the corresponding

graph state circuit C gives p = | 〈0n| C |0n〉 |2 > 0, consider any assignment a to the variables

in V . This reduces qC to a linear form 2`(x′) of the variables x′ corresponding to nodes of

the other partition. If `(x′) vanishes modulo 2, then all extensions of a to a′ on x′ contribute

0 modulo 4. Otherwise, 2`(x′) has a nonzero term 2x′i for some i. Assignments a′ to x′ pair

off with canceling contributions 0 and 2 according to the value a′i of x′i. Thus there are never

more values of 2 than 0. Finally, the all-zero assignment to x makes `(x′) vanish, so the

difference between the numbers of 0 values and 2 values is positive. Thus the normal form

for qC with input and output 0n cannot have global cancellation, so r is a simple function of

p.

To get the converse simulation in (b2) we must consider the non-alternating case, which

arises when the stabilizer circuit C has an odd number of S or S∗ gates on some qubit line(s),

and allow for the possibility 〈0n| C |0n〉 = 0. The algorithm for amplitude in the non-

alternating case needs knowledge of individual entries in the normal form over Z4 besides the

rank r of qC .

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 67

6.7 Proofs for Important Lemmas

Proof for Lemma 6.10. The given f(x1, · · · , xn) will fall into one of the following cases:

(a) If some aj = 0, it is safe to drop this j-th variable xj since
∑n

i=1 ai · xi mod 4 =∑n
i=1,i 6=j ai·xi mod 4. DefineN ′0, N

′
1, N

′
2, N

′
3 with respect to ~x′ = (x1, · · · , xj−1, xj+1, · · · , xn).

We can see that Ni = 2N ′i for i = 0, 1, 2, 3;

(b) If some aj = 2, then for any ~x0 = (x1, · · · , xj−1, 0, xj+1, · · · , xn), it can be paired with

~x1 such that f(~x1) = f(x1, · · · , xj−1, 1, xj+1, · · · , xn) = f(~x0) + 2 mod 4. That is, if

f(~x0) = 0, then f(~x1) = 2, and vice versa. Same analysis goes to N1 and N3. Hence,

the two differences are zero in this case;

(c) If some aj = 1 and some ak = 3 (without loss of generality, assume j ≤ k), then for any

~x10 = (x1, · · · , xj−1, 1, xj+1, · · · , xk−1, 0, xk+1, · · · , xn) and f(~x10) =
∑n

i=1,i 6=j,i6=k ai ·
xi + 1 mod 4, we have f(~x01) =

∑n
i=1,i 6=j,i6=k ai ·xi + 3 mod 4, which will cancel in the

differences.

While for ~x00 = (x1, · · · , xj−1, 0, xj+1, · · · , xk−1, 0, xk+1, · · · , xn) and f(~x00) =
∑n

i=1,i 6=j,i6=k ai·
xi mod 4, f(~x11) =

∑n
i=1,i 6=j,i6=k ai · xi + 4 mod 4 = f(~x00). Hence, by dropping

both j-th and k-th variables (similar to case 1) and defining N ′i with respect to ~x′ =

(x1, · · · , xj−1, xj+1, · · · , xk−1, xk+1, · · · , xn), Ni = 2N ′i for i = 0, 1, 2, 3;

(d) If all xj ’s are 1, then for i = 0, 1, 2, 3, we have

Ni =
∑
m≥0

(
n

4m+ i

)
.

Then Lemma 6.15 gives that both differences are powers of 2.

(e) If all xj ’s are 3, then

N0 =
∑
m≥0

(
n

4m

)
, N2 =

∑
m≥0

(
n

4m+ 2

)
,

N1 =
∑
m≥0

(
n

4m+ 3

)
, N3 =

∑
m≥0

(
n

4m+ 1

)
.

Then it can be reduced to case 4 and hence both differences are powers of 2.

Note that the above procedures can be applied to a given f(~x) recursively. Overall, the

statement holds.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 68

Lemma 6.15. ∑
r≥0

(
n

4r

)
−
∑
r≥0

(
n

4r + 2

)
∑
r≥0

(
n

4r + 1

)
−
∑
r≥0

(
n

4r + 3

)
are either 0 or a power-of-2.

Proof.It is known that with ω be the d-th root of unity,

∑
r≥0

(
n

dr + c

)
=

1

d

d−1∑
j=0

ω−jc(1 + ωj)n

where 0 ≤ c < d. By simple substitutions with d = 4 and a = 0, 1, 2, 3, we get

g0 =
∑
r≥0

(
n

4r

)
−
∑
r≥0

(
n

4r + 2

)
=

1

2
(1 + ωn)(1 + ω3)n,

g1 =
∑
r≥0

(
n

4r + 1

)
−
∑
r≥0

(
n

4r + 3

)
=

1

2
ω−1(ωn − 1)(1 + ω3)n.

Rewrite n = 4a + b with a, b ∈ Z and 0 ≤ b < 4. Let g0 =
∑

r≥0
(
n
4r

)
−
∑

r≥0
(

n
4r+2

)
and

g1 =
∑

r≥0
(

n
4r+1

)
−
∑

r≥0
(

n
4r+3

)
. It is easy to verify that (1 + ω3)4 = −4 and hence we can

rewrite

g0 =
1

2
(−4)a(1 + ωb)(1 + ω3)b,

g1 =
1

2
(−4)aω3(ωb − 1)(1 + ω3)b.

Now we can analysis them case by case.

I. b = 0: g0 = (−4)a and g1 = 0;

II. b = 1: g0 = (−4)a and g1 = (−4)a;

III. b = 2: g0 = 0 and g1 = 2 · (−4)a;

IV. b = 3: g0 = (−2)(−4)a and g1 = 2 · (−4)a.

Proof for Lemma 6.11. Since f is alternating, by Corollary 6.8 and Theorem 6.7, f has

even rank r and

f(~x) = 2

r/2∑
j=1

x2j−1x2j + 2
n∑
i=1

wixi,

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 69

for some basis for V over K and for some ~w = (w1, · · · , wn) ∈ Kn. Let r = 2g for some g ∈ Z
and we can further rewrite it as

f(~x) = 2

g∑
j=1

(x2j−1 + w2j)(x2j + w2j−1) + 2
n∑

i=r+1

wixi − 2

g∑
j=1

w2j−1w2j

Without loss of generality, we first look at the variable pair (x1, x2) and its coefficient pair

(w1, w2). Denote

f ′(~x) = 2

g∑
j=2

(x2j−1 + w2j)(x2j + w2j−1) + 2
n∑

i=r+1

wixi − 2

g∑
j=2

w2j−1w2j ,

and write

f(~x) = f ′(~x) + 2(x1 + w2)(x2 + w1) + 2w1w2.

Note that f ′(~x) only depends on (x3, · · · , xn), that is, f ′(~x) = f(x3, · · · , xn). There are only

four cases to consider for h(x1, x2) = 2(x1 + w2)(x2 + w1):

• (w1, w2) = (0, 0): h(x1, x2) = 2x1x2, and h(0, 0) = 0, h(0, 1) = 0, h(1, 0) = 0, h(1, 1) =

2;

• (w1, w2) = (1, 0): h(x1, x2) = 2x1(1 + x2), and h(0, 0) = 0, h(0, 1) = 0, h(1, 0) =

2, h(1, 1) = 0;

• (w1, w2) = (0, 1): h(x1, x2) = 2(1 + x1)x2, and h(0, 0) = 0, h(0, 1) = 2, h(1, 0) =

0, h(1, 1) = 0;

• (w1, w2) = (1, 1): h(x1, x2) = 2(1 + x1)(1 + x2), and h(0, 0) = 2, h(0, 1) = 0, h(1, 0) =

0, h(1, 1) = 0.

Define Q00
i = {~x ∈ V |f(~x) = i mod 4 and x1 = 0, x2 = 0} and similarly Q01

i , Q
10
i , Q

11
i . Then

we have Qi = Q00
i ∪Q01

i ∪Q10
i ∪Q11

i . Also define S00
i = {~x ∈ V |f ′(~x) = i mod 4 and x1 =

0, x2 = 0} and analogously S01
i , S

10
i , S

11
i .

Note that f ′(~x) only depends on (x3, · · · , xn). Let S′i = {(x3, · · · , xn)|f ′(x3, · · · , xn) = i},
and we have |S′i| = |S00

i | = |S01
i | = |S10

i | = |S11
i |. Now analyze the above four cases separately:

• (w1, w2) = (0, 0): we have

f(~x) = f ′(~x) + 2x1x2,

If ~x00 ∈ Q00
i , then f(~x00) = f ′(~x00) = i, same for Q01

i , Q
10
i , while if ~x11 ∈ Q11

i , then

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 70

f(~x11) = f ′(~x11) + 2 and hence f ′(~x11) = i+ 2. Now for some c ∈ {0, 1},

Nc −Nc+2 = |Q00
c |+ |Q01

c |+ |Q10
c |+ |Q11

c | − (|Q00
c+2|+ |Q01

c+2|+ |Q10
c+2|+ |Q11

c+2|)

= |S00
c |+ |S01

c |+ |S10
c |+ |S11

c+2| − (|S00
c+2|+ |S01

c+2|+ |S10
c+2|+ |S11

c |)

= 3|S′c|+ |S′c+2| − (3|S′c+2|+ |S′c|)

= 2(|S′c| − |S′c+2|).

• (w1, w2) = (1, 0): by the similar analysis, |Qc| − |Qc+2| = 2(|S′c| − |S′c+2|).

• (w1, w2) = (0, 1): |Qc| − |Qc+2| = 2(|S′c| − |S′c+2|).

• (w1, w2) = (1, 1): |Qc| − |Qc+2| = −2(|S′c| − |S′c+2|).

Hence, we can reduce the counting of |Qc| − |Qc+2| over (x1, · · · , xn) to the counting of

|S′c| − |S′c+2| over (x3, · · · , xn), and gradually after g-many such reduction, we can derive

|Qc| − |Qc+2| = (−1)m2g(|Q′c| − |Q′c+2|),

where Q′c = {(xr+1, · · · , xn)|2
∑n

i=r+1wixi = c} and m is the number of (w2j−1, w2j) pairs in

f(~x) such that (w2j−1, w2j) = (1, 1), hence 2w2j−1w2j = 2.

Now it is left to argue that
∣∣|Q′c| − |Q′c+2|

∣∣ is either zero or a power of 2. Let q(x) =∑n
i=r+1 2wixi. Since wi ∈ {0, 1}, q(x) is linear with coefficient from {0, 2}. Then we can

reduce it to the 1st and 2nd cases in Lemma 6.10. In the 2nd case, it gives that |Q′c|−|Q′c+2| =
0 if wi = 1 for some i ∈ {r+ 1, · · · , n}. Now assume non-zero case. Then we have wi = 0 for

all i ∈ {r + 1, · · · , n}, which gives

|Q′c| − |Q′c+2| = (−1)m2g2n−r = (−1)m2n−g,

and hence it completes the proof.

Proof for Lemma 6.12. Since f is non-alternating, by Corollary 6.8, there exists a basis

for V over K, determining the coordinates (x1, · · · , xn), such that

f(~x) =
r∑
j=1

xj + 2
n∑
i=1

wixi,

for some ~w = (w1, · · · , wn) ∈ Kn. By rearranging, we have

f(~x) =

r∑
j=1

(1 + 2wj)xj + 2

n∑
i=r+1

wixi =

r∑
j=1

w′jxj + 2

n∑
i=r+1

wixi,

where w′j = 1 + 2wj . Note that w′j can only be 1 or 3. Then we can reduce it to the 2nd,

3rd, 4th and 5th cases in Lemma 6.10.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 71

The 2nd case gives the trivial case where both N0−N2 and N1−N3 are zero. Now assume

non-zero case. Then we have w′i, wi ∈ {0, 1, 3}.
Define c to be the number of wi’s such that wi = 0 with i ∈ {r + 1, · · · , n} and d to be

the number of pairs such that (1 + 2wj , 1 + 2wj′) = (1, 3) with j, j′ ∈ {1, · · · , r}. Also let

m = n − c − 2d and rewrite m = 4a + b, and define η such that η = 0 if the rest m-many

coefficients are all 1’s but η = 1 if they are all 3’s. Then the differences N0−N2 and N1−N3

are taking one of the following values:

• if b = 0, then N0 −N2 = (−1)a2(n+c)/2, N1 −N3 = 0;

• if b = 1, then N0 −N2 = (−1)a2(n+c−1)/2, N1 −N3 = (−1)a+η2(n+c−1)/2;

• if b = 2, then N0 −N2 = 0, N1 −N3 = (−1)a+η2(n+c)/2;

• if b = 3, then N0 −N2 = (−1)a+12(n+c−1)/2, N0 −N2 = (−1)a+η2(n+c−1)/2. �

6.8 More Properties from the Simulation

Note that Lemmas 6.10, 6.11, and 6.12 and the proof method of Theorem 6.13 apply to more

general input ~a and output ~b as well, so that we have the following supplementary result:

Theorem 6.16. Given a stabilizer circuit C and its quadratic form qC(~y, ~z), assume we know

Q,D1 and D2 with entries in F2 such that ~y>Q>AQ~y = ~y>(D1 + 2D2)~y where

• if qC is alternating, D2 is a diagonal matrix with entries in {0, 1} and D1 = M1⊕· · ·⊕
Mg has even rank r = 2g over F2;

• if qC is non-alternating, D1 and D2 are both diagonal matrices with entries in {0, 1}.

Then we can compute | 〈~b| C |~0〉 |2 for any output vector ~b to the circuit in O(en) time where

n = |~y| and e is the number of ones in ~y.

Proof. Assume Q = (Qi,j) with Qi,j ∈ F2 and take any output vector ~b. Then qC(~y,~b) =

~y>A~y + ~y>∆~y and we have

~y>Q>AQ~y + ~y>Q>∆Q~y = ~y>(D1 + 2D2)~y +
∑
i

2~y>Ei~y

= ~y>D1~y + ~y>2(D2 +
∑
i

Ei)~y

where Ei is a diagonal matrix diag(Qi,1, · · · , Qi,n) for i such that ∆i,i = 1 and D1 varies de-

pending on whether it is alternating or non-alternating. Then each Ei = diag(Qi,1, · · · , Qi,n)

can be obtained in O(n) time given the matrix Q.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 72

We also know that in both the alternating and non-alternating cases, the output prob-

ability | 〈~b| C |~0〉 |2 is determined by the rank of D1 if | 〈~b| C |~0〉 |2 6= 0. Now we will show

that with the knowledge of such Q, we can tell | 〈~b| C |~0〉 |2 = 0 in O(en) time.

First suppose qC(~y, ~z) is alternating and n = |~y|, then for output ~b we can rewrite

~y>D1~y + ~y>2(D2 +
∑
i

Ei)~y =

g∑
j=1

2y2j−1y2j +
n∑
i=1

2wiyi mod 4,

where wi ∈ {0, 1}.
Once we finish updating the above equation (which takes O(en) time), we can by Lem-

ma 6.11, get the value 〈~b|C|~0〉 and identify if | 〈~b|C|~0〉 |2 = 0 which happens when wi = 0 for

some i ∈ {r + 1, · · · , n}. Analogously, this also can be done in O(en) time by Lemma 6.12

for non-alternating cases.

Now consider a graph G = (V,E) and its adjacency matrix AG. Assume we are also

given matrix P such that P>AGP = D where D is in normalized form. Let Ei be the

matrix with only the (i, i)-th entry being 1 and others 0. Also let E~v = diag(v1, · · · , vn) with

~v = (v1, · · · , vn). It is easy to check that P>2EiP is again a diagonal matrix. More precisely,

P>2EiP = 2diag(Pi,1 · · · , Pi,n) mod 4,

and we have

P>2E~vP = 2
∑
i:vi=1

diag(Pi,1 · · · , Pi,n) mod 4.

Suppose the vector set {~vi} with cardinality rank(AG) over F2 such that

P>2E~viP = 2Ei.

With Lemma 6.10, Lemma 6.11 and Lemma 6.12, we can check that the vector space spanned

by {~vi} over F2 gives all the vector ~b such that 〈~b|CG|0n〉 6= 0. The proof can be extended

directly from the proof for those lemmas. Hence we have the following:

Lemma 6.17. Given an adjacency matrix A for a stabilizer circuit, the set of all outputs of

non-zero amplitudes form a vector space (affine space) of dimension rank(A) over F2.

Proof. For convenience, consider an adjacency matrix A for a bipartite graph. Assume given

matrices P and D such that P>AP = D over Z4 where D is a normalized form (might be

with 0/2 on the diagonal). Say the rank of D is r. Note that this type of stabilizer circuits

always has non-zero amplitude on output 0n. Then D has no non-zero entries on the diagonal

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 73

from (r + 1)-th through n-th positions by Lemma 6.11, since D corresponds to output 0n.

For other output ~b, we have

P>(A + 2E~b)P = D + 2
∑
i:bi=1

diag(Pi,1 · · · , Pi,n) = D~b
mod 4.

Again the amplitude on ~b is non-zero only when there is no non-zero entries on the diagonal

of D~b
from (r+1)-th through n-th positions. We can see that for any two non-zero amplitude

~b1 and ~b2, the matrix D + 2
∑

i:b1,i=1 diag(Pi,1 · · · , Pi,n) + 2
∑

i:b2,i=1 diag(Pi,1 · · · , Pi,n) will

never have non-zero entries on the diagonal from (r + 1)-th through n-th positions. Thus

the output ~b1 + ~b2 is of non-zero amplitude as well. Hence the set of outputs with non-zero

amplitude forms a subgroup over Fn2 with 0n be the identity.

6.9 Interpretations and Conclusions

We have improved the asymptotic running time for strong simulation of n-qubit stabilizer

circuits (with typical size and nondeterminism) from O(n3) to O(nω). We have also shown a

linear time reduction from matrix rank over F2 to strong simulation. One interpretation of

the latter is:

The time gap between weak and strong simulation for stabilizer circuits cannot be closed

unless n× n matrix rank over F2 is computable in O(n2) time.

The direction from the quantum simulation to matrix rank comes close to establishing a

complete equivalence of them, especially for the simulation probability p. Via analysis of “self-

dual” forms we have reduced the probability computation to the alternating case, in which

by Lemma 6.11 and Theorem 6.13 we get a simple expression whose absolute value depends

only on the rank and whether p = 0. That puts focus on the complexity of deciding whether

p, or equivalently the amplitude a = 〈0n| C |0n〉, is zero, specifically in the alternating case

where a is always real.

Besides, we find further connections to graph theory and matroid theory as discussed

below:

• In Section 6.9.1, we define a new class of graphs, named net-zero graph, which is natu-

rally connected to the problem of whether 〈0n| C |0n〉 is zero or not.

• Section 6.9.2 shows that 〈0n| C |0n〉 is indeed an instance of general Tutte invariants.

We have shown tight connections to the fundamental problems of counting solutions to

quadratic forms f over F2 and Z4. For F2 we get that 2f is an alternating form over Z4

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 74

with the same solution count over {0, 1}n, so the near-equivalence to matrix rank applies.

In any event we have reduced the F2 case to matrix multiplication in a way that improves

the O(n3) running time stated in [EK90] to O(nω). For binary solution counting of non-

alternating classical quadratic forms over Z4, we obtain O(nω) runtime via methods that

multiply matrices as well as compute rank.

When the non-Clifford gate CS is added to create a universal set, the quadratic forms over

Z4 have terms xy or 3xy. They are no longer classical and the connection to F2 exploited by

[Sch09] no longer applies. No such connection can apply, nor any extension of the algorithm

in [DP18] a-fortiori, unless BQP = P. There is also the sharp dichotomy theorem of [CLX14]

that solution counting for these forms over all of Zn4 is in polynomial time, but over {0, 1}n

it is #P-complete. This extends to affine versus non-affine forms over ZnK , K = 2k. Deeper

understanding of why the dichotomy operates may illuminate exactly which elements of

quantum computations create hardness for classical emulation (for this, see [Bac17, Bac18]).

Nevertheless, perhaps these techniques can apply to heuristic or approximative methods

on general quantum circuits. The polynomial translation in [RCG18] applies to quantum

circuits of all common gate types. There are questions about analyzing circuits that are

“mostly Clifford” or those from the Clifford plus T libraries that try to minimize the latter

gates, of which we mention[BG16, MFIB18, BBC+19]. For example, are there reasonably-

tight bounds for the numbers of the non-Clifford gates required to compute certain functions

that can be obtained efficiently by algebraic means, without resort to exhaustive search?

A closer look into Lemma 6.11 and Lemma 6.12 suggests that the probability of a specific

output or the distribution over the entire output set can serve as a metric to test whether

two given quantum stabilizer circuits are (not) equivalent. Let hi0, h
i
1 be two corresponding

h0, h1 differences for circuit Ci/quadratic form fi(~x). Then we can define the following two

concepts accordingly.

Definition 6.18. Given two quantum circuits C1 and C2, we call C1 and C2 are weakly

equivalent, denoted by C1
w
≈ C2 if

| 〈~z| C1 |~a〉 |2 = | 〈~z| C2 |~x〉 |2

for a fixed input ~a and all possible outputs ~z.

Recall from Section 6.1 the definition of Nj(q(y)) as the number of arguments y giving

q(y) = j.

Definition 6.19. Given two quantum circuits C1 and C2, we call C1 and C2 are strongly

equivalent, denoted by C1
s
≈ C2 if for all ~a and ~b, the amplitudes of C1 and C2 are the same,

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 75

that is,

|Nj(Q1(~a, ~y,~b))| = |Nj(Q2(~a, ~y,~b))|.

Now consider C1
s
≈ C2 for two given stabilizer circuits. The corresponding Q1(~x, ~y, ~z) and

Q2(~x, ~y, ~z) will be of the forms as stated in Section 6.6. Without loss of generality, assume ~0.

Note that the resulting Q1(~y, ~z) and Q2(~y, ~z) can be associated with two graphs. Each graph

has two sets of nodes ~y and ~z. The nodes in ~y can be connected by edges in any way, while

there is no edge between nodes among ~z and each node is connected by exactly one node

from ~y without overlapping node. Hence, this should be a strict class among graphs and this

gives out another interesting question, does C1
s
≈ C2 implies that their associated graphs are

isomorphic? If this is true, we will have, C1
s
≈ C2 if and only if their associated graphs are

isomorphic. Note that C1
s
≈ C2 says |Ni(Q1)| = |Nj(Q2)| for all possible outputs, which are

exponentially many. We ask:

• If |Nj(Q1)| = |Nj(Q2)| for all possible outputs, does Q1(~y,~b)
F2∼ Q2(~y,~b) for all possible

~b?

• For the case where C1
w
≈ C2, can we pose a similar question, but in terms of rank?

6.9.1 Net-Zero Graphs

The alternating case comes down to graph-state circuits CG and can be framed in terms apart

from quantum computing. Consider black/white two-colorings (not necessarily proper) of the

n vertices of G, and count the number of edges whose two nodes are both colored black. Call

those B-B edges. Define c0 to be the count of colorings that make an even number of B-B

edges and c1 = 2n − c0 to be the count of colorings that make an odd number of B-B edges.

The following is called a(G) for “amplitude” and divides by 2n not 2n/2 because CG has 2n

Hadamard gates.

a(G) =
c0 − c1

2n
.

Definition 6.20. Call an undirected graph G net-zero if a = 0, net-positive if a > 0, and

net-negative if a < 0.

The connection between net-zero graphs and stabilizer circuits is bridged via classical

quadratic forms over Z4. Following the conversion rules in Section 6.3 (and an example in

Section 6.5), the connection shows that

〈0⊗n| C |0⊗n〉 is zero if and only if the associated graph G is net-zero.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 76

The following proposition collects some basic facts:

Proposition 6.21. (a) Every odd cycle graph is net-zero.

(b) Every bipartite graph is net-positive.

(c) A graph is net-zero if and only if one of its connected components is net-zero.

(d) If G is net-zero, then the graph G′ obtained by attaching a new node v only to one

existing node u, then attaching a second new node w only to v, is also net-zero.

Proof. Part (a) follows because every coloring has an even number of B-W edges. Hence

the number of monochrome edges is odd, and so complementing the coloring flips the parity

between B-B and W-W edges. Part (b) was part of the proof of Theorem 6.14(b1). Part (c)

is intuitive from how the quantum state is a tensor product over the connected components,

so the events of all-0 output on each component are independent. The proof of (d) is that

whether u is colored black or white, exactly one of the four colorings of v and w creates one

more B-B edge. Thus | 〈0n+2| CG′ |0n+2〉 |2 is directly proportional to | 〈0n| CG |0n〉 |2.

The smallest net-zero graph is the triangle graph. The graph made by attaching a second

triangle is net-zero, as is the graph made by attaching a triangle to any of the latter’s four

outer edges. As observed at the end of section 6.4, the six-node graph consisting of two

triangles connected by an edge is net-negative. Here are the connected net-zero graphs of 3,

4, and 5 nodes:

An isolated self-loop is net-zero, while an edge with two self-loops is net-negative. This

includes the quadratic forms produced by Lemma 5.2 in our paper [GR19] and we conclude:

Corollary 6.22. If net-zero graphs of n nodes with self-loops allowed are recognizable in

O(n2) time then computing | 〈0n| C |0n〉 | for stabilizer circuits C (of O(n2) size with O(n)

nondeterminism) is O(N)-time equivalent to computing n× n matrix rank, where N = n2.

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 77

6.9.2 Representation via General Tutte Invariant

The above concept of net-zero graphs can further be related to matroid theory. More precisely,

they extend to graphs with circles, which are isolated loops without a vertex and contribute a

multiplicative −1, and more generally to graphical 2-polymatroids with rank function fG(A)

defined for any set A ⊆ E to be the total number of vertices touched by edges in A.

We follow [Nob06] to give the definition of matroids. A matroid is defined by a set U and

a function f from finite subsets of U to N that obeys the following rules:

I. f(∅) = 0;

II. for all a ∈ U , f({a}) ≤ 1;

III. if A ⊆ B then f(A) ≤ f(B); and

IV. if A ⊆ B and c /∈ B then f(A ∪ {c})− f(A) ≥ f(B ∪ {c})− f(B).

The notion of rank in an ordinary vector space obeys these axioms, where we may identify

a matrix with its set A of row-vectors. The third axiom says that if B includes all the vectors

in A then its rank cannot be lower, and the fourth says that if adding a vector c to B increases

its rank—meaning c is independent of B—then it is also independent of A and so the rank

of A ∪ {c} likewise goes up (by 1). Thus matroids abstract the notions of rank and linear

independence in vector spaces.

The definition of a polymatroid simply wipes out rule 2. OK, a k-polymatroid replaces

it by the rule that for all singleton sets {a} have f({a}) ≤ k. An important kind of 2-

polymatroid springs from the following idea:

The “f -rank” of a subset A of the edges in a graph G is the number of vertices

collectively touched by edges in A.

In a simple undirected graph, every edge has f -rank 2. In graphs with self-loops, however,

the loops have rank 1. We can also allow the universe U to include members of f -rank 0.

Those are visualized as loops without a vertex and called circles. We could also visualize

edges of rank 1 that stick out from a vertex v into empty space, but those are formally the

same as loops at v. This is how Noble defines a graphic(al) 2-polymatroid.

Then a(fG) becomes a generalized Tutte invariant (see [OW93, Nob06]) with parameters

(r, s, t; a, b, c, d;m,n) = (1/2,−1, 0; 1,−1, 1,−1/2; 1,−1/2).

This gives

a(G) =

(
−1

2

)n/2
S(fG;−

√
2i,
√

2i), where S(f ;x, y) =
∑
A⊆E

xf(E)−f(A)y2|A|−f(A),

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 78

by the main theorem of [OW93]. This in turn further simplifies to

a(G) =
∑
A⊆E

(−2)|A|

2fG(A)
.

Noble [Nob06] shows that computing S(fG;x, y) is #P-hard for any constant rational x, y

whenever xy 6= 1. The complex irrational point (−
√

2i,
√

2i) has xy = 2 but evades his proof

because having y2 = −2 makes a denominator vanish. Other connections between quantum

graph states and matroids have been shown by Sarvepalli [Sar14], and there is scope for

further development along these lines.

Before showing how to get the desired formula a(G) =
(
−1

2

)n/2
S(fG;−

√
2i,
√

2i), following

[Nob06], we need to define two operations on graphs: edge-deletion and edge-explosion.

(a) Deleting an edge e: G\e
(b) Exploding an edge e: G/e

Figure 6.2: Deletion and Explosion.

Edge-deletion G\e simply removes edge e from the graph. While in edge-explosion G/e,

two vertices disappear. Not only does the edge e = (u, v) disappear, but any other edge

incident to u or v from a vertex w 6= u, v gets “recoiled” into a loop at w.

Following Noble’s paper, let M denotes the class of all graphic 2-polymatroids and let

U0,1, U1,1 and U2,1 are the graphic polymatroids with precisely one edge e, which is respectively

a circle, loop or edge between two vertices. An edge e is called a separator in G if and only

if the endpoints of e and the set of endpoints of edges in E\e are disjoint, that is, e is an

isolated edge.

Then φ :M→ C is said to be a generalized Tutte invariant (for graphic 2-polymatroids)

if there exist constants (r, s, t, a, b, c, d,m, n) ∈ C9 such that

φ(U2,1) = r, φ(U0,1) = s, φ(U1,1) = t,

and for any graphic 2-polymatroid (E, f),

φ(f) = φ(f\(E\e))φ(f\e) if e is a separator of f ;

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 79

and if e is not a separator,

φ(f) =


aφ(f\e) + bφ(f/e), if f(E\e) = f(E) and f(e) = 1;

cφ(f\e) + dφ(f/e), if f(E\e) = f(E)− 1 and f(e) = 2;

mφ(f\e) + nφ(f/e), if f(E\e) = f(E) and f(e) = 2.

Before plugging into the above equations, we need a 2-term recursion formula based on

edge-deletion and edge-explosion. Define c(G) = c0−c1 and then a(G) = c(G)/2|V |. Consider

a connected graph G = (V,E) and an edge e = (u, v) ∈ E. The recursion formula can be

worked out as follows:

c(G) = c(G)
u, v are both black

+ c(G)
at least one of u, v is white

= c(G)
u, v are both black

+ c(G\e)
at least one of u, v is white

= c(G\e)
at least one of u, v is white

− c(G\e)
u, v are both black

= c(G\e)− 2c(G\e)
u, v are both black

= c(G\e)− 2c(G/e),

and in turn

a(G) =
c(G\e)

2|V |
− 2

4
· c(G/e)

2|V |−2
= a(G\e)− 1

2
a(G/e).

If e is a self-loop, we can use a similar argument to derive

a(G) = a(G\e)− a(G/e).

Now we can start working out those constants for φ(G) = a(G). Recall that the rank value

f(A) in a graph G is the number of distinct endpoints of edges in set A.

r = a(U2,1) =
1

2

s = a(U0,1) = −1

t = a(U1,1) = 0.

If e is not a separator, we only have two cases to consider–if e is a self-loop or an edge

connecting two vertices:

• if f(E\e) = f(E) and f(e) = 1, then this edge e is a self-loop and from above we have

a = 1, b = −1;

• if f(E\e) = f(E) − 1 and f(e) = 2, or f(E\e) = f(E) and f(e) = 2, then e is an

ordinary edge making c = m = 1 and d = n = −1
2 .

CHAPTER 6. STABILIZER CIRCUITS AND COMPUTING MATRIX RANK 80

Overall, this gives the set of parameters and hence the desired formula for a(G) as stated

above.

Chapter 7

Attack on Matrix Rank over F2

The result of Chapter 6 gives some insights towards a possible breakthrough on the problem

of computing the rank of an m×n (dense) matrix over F2. The best known time for computing

rank over any field is O(nω), and no better time is known over F2 in particular. Although

rank reduces to matrix multiplication, they are not known to be equivalent. So it is possible

that computing rank might be in Õ(n2) time where equivalently ω = 2. The idea of possibly

putting rank in o(nω) time came from combining the quadratic form analysis (in Chapter

6) with Fourier analysis.

We prove a few special cases. The results of this chapter have not yet been incorporated

into a paper for submission. First we review the top-level algorithms and concepts.

7.1 Motivation

Recall the following algorithm for computing the rank r of an n×n matrix A0 over the field

F2:

I. Form the symmetric block matrix A =

[
0 A0

A>0 0

]
.

II. Form the quantum graph state circuit CA for the bipartite graph with adjacency matrix

A.

III. Calculate p = the quantum probability that CA(02n) = 02n. The bipartite case assures

p > 0.

IV. Output r = log2(1/
√
p).

Note that step 3 dominates the runtime, which is a counting problem over a graph.

81

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 82

Consider the following 2× 4 matrix

A0 =

[
1 1 0 1

1 0 1 0

]
,

and the corresponding bipartite graph G = (V,E):

Figure 7.1

Associate the graph with the polynomial

q(~x) =
∑

(i,j)∈E

xixj = x1x4 + x1x5 + x1x7 + x2x4 + x2x6 mod 2,

and define s0 to be the cardinality of the set {~x : q(~x) = 0 mod 2} and similarly, s1 be that

for {~x : q(~x) = 1 mod 2}. Then the wanted value in step 3 is

p =
s0 − s1

2|V |
=

∑
~x∈Fn2

f(~x)

2n
,

where |V | = n and

f(~x) = (−1)q(~x).

Hence, the problem of rank computing is reduced to the solution counting on f(~x).

To get more intuitions, we can consider the corresponding quantum circuit for this bi-

partite graph. In general, every graph can be converted into a quantum (stabilizer) circuit.

Recall that given an input, the outputs of a quantum circuit are associated with ampli-

tudes such that the probability of “seeing” an output is the square norm of its amplitude.

The above graph is transformed into the following circuit in Figure 7.2, where the H’s are

Hadamard gates and the dots on different horizontal lines being connected by a vertical string

are control-Z gates (which are the edges in the graph). This circuit has all-zero input, and

we are concerned with what are the output vectors with non-zero amplitudes. A nice fact

(discussed in Section 6.8) is that the set of output vectors with non-zero amplitude forms an

(affine) subspace.

We can thus relate the rank to the dimension of this (affine) subspace S. To be sure,

the rank is already definable as the dimension of the space R spanned by the rows of the

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 83

Figure 7.2

original matrix A. The point of using S is that we might be able to attack the problem of

its dimension better using Fourier analysis iteratively/recursively.

7.2 Insights from Fourier Analysis

Now think of f(~x) as a function f : Fn2 → C with Fn2 being a finite group of size 2n and define

the character of Fn2 to be ψa(~x) = (−1)~a�~x. By Fourier analysis, we have

p = E
~x∈Fn2

[f(~x)] = E
~x∈Fn2

[f(~x) · ψ0(~x)] = f̂(0),

where f̂ is a Fourier coefficient of f , and a nice property–Plancherel Identity–can come in to

play. More precisely, let

f(~x) = (−1)q(~x) = (−1)x1x4+x1x5+x1x7(−1)x2x4+x2x6 = f1(~x) · f2(~x)

and define inner product between two functions h, g : Fn2 → C to be 〈h, g〉 = Ex∈Fn2 [h(~x)g(~x)].

Then

f̂(0) = E
~x∈Fn2

[f(~x)] = E
~x∈Fn2

[f1(~x)f2(~x)] = 〈f1, f2〉

and Plancherel Identity gives

〈f1, f2〉 =
∑
a∈Fn2

f̂1(~a)f̂2(~a).

That says that the counting problem over f can be broken into two smaller counting problems

(over two smaller subgraphs).

Can this help design an iterative/recursive algorithm for the counting problem with o(nω)

time?

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 84

If so, we get an algorithm computing rank of a matrix over F2 with less time than matrix

multiplication.

DefineH1 = {~a : f̂1(~a) 6= 0} andH2 = {~a : f̂2(~a) 6= 0}. The sum becomes
∑

a∈H1∩H2
f̂1(~a)f̂2(~a).

Indeed, both H1 and H2 are subspaces (subgroups) of Fn2 (discussed in Section 6.8), meaning

H1 and H2 can be enumerated with two sets of bases. Moreover, f̂1(~a) = ± 1
2h1

for all ~a ∈ H1

and 2h1 equals the rank of the adjacency matrix of the corresponding subgraph (which is

illustrated in Figure 7.3); analogous for f̂2 and H2. This also means that dim(H1) = 2h1 and

dim(H2) = 2h2.

Figure 7.3

For our example, dim(H1) = dim(H2) = 2. LetH1 = span{~v1, ~v2} andH2 = span{~w1, ~w2}.

p = f̂1(0)f̂2(0) + f̂2(~v1)f̂2(~v1) + f̂1(~v2)f̂2(~v2) + f̂1(~v1 + ~v2)f̂2(~v1 + ~v2)

= f̂1(0)f̂2(0) + f̂2(~w1)f̂2(~w1) + f̂1(~w2)f̂2(~w2) + f̂1(~w1 + ~w2)f̂2(~w1 + ~w2).

There will be three cases to consider (more details in Section 7.4): dim(H1 ∩H2) = 0, 1 or 2.

Hence now, the question is further reduced to:

Given two sets of bases for two subspaces H1 and H2, compute H1 ∩H2.

From the discussion in Section 7.4, if H1∩H2 is known, f̂(0) could be computed efficiently.

So is the basis for the subspace where f̂ 6= 0.

7.3 Fourier Analysis on Finite Groups

Let G be a finite abelian group. a character of G is simply a homomorphism ψ from G to the

multiplicative group of the complex numbers C∗ : ψ(a + b) = ψ(a)ψ(b), and ψ(−a) = 1
ψ(a) .

Since G is finite, we have that every element in the image of ψ is a root of unity, and thus
1

ψ(a) = ψ(a).

Characters form a group under multiplication. Define the dual group of G to be the group

Ĝ of all characters of G. Let ψ0 be the trivial character, which maps all of G to 1; this is the

identity element of Ĝ.

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 85

Examples. Let G = Zp (p need not be prime) and ωp = e
2πi
p . For a ∈ Zp, define ψa : G→ C

by:

ψa(x) = ωaxp .

Here we can see that ωp is the primitive p-th root of unity. Then Ĝ = {ψa|a ∈ Zp}. In our

case, G = Z2n , and for a ∈ Z2n , define ψa : G→ C by:

ψa(x) = (−1)a�x = (−1)
∑n
i=1 aixi .

Then Ĝ = {ψa|a ∈ Z2n}.
Inner Product. For two complex-valued functions f, g on G, define the inner product to be

〈f, g〉 =
1

|G|
∑
a∈G

f(a)g(a) = E
a∈G

[f(a)g(a)].

Now we can see that every function f : G→ C can be written as a linear combination of

characters of G.

Lemma 7.1. Every f : G→ C has the following expression:

f(x) =
∑
a∈Ĝ

f̂(a)ψa(x),

where

f̂(a) = 〈f, ψa〉 = E
x∈G

[f(x)ψa(x)].

Lemma 7.2 (Plancherel Identity.). Let f, g : G→ C, then:

〈f, g〉 = |G|〈f̂ , ĝ〉 =
∑
a∈Ĝ

f̂(a)ĝ(a).

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 86

Proof.

〈f(x), g(x)〉 = E
x∈G

[

∑
a1∈Ĝ

f̂(a1)ψa1(x)

∑
a2∈Ĝ

ĝ(a1)ψa2(x)

]

= E
x∈G

[
∑

a1,a2∈Ĝ

f̂(a1)ψa1(x)ĝ(a2)ψa2(x)]

=
∑

a1,a2∈Ĝ

E
x∈G

[f̂(a1)ψa1(x)ĝ(a2)ψa2(x)]

=
∑

a1,a2∈Ĝ

f̂(a1)ĝ(a2) E
x∈G

[ψa1(x)ψa2(x)]

=
∑

a1,a2∈Ĝ

f̂(a1)ĝ(a2)1a1=a2

=
∑
a∈Ĝ

f̂(a)ĝ(a)

= |Ĝ| E
a∈Ĝ

[f̂(a)ĝ(a)]

= |G|〈f̂ , ĝ〉.

Lemma 7.3 (Parseval Identity.). Let f : G→ C, then

〈f, f〉 = ‖f‖22 =
∑
a∈Ĝ

|f̂(a)|2.

7.4 Base Example

Consider a base case Figure 7.4: an n-node bipartite graph G = (V,E) with two nodes on

LHS and arbitrary many nodes on RHS. Then the corresponding quadratic form will be

q(x) = 2x1
∑

(1,i)∈E

xi + 2x2
∑

(2,i)∈E

xi mod 4.

Moreover in bipartite cases, it is equivalent to

q(x) = x1
∑

(1,i)∈E

xi + x2
∑

(2,i)∈E

xi mod 2.

Hereafter, we identify q(x) with the one over F2. Define

f(x) = (−1)q(x).

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 87

Figure 7.4

Now let

g1(x) = (−1)x1
∑

(1,i)∈E xi , g2(x) = (−1)x2
∑

(2,i)∈E xi .

We have f(x) = g1(x)g2(x).

Note that the amplitude 〈0n|CG|0n〉 = f̂(0) now equals 1
2n
∑

x∈Fn2
g1(x)g2(x), and more

precisely, it is the following:

f̂(0) =
1

2n

∑
x∈Fn2

g1(x)g2(x) = 〈g1, g2〉 =
∑
a∈Fn2

ĝ1(a)ĝ2(a),

where the last equality follows Plancherel Identity. More generally, we have

f̂(b) =
1

2n

∑
x∈Fn2

g1(x)g2(x)ψb(x)

= 〈g1, g2 · ψb〉

=
∑
a∈Fn2

ĝ1(a)ĝ2 · ψb(a)

=
∑
a∈Fn2

ĝ1(a)〈g2 · ψb, ψa〉

=
∑
a∈Fn2

ĝ1(a)〈g2, ψb+a〉

=
∑
a∈Fn2

ĝ1(a)ĝ2(b+ a).

Apparently, we also have f̂(b) =
∑

a∈Fn2
ĝ1(b+ a)ĝ2(a) from commutativity.

Note that the rank of the adjacency matrix for component defined by g1 is 2, and so is for

g2. Now suppose V = span({~v1, ~v2}) (as defined and discussed in Section 6.8) for g1 such that

ĝ1(c1 ~v1 + c2 ~v2) 6= 0 with ci ∈ F2, and W = span({ ~w1, ~w2}) for g2. Without loss of generality,

assume ĝ1(0) = ĝ1(~v1) = ĝ1(~v2) > 0 and ĝ1(~v1 + ~v2) < 0. Same for g2. Now we have

f̂(b) =
∑
a∈Fn2

ĝ1(a)ĝ2(b+ a)

=
1

2
ĝ2(~b) +

1

2
ĝ2(~b+ ~v1) +

1

2
ĝ2(~b+ ~v2)−

1

2
ĝ2(~b+ ~v1 + ~v2).

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 88

There will be three different cases to consider:

I. V ⊥W

II. dim(V ∩W) = 1

III. dim(V ∩W) = 2, i.e., V = W

Case (1): V ⊥W .

f̂(~0) =
1

2
ĝ2(~0) +

1

2
ĝ2(~0 + ~v1) +

1

2
ĝ2(~0 + ~v2)−

1

2
ĝ2(~b+ ~v1 + ~v2) =

1

4
=

1

2r/2
,

because ĝ2(~v1) = ĝ2(~v2) = ĝ2(~v1 + ~v2) = 0 and ĝ2(~0) = 1
2 . Hence, the total rank is 4. We

can also see that the basis set {~v1, ~v2, ~w1, ~w2} gives the vector space (V ∪ W) such that

f̂(~b) 6= 0,∀~b ∈ V ∪W .

Case (2): dim(V ∩W) = 1. Let ~t be the basis vector of the intersection space. We do a

case-by-case analysis to all the possible situations as listed below:

(a) ~t = ~v1 = ~w1: rank = 2, basis { ~w1, ~w2 + ~v2}

(b) ~t = ~v2 = ~w2: rank = 2, basis { ~w2, ~w1 + ~v1}

(c) ~t = ~v1 = ~w2: rank = 2, basis { ~w2, ~w1 + ~v2}

(d) ~t = ~v2 = ~w1: rank = 2, basis { ~w1, ~w2 + ~v1}

(e) ~t = ~v1 + ~v2 = ~w1: not possible

(f) ~t = ~v1 + ~v2 = ~w2: not possible

(g) ~t = ~v1 = ~w1 + ~w2: not possible

(h) ~t = ~v2 = ~w1 + ~w2: not possible

(i) ~t = ~v1 + ~v2 = ~w1 + ~w2: rank = 2, basis { ~w1 + ~w2, ~w1 + ~v1} or basis { ~w1 + ~v1, ~w1 + ~v2}

Consider the situation: (2.a) ~t = ~v1 = ~w1.

f̂(~b) =
1

2
ĝ2(~b) +

1

2
ĝ2(~b+ ~v1) +

1

2
ĝ2(~b+ ~v2)−

1

2
ĝ2(~b+ ~v1 + ~v2).

By plugging in ~b = ~0, we get f̂(~0) = 1
2 since ĝ2(~v2) = ĝ2(~v1 +~v2) = 0 by the fact that ~v2 ∈W .

Hence, rank remains to be 2.

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 89

Now some insights for finding the basis for the space S such that f̂(~b) 6= 0 ∀~b ∈ S are

(1) if ~b ∈ W , both terms ĝ2(~b + ~v2) and ĝ2(~b + ~v1 + ~v2) will be zero; (2) if ~b /∈ W , we need

ĝ2(~b+ ~v2) = −ĝ2(~b+ ~v1 + ~v2) and not equal to zero. It is easy to check that { ~w1, ~w2 + ~v2} is

one valid basis for the space S such that f̂(~w1 + ~w2 + ~v2) has negative amplitude.

The same analysis can be applied to cases (2.b), (2.c) and (2.d) and derive what it shows

above. In more general words, the basis consists of (1) one member from the intersection

space and (2) one member produced by summing up the basis outside this intersection space.

Cases (2.e), (2.f), (2,g) and (2.h) are impossible because, for instance in (2.e),

f̂(~0) =
1

2
ĝ2(~0) +

1

2
ĝ2(~v1) +

1

2
ĝ2(~v2)−

1

2
ĝ2(~v1 + ~v2) =

1

2
· 1

2
+

1

2
· 0 +

1

2
· 0− 1

2
· 1

2
= 0,

where contradict the fact that f̂(~0) > 0 for bipartite graphs.

As for the last case: ~t = ~v1 + ~v2 = ~w1 + ~w2. We know the rank is again 2 by f̂(~0) = 1
2 .

Following the same insights as above, we can derive a basis set { ~w1 + ~w2, ~w1 + ~v1}. However,

f̂(~w1 + ~w2) gives negative amplitude, and we would want a basis set {~s1, ~s2} such that

f̂(~s1 + ~s2) < 0, because this will be consistent with the fact that both ĝ1(~v1 + ~v2) and

ĝ2(~w1 + ~w2) are negative. Hence, instead, we take the basis set { ~w1 + ~v1, ~w1 + ~v2} associated

with f .

Case (3): dim(V ∩W) = 2. Let {~t1,~t2} be the basis of the intersection space. We do a

case-by-case analysis to all the possible situations as listed below:

(a) ~t1 = ~v1 = ~w1,~t2 = ~v2 = ~w2: rank = 0

(b) ~t1 = ~v1 = ~w2,~t2 = ~v2 = ~w1: rank = 0

(c) ~t1 = ~v1 + ~v2 = ~w1,~t2 = ~v1 = ~w2: not possible

(d) ~t1 = ~v1 + ~v2 = ~w1,~t2 = ~v2 = ~w2: not possible

(e) ~t1 = ~v1 + ~v2 = ~w2,~t2 = ~v1 = ~w1: not possible

(f) ~t1 = ~v1 + ~v2 = ~w2,~t2 = ~v2 = ~w1: not possible

(g) ~t1 = ~v1 = ~w1 + ~w2,~t2 = ~v2 = ~w1: not possible (same as (3.f))

(h) ~t1 = ~v1 = ~w1 + ~w2,~t2 = ~v2 = ~w2: not possible (same as (3.d))

(i) ~t1 = ~v2 = ~w1 + ~w2,~t2 = ~v1 = ~w1: not possible (same as (3.e))

(j) ~t1 = ~v2 = ~w1 + ~w2,~t2 = ~v1 = ~w2: not possible (same as (3.c))

(k) ~t1 = ~v1 + ~v2 = ~w1 + ~w2, ~t2 = ~v1 = ~w1: rank = 0 (same as (3.a))

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 90

(l) ~t1 = ~v1 + ~v2 = ~w1 + ~w2, ~t2 = ~v1 = ~w2: rank = 0 (same as (3.b))

(m) ~t1 = ~v1 + ~v2 = ~w1 + ~w2, ~t2 = ~v2 = ~w1: rank = 0 (same as (3.b))

(n) ~t1 = ~v1 + ~v2 = ~w1 + ~w2, ~t2 = ~v2 = ~w2: rank = 0 (same as (3.a))

Consider (3.a): ~t1 = ~v1 = ~w1,~t2 = ~v2 = ~w2.

f̂(~0) =
1

2
ĝ2(~0) +

1

2
ĝ2(~v1) +

1

2
ĝ2(~v2)−

1

2
ĝ2(~v1 + ~v2)

=
1

2
ĝ2(~0) +

1

2
ĝ2(~w1) +

1

2
ĝ2(~w2)−

1

2
ĝ2(~w1 + ~w2)

=
1

2
· 1

2
+

1

2
· 1

2
+

1

2
· 1

2
− 1

2
· (−1

2
)

= 1.

This means that the rank becomes 0. We can see that this actually corresponds to the

scenario that components g1 and g2 have identical structure and hence cause cancellation in

the combined stabilizer circuit. The same argument works for case (3.b).

Now for (3.c): ~t1 = ~v1 + ~v2 = ~w1,~t2 = ~v1 = ~w2.

f̂(~0) =
1

2
ĝ2(~0) +

1

2
ĝ2(~v1) +

1

2
ĝ2(~v2)−

1

2
ĝ2(~v1 + ~v2)

=
1

2
ĝ2(~0) +

1

2
ĝ2(~w2) +

1

2
ĝ2(~w2 + ~w1)−

1

2
ĝ2(~w1)

=
1

2
· 1

2
+

1

2
· 1

2
+

1

2
· (−1

2
)− 1

2
· 1

2

= 0

contradicting the fact that f̂(~0) > 0 for bipartite graphs. Using this argument on cases (3.d)

through (3.f) can lead to the same conclusion on them. Also note that (3.g) through (3.j) are

the same as (3.c) through (3.f), respectively. For instance, (3.g) is identical to (3.f) because

~v1 + ~v2 = ~t1 + ~t2 = ~w2. Hence, they will again lead to zero rank.

Case (3.k): ~t1 = ~v1 + ~v2 = ~w1 + ~w2, ~t2 = ~v1 = ~w1.

f̂(~0) =
1

2
ĝ2(~0) +

1

2
ĝ2(~v1) +

1

2
ĝ2(~v2)−

1

2
ĝ2(~v1 + ~v2)

=
1

2
ĝ2(~0) +

1

2
ĝ2(~w1) +

1

2
ĝ2(~w2)−

1

2
ĝ2(~w1 + ~w2)

=
1

2
· 1

2
+

1

2
· 1

2
+

1

2
· 1

2
− 1

2
· (−1

2
)

= 1.

Note that this case is exactly (3.a) because ~v2 = ~t1 + ~t2 = ~w2. Similarly, we have that (1)

(3.l) corresponds to (3.b); (2) (3.m) to (3.b); (3) (3.n) to (3.a).

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 91

7.5 Generalization and Thoughts

As seen above, via Fourier analysis, the problem of computing general matrix rank over F2

is further reduced to:

Given two sets of bases for two subspaces H1 and H2, compute H1 ∩H2.

Now we are ready to discuss two possible ideas for computing matrix rank over F2: iterative

and recursive.

7.5.1 Possible Iterative Approach

Figure 7.5

Note that if we chop off a bipartite graph as in Figure 7.5, the following formula still

works:

f̂(b) =
∑
a∈Fn2

ĝ1(a)ĝ2(b+ a)

=
1

2
ĝ2(~b) +

1

2
ĝ2(~b+ ~v1) +

1

2
ĝ2(~b+ ~v2)−

1

2
ĝ2(~b+ ~v1 + ~v2),

where the vector space V = span({~v1, ~v2}) is associated with g1 such that ĝ1(c1 ~v1 + c2 ~v2) 6= 0

with ci ∈ F2.

Now the steps of a possible iterative approach for computing matrix rank over F2 for

general matrix will be: (1) write f(~x) =
∏
i fi(~x); (2) first “compute and merge” f1 and f2,

then over that and f3, and so on.

This approach guarantees that the dimension of the intersection subspace is 0, 1 or 2,

which means that H1 ∩ H2 could be easier to compute. However, it will loop O(n) times.

CHAPTER 7. ATTACK ON MATRIX RANK OVER F2 92

Hence it might only help for special cases such as sparse graphs (matrices). More details of

an explicit design of this approach will be one future work.

7.5.2 Possible Recursive Approach

Using the same insight from Fourier analysis, we can also try to design a recursing approach,

whose main steps will be: (1) write f(~x) = (f1(~x) · · · fk(~x)) · (fk+1(~x) · · · fO(n)(~x)) with two

equal halves; (2) compute over (f1(~x) · · · fk(~x)) and (fk+1(~x) · · · fO(n)(~x)) recursively.

The main concern is apparently that H1∩H2 could be of large dimension and hence might

not be easy to compute. One can ask: (1) what kinds of graphs have a nice division, i.e., easy

to compute H1 ∩H2? (2) can we find a (randomized way) to recurse and efficiently compute

H1 ∩H2?

Chapter 8

Conclusion, Future Research and

Speculation

The first main result (in Chapter 5) in this thesis is a new logical emulation of general quan-

tum circuits. Our logical approach reduces computing quantum circuits to counting solutions

to a Boolean formula. This is potentially a whole paradigm of approaches to emulations. Here

are some possible future research problems:

1) For which types of quantum circuits do the solvers work well?

In the experiment using SAT solvers on generated formulas, some quantum circuit

instances generated Boolean formulas that are “friendly” (i.e., be efficiently solved) to

SAT solvers, while others are not. From those statistics shown Section 5.7, it would be

natural to ask what are the types of quantum circuits corresponding to boolean formula

instances that are “friendly” to existing SAT solvers.

2) Can SAT solvers be morphed to understand quantum identities?

Quantum identities is a property that a sequence of quantum gates will give an identity

operation as a whole. A straightforward example of quantum identities is that two

consecutive Hadamard gates cancel out (i.e., producing identity). However, cachet and

sharpSAT both are not able to recognize this phenomenon from the input boolean

formulas. If there is no existing SAT solver that can understand quantum identities

from input formulas, it would be interesting to investigate how the SAT solver can be

designed to identity quantum identities.

3) Can we identify larger subclasses of #SAT that are polynomial-time solvable?

It is known [Got98] that stabilizer circuits can be polynomial-time classically simulated.

Now from the perspective of our work, stabilizer circuits correspond to a class of boolean

93

CHAPTER 8. CONCLUSION, FUTURE RESEARCH AND SPECULATION 94

formulas. Now we can generalize this and ask: is there a subclass of #SAT which can

be efficiently solved? and What properties can be used to characterize the elements in

this subclass? Also note that this serves as a generalization of problem 1) in complexity

sense.

4) Can we classify subclasses whose counting problems correspond exactly to BQP?

The general intellectual challenge is that people have desired (non-quantum) charac-

terization of BQP, but dichotomy phenomenon [CCLL10, CC12, CGW16] developed

by Jin-Yi Cai et al. shows that in myriad cases the complexity jumps from P to #P -

complete with nothing in between. Roughly speaking, the dichotomy programme is

trying to establish the complete classification of natural counting problems such as

those associated to polynomials as being exactly either in P or #P -complete, which

conflicts with the goal of characterizing BQP.

A particularly ‘close shave’ is that counting the binary solutions of quadratic polyno-

mials when the coefficient of all terms of the form xy is 2 is easy while counting the

binary solutions in general is #P -complete. Recently, Cai et al. [CGW17] observed

that Clifford gates are indeed a special case of a known tractable class called affine

signatures, so that dichotomy results give an alternate proof of the Gottesman-Knill

Theorem [Got98]. Since counting the satisfying assignments to boolean formulas is

somewhat analogous to counting binary solutions, we may ask: Can we identify sub-

classes of boolean formulas whose counting problems are in BQP but beyond P? or even

is there a dichotomy theorem on boolean formulas between P and BQP? If either of the

answers is ’yes’, it may give intuitions for improving #SAT solvers?

The second main result (in Chapter 6) improved the asymptotic running time for strong

simulation of n-qubit stabilizer circuits from O(n3) to O(nω). This result also shows almost

tight and new connections between strong simulation of stabilizer circuits and two bedrock

mathematical tasks: computing matrix rank and counting solutions to quadratic polynomials

(both over the field F2). This says that any improvement on one will imply improvement

for the others. Our work also yields an apparently new class of undirected graphs: net-zero

graphs. The concept further extends to graphs with circles, which are isolated loops without

a vertex and contribute a multiplicative −1, and more generally to graphical 2-polymatroids

(more in Section 6.9). These connections also lead to some possible future research problems

listed as follows:

1) What are the tractable subclasses of general Tutte invariant?

Noble [Nob06] shows that computing the general Tutte invariant S(fG;x, y) is #P-

hard for any constant rational x, y whenever xy 6= 1. Our case has the quantity

CHAPTER 8. CONCLUSION, FUTURE RESEARCH AND SPECULATION 95

S(fG;−
√

2i,
√

2i) and it can be computed in time O(nω). This complex irrational

point (−
√

2i,
√

2i) has xy = 2 but evades his proof because having y2 = −2 makes a

denominator vanish. Hence from the perspective of computational complexity, it would

be interesting to know what are the subclasses solvable in polynomial time.

2) Are there any other further applications of net-zero graphs?

Net-zero graphs are naturally connected to strong simulation of stabilizer circuits (as

shown in Section 6.9). One may ask what other classical or quantum problems this

class of graphs can be connected to.

3) Are the graphs isomorphic if their corresponding stabilizer circuits have identical am-

plitudes for all outputs of the circuits?

Our work use the graph-state representation of stabilizer circuits. Given two quantum

stabilizer circuits C1 and C2. Without loss of generality, assume the inputs to both

circuits are all-zero vectors. Each graph has two sets of nodes ~y and ~z. The nodes in

~y can be connected by edges in any way, while there is no edge between nodes among

~z and each node is connected by exactly one node from ~y without overlapping node.

Hence, this should be a strict class among graphs and this gives out a question, does

that C1 and C2 have identical amplitudes for all outputs implies that their associated

graphs are isomorphic? If this is true, we will have an if-and-only-if relation between

these two properties.

Besides those discussed above, we also want to speculate about more possible applications

of algebraic techniques in quantum computing in the next section. Algebraic techniques

have succeeded in many applications in computer science. These techniques seem to have

advantages in analyzing polynomial-represented problems.

8.1 Algebraic Geometric Methods and Measuring “Effort”

We want to ask

What would be a true measure of the effort required to implement a quantum

circuit?

One could imagine a measure built on the notion of coherence and entanglement because

they at the same time are sources of quantum advantages and hindrances for physical imple-

mentation. However, this would come with the following issues:

• High entanglement does not entail high complexity. For instance, stabilizer circuits can

have high entanglement because of Hadamard gates and controlled-NOT gates.

CHAPTER 8. CONCLUSION, FUTURE RESEARCH AND SPECULATION 96

• Entanglement simply is a property of a quantum state not of a circuit.

Hence entanglement by itself is not a useful complexity measure. What does it mean to

define the “entangling capacity” of a quantum circuit? Nevertheless, there are commonalities

between how we would expect certain axioms for entanglement measures E(C) to carry over

for circuits and axioms for complexity measures [PV14]. Below is an important one:

• If C1 and C2 are disjoint quantum systems, then E(C1 ⊗ C2) = E(C1) + E(C2).

This is the circuit analogue of the axioms called full additivity for tensor products of states.

This property needs to address another subtle issue: what happens if C ′ = C+ one single-

qubit gate. For instance, C+H cannot always have E(C+H) > E(C) because (C+H)+H = C.

There is one famous complexity bound on classical circuits which somewhat has this ad-

ditive property: Strassen’s theorem [Str73]. This is the one and only nonlinear lower bound

known on classical arithmetic circuits. It is an application of basic algebraic geometry. Hence,

we could have an alternative hypothesis: there is a nonlinearity that can be identified math-

ematically and that manifests physically as hindrances to maintaining quantum coherence.

To further motivate our point about the idea of nonlinearity, let us briefly review how

Strassen’s theorem is proved. For proving his theorem, Strassen used a powerful concept:

geometric degree.

Geometric degree is also usually called the degree of a variety X, which we will denote

by gdeg(X) just for avoiding confusion between this and the degree of a polynomial. In

particular, the geometric degree can be defined as the number of points of intersection of X

with a general (n− r)-plane when X is of dimension r [Gat14, Har13].

The proof of Strassen’s lower bound applies Bézout’s Theorem. A slightly restricted

version of this theoremw can be stated as:

Bézout’s Theorem. Suppose we have r polynomials over an algebraically closed field K.

Say fi(x1, · · · , xn) has degree di, for i = 1, ..., r. Let S ⊆ Kn denote the set of common

zeros of these polynomials. Then S is either infinite or |S| ≤
∏r
i=1 di. If the polynomials

are algebraically independent and if multiplicities are counted correctly, then the inequality

becomes an equality.

Strassen’s lower bound is as follows:

Strassen’s Theorem. Given any a tuple of polynomials (q1(x), q2(x), · · · , qn(x)) of vari-

ables x1, x2, · · · , xn, every arithmetic circuit C computing (q1, q2, · · · , qn) must have size

Ω(log(gdeg(V (q1, · · · , qn)))).

Later Walter Baur extended Strassen’s result to lower-bound the circuit size of computing

a single polynomial f(x1, · · · , xn) with the following key lemma:

CHAPTER 8. CONCLUSION, FUTURE RESEARCH AND SPECULATION 97

Lemma (“Derivative Lemma” [BS83]): For any polynomial f(x1, · · · , xn) that can be com-

puted by an arithmetic circuit of size L, then there is a circuit of size at most 5L that computes

the following set of polynomials

{f, ∂f
∂x1

, · · · , ∂f
∂xn
}.

A simple example is the polynomial f(x) = xd1 +xd2 + · · ·+xdn. By Strassen’s lower bound

and the above lemma, we have

5L(f) ≥ L(xd−11 , · · · , xd−1n) ≥ log(gdeg(V (y1 − xd−11 , · · · , yn − xd−1n))) ≥ n log(d− 1),

where L(f1, · · ·) is the size of a circuit computing polynomials (f1, · · ·) and the last inequality

comes from the fact that if we restrict yi = 1 for all i ∈ [n] then there are (d− 1)n complex

roots to {xd−1i = 1 : i ∈ [n]}. It is worth pointing out that by taking the first and third

terms, the above inequality sequence also gives

L(f) = Ω(log(gdeg(MJ(f)))).

Unfortunately, Bézout’s inequality also shows that (d − 1)n is the highest possible gdeg

one can get not only for this simple f but any f(x1, · · · , xn) of degree d. So what is still

often regarded as the only known general super-linear complexity lower bound learn us at a

fork in the road: either find new ideas needed to boost it or find new areas to apply its ideas.

We focus on the latter. It is natural to ask:

What ramifications does this nonlinearity phenomenon have on quantum

circuits?

Bacon, van Dam, and Russell [BvDR08b] introduced and analyzed algebraic quantum

circuits that are defined over all finite integer rings Zm and finite fields Fq. This class of

quantum circuits uses algebraic operations of addition and multiplication, as well as the

quantum Fourier transform. They showed that the acceptance amplitudes 〈~b| C |~a〉 of an

algebraic quantum circuit can be expressed as an exponential sum over the computational

paths between the input ~a and output ~b of the circuit. They also showed that every algebraic

quantum circuit has a unique multivariate polynomial f associated with it that captures the

“action” of the circuit, where in general f will be a cubic polynomial but for linear circuits

(consisting of addition operations) f is only quadratic. With the polynomial f , they proved

that the norm of the output amplitude of a linear arithmetic quantum circuits is determined

by the dimension of the set of singular points on f . Hence in our problem, it is natural to

ask:

CHAPTER 8. CONCLUSION, FUTURE RESEARCH AND SPECULATION 98

What information or quantum property is significantly affected by singular

points? Can this (or some similar quantity) be extended to general quantum

circuits?

Bibliography

[AB06] S. Anders and H. Briegel. fast simulation of stabilizer circuits using a graph

state representation. Phys. Rev. A, 73(022334), 2006.

[AC17] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum

supremacy experiments. In 32nd Computational Complexity Conference (CCC

2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[ADH97] Leonard M Adleman, Jonathan DeMarrais, and Ming-Deh A Huang. Quantum

computability. SIAM Journal on Computing, 26(5):1524–1540, 1997.

[AG04] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits.

Phys. Rev. A, 70(052328), 2004.

[Alb38] A. Albert. Symmetric and alternate matrices in an arbitrary field, I. Trans.

Amer. Math. Soc., 43:386–436, 1938.

[Alb83] David Z Albert. On quantum-mechanical automata. Physics Letters A, 98(5-

6):249–252, 1983.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and

the element distinctness problems. Journal of the ACM (JACM), 51(4):595–

605, 2004.

[Bac17] M. Backens. A new holant dichotomy inspired by quantum computation.

In Proc. 44th Annual International Conference on Automata, Languages,

and Programming, Leibniz International Proceedings in Informatics (LIPIc-

s), pages 16:1–16:14, 2017.

[Bac18] M. Backens. A complete dichotomy for complex-valued Holantc. In Proc.

45th Annual International Conference on Automata, Languages, and Pro-

gramming, volume 107 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 12:1–12:14, 2018.

99

BIBLIOGRAPHY 100

[BBC+93] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher

Peres, and William K. Wootters. Teleporting an unknown quantum state via

dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–

1899, Mar 1993.

[BBC+95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.W.

Shor, T. Sleator, J.A. Smolin, and H. Weinfurter. Elementary gates for quan-

tum computation. Phys. Rev. A, 52(5):3457–3467, 1995.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald

De Wolf. Quantum lower bounds by polynomials. Journal of the ACM

(JACM), 48(4):778–797, 2001.

[BBC+19] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David

Gosset, and Mark Howard. Simulation of quantum circuits by low-

rank stabilizer decompositions. In Proceedings of QIP’19, also http-

s://arxiv.org/abs/1808.00128, 2019.

[BCDP96] D. Beckman, A.N. Chari, S. Devabhaktuni, and J. Preskill. Efficient networks

for quantum factoring. Phys. Rev. A, 54:1034–1063, 1996.

[BDEJ95] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa. Conditional quantum dy-

namics and logic gates. Physical Review Letters, 74(20):4083–4086, 1995.

[Bea03] S. Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. Quantum

Information and Computation, 3:175, 2003.

[BFLR00] E. Bayer-Fluckiger, D. Lewis, and A. Ranicki. Quadratic Forms and Their

Applications: Proceedings of the Conference on Quadratic Forms and Their

Applications, July 5-9, 1999, University College Dublin. Contemporary math-

ematics - American Mathematical Society. American Mathematical Society,

2000.

[BG16] S. Bravyi and D. Gosset. Improved classical simulation of quantum circuits

dominated by Clifford gates. Physical Review Letters, 116, 2016.

[BIS+16] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan

Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut

Neven. Characterizing quantum supremacy in near-term devices. http-

s://arxiv.org/pdf/1608.00263.pdf, 2016.

BIBLIOGRAPHY 101

[BJS10] M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of com-

muting quantum computations implies collapse of the polynomial hierarchy.

http://arxiv.org/abs/1005.1407, May 2010.

[Bk18] K. Bu and D. koh. Classical simulation of quantum circuits by half Gauss

sums. https://arxiv.org/abs/1812.00224, December 2018.

[BKT18] Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes

back: Tight quantum query bounds via dual polynomials. In Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages

297–310. ACM, 2018.

[Bro72] Edgar H Brown. Generalizations of the Kervaire invariant. Annals of Mathe-

matics, 95:368–383, 1972.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. The-

oretical Computer Science, 22(3):317–330, 1983.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM

Journal on Computing, 26(5):1411–1473, 1997.

[BvDR08a] D. Bacon, W. van Dam, and A. Russell. Analyzing algebraic quantum circuits

using exponential sums. http://www.cs.ucsb.edu/ vandam/LeastAction.pdf,

November 2008.

[BvDR08b] D. Bacon, W. van Dam, and A. Russell. Analyzing algebraic quantum circuits

using exponential sums. http://www.cs.ucsb.edu/ vandam/LeastAction.pdf,

November 2008.

[BW92] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and

two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett.,

69:2881–2884, Nov 1992.

[BW03] B. Butscher and H. Weimer. Simulation eines Quantencomputers.

http://www.libquantum.de/files/libquantum.pdf, 2003.

[CC12] Jin-Yi Cai and Xi Chen. Complexity of counting csp with complex weights.

In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of

Computing, pages 909–920. ACM, 2012.

[CCLL10] J.-Y. Cai, X. Chen, R. Lipton, and P. Lu. On tractable exponential sums.

In Proceedings of the 2010 Frontiers in Algorithms Workshop, volume 6213 of

Lect. Notes in Comp. Sci., pages 48–59. Springer Verlag, 2010.

BIBLIOGRAPHY 102

[CGW16] Jin-Yi Cai, Heng Guo, and Tyson Williams. The complexity of counting edge

colorings and a dichotomy for some higher domain holant problems. Research

in the Mathematical Sciences, 3(1):18, 2016.

[CGW17] Jin-Yi Cai, Heng Guo, and Tyson Williams. Clifford gates in the holant

framework. arXiv preprint arXiv:1705.00942, 2017.

[CGW18] Jin-Yi Cai, Heng Guo, and Tyson Williams. Clifford gates in the holant

frameqwork. Theor. Comp. Sci., 75:163–171, 2018.

[Che97] Joseph Cheriyan. Randomized õ(M(|V |)) algorithms for problems in matching

theory. SIAM Journal on Computing, 26(6):1635–1655, 1997.

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt.

Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett.,

23:880–884, Oct 1969.

[Cir80] B. S. Cirel’son. Quantum generalizations of bell’s inequality. Letters in Math-

ematical Physics, 4:93–100, 1980.

[CKL13] H.Y. Cheung, T.C. Kwok, and L.C. Lau. Fast matrix rank algorithms and

applications. J. Assn. Comp. Mach., 60:1–25, 2013.

[CLL11] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities,

network coding, and expander graphs. In 2011 IEEE 52nd Annual Symposium

on Foundations of Computer Science, pages 190–199. IEEE, 2011.

[CLO13] David Cox, John Little, and Donal OShea. Ideals, varieties, and algorithms:

an introduction to computational algebraic geometry and commutative algebra.

Springer Science & Business Media, 2013.

[CLX14] J.-Y. Cai, P. Lu, and M. Xia. The complexity of complex weighted Boolean

#CSP. J. Comp. Sys. Sci., 80:217–236, 2014.

[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle, and the universal

quantum computer. Proceedings of the Royal Society, A400:97–117, 1985.

[Deu89] D. Deutsch. Quantum computational networks. In Proceedings of the Royal

Society of London, volume 425(1868) of Series A, pages 73–90, 1989.

[DHH+04] C. Dawson, H. Haselgrove, A. Hines, D. Mortimer, M. Nielsen, and T. Os-

borne. Quantum computing and polynomial equations over the finite field Z2.

Quantum Information and Computation, 5:102–112, 2004.

BIBLIOGRAPHY 103

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum

computation. Proceedings of the Royal Society of London. Series A: Mathe-

matical and Physical Sciences, 439(1907):553–558, 1992.

[DM03] J. Dehaene and B.L.R. De Moor. The Clifford group, stabilizer states, and

linear and quadratic operations over GF(2). Phys. Rev. A, 68:042318, 2003.

[DP18] J.-G. Dumas and C. Pernet. Symmetric indefinite triangular factorization

revealing the rank profile matrix. In Proc. 43rd International Symposium

on Symbolic and Algebraic Computation, pages 151–158, 2018. Also http-

s://arxiv.org/abs/1802.10453.

[EK90] A. Ehrenfeucht and M. Karpinski. The computational complexity of (XOR,

AND)-counting problems. Technical Report TR-90-032, Mathematical Sci-

ences Research Institute, University of California at Berkeley, 1990.

[Fey82] R. Feynmann. Simulating physics with computers. International Journal of

Theoretical Physics, 21:467–488, 1982.

[Fey86] R. Feynmann. Quantum mechanical computers. Foundation of Physics,

16:507–531, 1986.

[Gal14] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings

of the 39th International Symposium on Symbolic and Algebraic Computation

(ISSAC 2014), 2014.

[Gat14] Andreas Gathmann. Notes on algebraic geometry.

http://www.mathematik.uni-kl.de/ gathmann/class/alggeom-2014/alggeom-

2014.pdf, 2014.

[Gau66] Carl Friedrich Gauss. Disquisitiones arithmeticae. New Haven and London,

Yale University Press, 1966.

[GHZ89] Daniel M Greenberger, Michael A Horne, and Anton Zeilinger. Going be-

yond bells theorem. In Bells theorem, quantum theory and conceptions of the

universe, pages 69–72. Springer, 1989.

[GKR02] Markus Grassl, Andreas Klappenecker, and Martin Rotteler. Graphs, quadrat-

ic forms, and quantum codes. In Proceedings IEEE International Symposium

on Information Theory,, page 45. IEEE, 2002.

BIBLIOGRAPHY 104

[Got98] Daniel Gottesman. The Heisenberg representation of quantum computers.

arXiv preprint quant-ph/9807006, 1998.

[GR19] Chaowen Guan and Kenneth W Regan. Stabilizer circuits, quadratic forms,

and computing matrix rank. arXiv preprint arXiv:1904.00101, 2019.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of

Computing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[GS06] V. Gerdt and V. Severyanov. A software package to construct polynomial

sets over Z2 for determining the output of quantum computations. Nuclear

Instruments and Methods in Physics Research A, 59:260–264, 2006.

[Hah08] Alexander J Hahn. Quadratic forms over Z from diophantus to the 290 theo-

rem. Advances in applied Clifford algebras, 18(3-4):665–676, 2008.

[Har09] Nicholas JA Harvey. Algebraic algorithms for matching and matroid problems.

SIAM Journal on Computing, 39(2):679–702, 2009.

[Har13] Joe Harris. Algebraic geometry: a first course, volume 133. Springer Science

& Business Media, 2013.

[HDE+06] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest, and H-J

Briegel. Entanglement in graph states and its applications. arXiv preprint

quant-ph/0602096, 2006.

[Hea64] Thomas Little Heath. Diophantus of Alexandria. Dover Publications Inc. New

York, 1964.

[HEB04] Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty entanglement in graph

states. Physical Review A, 69(6):062311, 2004.

[HRS17] T. Häner, M. Roetteler, and K. Svore. Factoring using 2n+2 qubits with Tof-

foli based modular multiplication. Quantum Information and Computation,

17, 2017.

[HS17] T. Häner and D. Steiger. 0.5 petabyte simulation of a 45-qubit quantum

circuit. arXiv:1704.01127v1, April 2017.

[HSST16] T. Häner, D. Steiger, M. Smelyanskiy, and M. Troyer. High performance

emulation of quantum circuits. In Proceedings of the International Conference

BIBLIOGRAPHY 105

for High Performance Computing, Networking, Storage and Analysis, Salt

Lake City, Utah, Nov. 2016. IEEE press, 2016. Article 74 in e-volume.

[IW96] Russell Impagliazzo and Avi Wigderson. P=BPP unless e has sub-exponential

circuits: Derandomizing the xor lemma (preliminary version). In Proceedings

of the 29th STOC, pages 220–229, 1996.

[JvdN14] R. Jozsa and M. van den Nest. Classical simulation complexity of extended

Clifford circuits. Quantum Information and Computation, 14:633–648, 2014.

[Kar19] Marek Karpinski. Personal communication, 2019.

[KPS17] D.E. Koh, M.D. Penney, and R.W. Spekkens. Computing quopit

Clifford circuit amplitudes by the sum-over-paths technique. http-

s://arxiv.org/pdf/1702.03316, 2017.

[LCJ13] Chia-Chun Lin, Amlan Chakrabarti, and Niraj K Jha. Ftqls: Fault-tolerant

quantum logic synthesis. IEEE Transactions on very large scale integration

(VLSI) systems, 22(6):1350–1363, 2013.

[Lin14] Chia-Chun Lin. Reversible and Quantum Circuit Synthesis. PhD thesis,

Princeton University, 2014.

[Lov06] László Lovász. The rank of connection matrices and the dimension of graph

algebras. European Journal of Combinatorics, 27(6):962–970, 2006.

[Lov07] László Lovász. Connection matrices. OXFORD LECTURE SERIES IN

MATHEMATICS AND ITS APPLICATIONS, 34:179, 2007.

[LYGG08] Shiang Yong Looi, Li Yu, Vlad Gheorghiu, and Robert B Griffiths.

Quantum-error-correcting codes using qudit graph states. Physical Review

A, 78(4):042303, 2008.

[MFIB18] I. Markov, A. Fatima, S. Isakov, and S. Boixo. Quantum supremacy is both

closer and farther than it appears. https://arxiv.org/pdf/1807.10749, 2018.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-

matics of computation, 44(170):519–521, 1985.

[Mon17] A. Montanaro. Quantum circuits and low-degree polynomials over F2. Journal

of Physics A, 50, 2017.

BIBLIOGRAPHY 106

[MS01] Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory i: An

approach to the p vs. np and related problems. SIAM Journal on Computing,

31(2):496–526, 2001.

[MS04] Marcin Mucha and Piotr Sankowski. Maximum matchings via gaussian e-

limination. In 45th Annual IEEE Symposium on Foundations of Computer

Science, pages 248–255. IEEE, 2004.

[MS07] Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory: Intro-

duction. CoRR, abs/0709.0746, 2007.

[MS08] Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory ii: To-

wards explicit obstructions for embeddings among class varieties. SIAM Jour-

nal on Computing, 38(3):1175–1206, 2008.

[MS12] I. Markov and M. Saeedi. Constant-optimized quantum circuits for modular

multiplication and exponentiation. Quantum Information and Computation,

12:361–394, 2012.

[MS13] I. Markov and M. Saeedi. Faster quantum number factoring via circuit syn-

thesis. Phys. Rev. A, 87:012310 1–5, 2013.

[NC00] M.A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-

mation. Cambridge University Press, 2000.

[Nob06] S. Noble. Evaluating the rank generating function of a graphic 2-polymatroid.

Combinatorics, Probability and Computing, 15:449–461, 2006.

[O13] Onorato Timothy OMeara. Introduction to quadratic forms, volume 117.

Springer, 2013.

[OD98] Kevin M Obenland and Alvin M Despain. A parallel quantum computer

simulator. arXiv preprint quant-ph/9804039, 1998.

[Öme14] Bernhard Ömer. http://tph.tuwien.ac.at/~oemer/qcl.html. 2014.

[OW93] J. Oxley and G. Whittle. A characterization of Tutte invariants of 2-

polymatroids. J. Comb. Thy. Ser. B, 59:210–244, 1993.

[PG12] Archimedes Pavlidis and Dimitris Gizopoulos. Fast quantum modular ex-

ponentiation architecture for shor’s factorization algorithm. arXiv preprint

arXiv:1207.0511, 2012.

http://tph.tuwien.ac.at/~oemer/qcl.html

BIBLIOGRAPHY 107

[PG14] A. Pavlidis and D. Gizopoulos. Fast quantum modular exponentiation archi-

tecture for shor’s factoring algorithm. Quantum Information and Computa-

tion, 14:694–682, 2014.

[PV14] Martin B Plenio and Shashank S Virmani. An introduction to entanglement

theory. In Quantum Information and Coherence, pages 173–209. Springer,

2014.

[RB01] Robert Raussendorf and Hans J Briegel. A one-way quantum computer. Phys-

ical Review Letters, 86(22):5188, 2001.

[RBB03] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-

based quantum computation on cluster states. Phys. Rev. A, 68:022312, Aug

2003.

[RC09] K. Regan and A. Chakrabarti. Quantum circuits, polynomials, and entangle-

ment measures, 2009. Draft.

[RCG18] Kenneth Regan, Amlan Chakrabarti, and Chaowen Guan. Algebraic and

logical emulations of quantum circuits. In Transactions on Computational

Science XXXI, pages 41–76. Springer, 2018.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter.

Quantum resource estimates for computing elliptic curve discrete logarithms.

In International Conference on the Theory and Application of Cryptology and

Information Security, pages 241–270. Springer, 2017.

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Pro-

ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 118–126. Society for Industrial and Applied Mathematics, 2007.

[Sar14] P. Sarvepalli. Quantum codes and symplectic matroids. In Proceedings of

the 2014 IEEE International Symposium on Information Theory; also http-

s://arxiv.org/abs/1104.1171, 2014.

[SBB+04] Tian Sang, Fahiem Bacchus, Paul Beame, Henry Kautz, and Toniann Pitas-

si. Combining component caching and clause learning for effective model

counting. In Seventh International Conference on Theory and Applications of

Satisfiability Testing, Vancouver, 2004.

BIBLIOGRAPHY 108

[SBH06] Spec.org, B. Butscher, and Weimer H. 462.libquan-

tum spec cpu2006 benchmark description. http-

s://www.spec.org/cpu2006/Docs/462.libquantum.html, 2006.

[SBK05a] Tian Sang, Paul Beame, and Henry Kautz. Heuristics for fast exact model

counting. In Eighth International Conference on Theory and Applications of

Satisfiability Testing, Edinburgh, Scotland, 2005.

[SBK05b] Tian Sang, Paul Beame, and Henry Kautz. Performing Bayesian inference by

weighted model counting. In Proceedings of the Twentieth National Conference

on Artificial Intelligence (AAAI-05), Pittsburgh, PA, 2005.

[Sch01] Dirk Schlingemann. Stabilizer codes can be realized as graph codes. arXiv

preprint quant-ph/0111080, 2001.

[Sch09] Kai-Uwe Schmidt. Z4-valued quadratic forms and quaternary sequence fami-

lies. IEEE Transactions on Information Theory, 55:5803–5810, 2009.

[Shi03] Y. Shi. Both Toffoli and Controlled-NOT need little help to do universal quan-

tum computation. Quantum Information and Computation, 3:84–92, 2003.

arXiv:quant-ph/0205115.

[Sho94] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In Proceedings of the 35th Annual IEEE Symposium on the Foun-

dations of Computer Science, pages 124–134, 1994.

[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal on

computing, 26(5):1474–1483, 1997.

[SRWDM17] Mathias Soeken, Martin Roetteler, Nathan Wiebe, and Giovanni De Micheli.

Logic synthesis for quantum computing. arXiv preprint arXiv:1706.02721,

2017.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-

puting Arch. Elektron. Rechnen, 7:281–292, 1971.

[Sto10] A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, Univer-

sity of Edinburgh, 2010.

[Str69] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,

1969.

[Str73] V. Strassen. Berechnung und Programm II. Acta Informatica, 2:64–79, 1973.

BIBLIOGRAPHY 109

[SW01] D. Schlingemann and R. F. Werner. Quantum error-correcting codes associ-

ated with graphs. Phys. Rev. A, 65:012308, Dec 2001.

[TBI97] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.

Siam, 1997.

[Thu06] M. Thurley. sharpsat – counting models with advanced component caching and

implicit bcp. In Theory and Applications of Satisfiability Testing - SAT 2006:

9th International Conference, Seattle, WA, USA, August 12-15, 2006. Pro-

ceedings, volume 4121 of Lect. Notes in Comp. Sci., pages 424–429. Springer

Verlag, 2006.

[vdN09] M. van den Nest. Classical simulation of quantum computation, the

Gottesman-Knill theorem, and slightly beyond, 2009. arXiv:0811.0898.

[VdNDDM04] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical de-

scription of the action of local clifford transformations on graph states. Phys.

Rev. A, 69:022316, Feb 2004.

[VMH03] George F Viamontes, Igor L Markov, and John P Hayes. Improving gate-level

simulation of quantum circuits. Quantum Information Processing, 2(5):347–

380, 2003.

[VRMH03] George F Viamontes, Manoj Rajagopalan, Igor L Markov, and John P Hayes.

Gate-level simulation of quantum circuits. In Proceedings of the 2003 Asia and

South Pacific Design Automation Conference, pages 295–301. ACM, 2003.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra.

Cambridge university press, 2013.

[WB11] H. Weimer and B. Butscher. libquantum 1.1.1: the C library for quantum

computing and quantum simulation. http://www.libquantum.de/, 2003–2013

(v. 1.1.1).

[WH] D. Wybiral and J. Hwang.

[Wil12] V.V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In

Proc. 44th Annual ACM Symposium on the Theory of Computing, pages 887–

898, 2012.

[WML+10] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H.P. Büchler. A Rydberg

quantum simulator. Nature Physics, 6:382–388, 2010.

BIBLIOGRAPHY 110

[Woo98] Alan R. Woods. Unsatisfiable systems of equations, over a finite field. In Pro-

ceedings of the 39th Annual Symposium on Foundations of Computer Science,

FOCS ’98, pages 202–, Washington, DC, USA, 1998. IEEE Computer Society.

	Abstract
	Abstract
	Acknowledgements

	Acknowledgements
	Introduction
	Simulation of Quantum Circuits
	Technical Tools
	Logical Emulation of General Quantum Circuits
	Algebraic Simulation of Stabilizer Circuits
	Outline of This Thesis

	Quantum Computing and Complexity Classes
	Quantum Circuits
	Quantum State
	Unitary Transformation on Quantum Bits
	Measurements
	More Examples

	Background on Complexity Classes

	Algebraic Methods
	Polynomial Methods for Query Lower bounds
	Simulating Circuits via Polynomials

	Matrix Rank, Solution Counting and Strong Simulation
	Matrix Rank
	Solution Counting to Quadratic Polynomials
	Near-Tight Connections to Stabilizer Circuits

	Logical Emulation of Quantum Circuits
	Overview
	Binary Case
	More General Theorem
	Circuit Simulation By ``Controlled-Bitflip'' Clauses
	Examples and Execution on Our Simulator
	Single-qubit Example
	Quantum Fourier Transformation (QFT)
	Demo of Shor's Algorithm

	Probability Form and Sampling
	A Few Experimental Results
	Conclusions

	Stabilizer Circuits, Quadratic Forms, and Computing Matrix Rank
	Overview
	Circuits and Quadratic Forms
	Quantum Stabilizer Circuits and Graph-State Circuits
	Classical Quadratic Forms Over Z4
	Algorithm and Examples
	Main Results
	Proofs for Important Lemmas
	More Properties from the Simulation
	Interpretations and Conclusions
	Net-Zero Graphs
	Representation via General Tutte Invariant

	Attack on Matrix Rank over F2
	Motivation
	Insights from Fourier Analysis
	Fourier Analysis on Finite Groups
	Base Example
	Generalization and Thoughts
	Possible Iterative Approach
	Possible Recursive Approach

	Conclusion, Future Research and Speculation
	Algebraic Geometric Methods and Measuring ``Effort''

	Bibliography

