Formal Grammars and Languages

Tao Jiang
Department of Computer Science
McMaster University
Hamilton, Ontario L8S 4K1, Canada

Ming Li
Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Bala Ravikumar
Department of Computer Science
University of Rhode Island
Kingston, RI 02881, USA

1 Introduction

Formal language theory as a discipline is generally regarded as growing from the work
of linguist Noam Chomsky in the 1950s, when he attempted to give a precise charac-
terization of the structure of natural languages. His goal was to define the syntax of
languages using simple and precise mathematical rules. Later it was found that the
syntax of programming languages can be described using one of Chomsky’s grammati-
cal models called context-free grammars. Much earlier, the Norwegian mathematician
Axel Thue studied sequences of binary symbols subject to interesting mathematical
properties, such as not having the same substring three times in a row. His work in-
fluenced Emil Post, Stephen Kleene, and others to study the mathematical properties
of strings and collections of strings.

Soon after the advent of modern electronic computers, people realized that all
forms of information—whether numbers, names, pictures, or sound waves—can be
represented as strings. Then collections of strings known as languages became cen-
tral to computer science. This section is concerned with fundamental mathematical
properties of languages and language generating systems, such as grammars. Every

programming language from Fortran to Java can be precisely described by a gram-
mar. Moreover, the grammar allows us to write a computer program (called the
syntaz analyzer in a compiler) to determine whether a string of statements is syntac-
tically correct in the programming language. Many people would wish that natural
languages such as English could be analyzed as precisely, that we could write com-
puter programs to tell which English sentences are grammatically correct. Despite
recent advances in natural language processing, many of which have been spurred
by formal grammars and other theoretical tools, today’s commercial products for
grammar and style fall well short of that ideal. The main problem is that there is
no common agreement on what are grammatically correct (English) sentences; nor
has anyone yet been able to offer a grammar precise enough to propose as definitive.
And style is a matter of taste! such as not beginning sentences with “and” or using
interior exclamations. Formal languages and grammars have many applications in
other fields, including molecular biology (see [Searls, 1993]) and symbolic dynamics
(see [Lind and Marcus, 1995]).

In this chapter, we will present some formal systems that define families of formal
languages arising in many computer science applications. Our primary focus will be
on context-free languages, since they are most widely used to describe the syntax of
programming languages. In the rest of this section, we present some basic definitions
and terminology.

DEFINITION 1.1 An alphabet is a finite nonempty set of symbols. Symbols are
assumed to be indivisible.

For example, an alphabet for English can consist of as few as the 26 lower-case let-
ters a, b, ..., z, adding some punctuation symbols if sentences rather than single words
will be considered. Or it may include all of the symbols on a standard North American
typewriter, which together with terminal control codes yields the 128-symbol ASCII
alphabet, in which much of the world’s communication takes place. The new world
standard is an alphabet called UNICODE, which is intended to provide symbols for
all the world’s languages—as of this writing, over 38,000 symbols have been assigned.
But most important aspects of formal languages can be modeled using the simple
two-letter alphabet {0,1}, over which ASCII and UNICODE are encoded to begin
with. We usually use the symbol ¥ to denote an alphabet.

DEFINITION 1.2 A string over an alphabet X is a finite sequence of symbols of X.

The number of symbols in a string = is called its length, denoted by |x|. Tt is
convenient to introduce a notation e for the empty string, which contains no symbols
at all. The length of € is 0.

DEFINITION 1.3 Let x = ayas---a, and y = b1by - - - b, be two strings. The concate-
nation of x and y, denoted by zy, is the string ajas - - - a,b1bs - - - byy.

Then for any string z, ex = xe = x. For any string = and integer n > 0, we use
z™ to denote the string formed by sequentially concatenating n copies of x.

DEFINITION 1.4 The set of all strings over an alphabet ¥ is denoted by ¥*, and the
set of all nonempty strings over ¥ is denoted by X*. The empty set of strings is
denoted by 0.

DEFINITION 1.5 For any alphabet ¥, a language over X is a set of strings over X.
The members of a language are also called the words of the language.

EXAMPLE 1.1 The sets L, = {01,11,0110} and Ly = {0"1"|n > 0} are two lan-
guages over the binary alphabet {0,1}. Ly has three words, while Ly is infinite. The
string 01 is in both languages while 11 is in Ly but not in Ls.

Since languages are just sets, standard set operations such as union, intersec-
tion, and complementation apply to languages. It is useful to introduce two more
operations for languages: concatenation and Kleene closure.

DEFINITION 1.6 Let L; and Ly be two languages over X. The concatenation of L
and Ly, denoted by L Ls, is the language {zy|z € L1,y € Lo}.

DEFINITION 1.7 Let L be a language over 3. Define L = {€} and L' = LL*"! for
i > 1. The Kleene closure of L, denoted by L*, is the language

L= J I

i>0
The positive closure of L, denoted by L', is the language

Lr=yr.

i>1

In other words, the Kleene closure of a language L consists of all strings that can
be formed by concatenating zero or more words from L. For example, if L = {0,01},
then LL = {00,001, 010,0101}, and L* comprises all binary strings in which every 1
is preceded by a 0. Note that concatenating zero words always gives the empty string,
and that a string with no 1s in it still makes the condition on “every 1”7 true. L' has
the meaning “concatenate one or more words from L,” and satisfies the properties
L* = LT U{e} and LT = LL*. Furthermore, for any language L, L* always contains
€, and LT contains € if and only if L does. Also note that X* is in fact the Kleene
closure of the alphabet ¥ when ¥ is viewed as a language of words of length 1, and
3T is just the positive closure of ¥.

2 Representation of Languages

In general a language over an alphabet ¥ is a subset of ¥*. How can we describe a
language rigorously so that we know whether a given string belongs to the language or
not? As shown in Eaxmple 1.1, a finite language such as L; can be explicitly defined
by enumerating its elements. An infinite language such as Ly cannot be exhaustively
enumerated, but in the case of Ly we were able to give a simple rule characterizing
all of its members. In English, the rule is, “some number of Os followed by an equal
number of 1s.” Can we find systematic methods for defining rules that characterize
a wide class of languages? In the following we will introduce three such methods:
regular expressions, pattern systems, and grammars. Interestingly, only the
last is capable of specifying the simple rule for L, although the first two work for
many intricate languages. The term formal languages refers to languages that can
be described by a body of systematic rules.

2.1 Regular Expressions and Languages

Let ¥ be an alphabet.

DEFINITION 2.1 The regular expressions over X and the languages they represent
are defined inductively as follows.

1. The symbol @ is a regular expression, and represents the empty language.

2. The symbol € is a regular expression, and represents the language whose only
member is the empty string, namely {e}.

3. For each ¢ € ¥, ¢ is a regular expression, and represents the language {c}, whose
only member is the string consisting of the single character c.

4. If r and s are regular expressions representing the languages R and S, then
(r—+s), (rs) and (r*) are regular expressions that represent the languages RU.S,
RS, and R*, respectively.

For example, ((0(0 + 1)*) + ((0 4+ 1)*0)) is a regular expression over {0,1} that
represents the language consisting of all binary strings that begin or end with a 0.
Since the set operations union and concatenation are both associative, and since we
can stipulate that Kleene closure takes precedence over concatenation and concate-
nation over union, many parentheses can be omitted from regular expressions. For
example, the above regular expression can be written as 0(0 + 1)* + (0 4+ 1)*0. We
will also abbreviate the expression rr* as r. Let us look at a few more examples of
regular expressions and the languages they represent.

EXAMPLE 2.1 The expression 0(0 4 1)*1 represents the set of all strings that begin
with a 0 and end with a 1.

EXAMPLE 2.2 The expression 0+ 1+ 0(0+41)*0+ 1(0 + 1)*1 represents the set of all
nonempty binary strings that begin and end with the same bit. Note the inclusion of
the strings 0 and 1 as special cases.

ExAMPLE 2.3 The expressions 0%, 0*10*, and 0*10*10* represent the languages con-
sisting of strings that contain no 1, exactly one 1, and exactly two 1’s, respectively.

EXAMPLE 2.4 The expressions (0 + 1)*1(0 + 1)*1(0 + 1)*, (0 + 1)*10°1(0 + 1)*,
0*10*1(0 + 1)*, and (0 4 1)*10*10* all represent the same set of strings that con-
tain at least two 1’s.

Two or more regular expressions that represent the same language, as in Ex-
ample 2.4, are called equivalent. It is possible to introduce algebraic identities for
regular expressions in order to construct equivalent expressions. Two such identities
are r(s+t) = rs+rt, which says that concatenation distributes over union the same
way “times” distributes over “plus” in ordinary algebra (but taking care that con-
catenation isn’t commutative), and r* = (r*)*. These two identities are easy to prove;
the reader seeking more detail may consult [Salomaa, 1966].

EXAMPLE 2.5 Let us construct a regular expression for the set of all strings that
contain no consecutive 0s. A string in this set may begin and end with a sequence
of 1s. Since there are no consecutive Os, every 0 that is not the last symbol of the
string must be followed by a 1. This gives us the expression 1*(017)*1*(e + 0). It is
not hard to see that the second 1* is redundant and thus the expression can in fact
be simplified to 1*(011)*(e + 0).

Regular expressions were first introduced by [Kleene, 1956] for studying the prop-
erties of neural nets. The above examples illustrate that regular expressions often
give very clear and concise representations of languages. The languages represented
by regular expressions are called the regular languages. Fortunately or unfortunately,
not every language is regular. For example, there are no regular expressions that
represent the languages {0"1"|n > 1} or {zz | x € {0,1}*}; the latter case is proved
at the end of Section 2.1 in Chapter 30.

2.2 Pattern Languages

Another way of representing languages is to use pattern systems [Angluin, 1980] (see
also [Jiang et al., 1995]).

DEFINITION 2.2 A pattern system is a triple (X, V| p), where X is the alphabet, V'
is the set of variables with XNV =), and p is a string over XUV called the pattern.

DEFINITION 2.3 The language generated by a pattern system (X, V, p) consists of all
strings over ¥ that can be obtained from p by replacing each variable in p with a
string over X.

An example pattern system is ({0, 1}, {v1, va}, v1010v2). The language it generates
contains all words that begin with a 0 (since v; can be chosen as the empty string, and
v as an arbitrary string), and contains some words that begin with a 1, such as 110 (by
taking v1 = 1, v = €) and 101001 (by taking v; = 10, v = 1). However, it does not
contain the strings €, 1,10, 11,100,101, etc. The pattern system ({0, 1}, {v1}, viv1)
generates the set of all strings that are the concatenation of two equal substrings,
namely the set {zz|r € {0,1}*}. The languages generated by pattern systems are
called pattern languages.

Regular languages and pattern languages are really different. We have noted that
the pattern language {xz|x € {0,1}*} is not a regular language, and one can prove
that the set represented by the regular expression 0*1* is not a pattern language.
Although it is easy to write an algorithm to decide whether a given string is in the
language generated by a given pattern system, such an algorithm would most likely
have to be very inefficient [Angluin, 1980].

2.3 General Grammars

Perhaps the most useful and general system for representing languages is based on
the formal notion of a grammar.

DEFINITION 2.4 A grammar is a quadruple (X, V, S, P), where:

1. ¥ is a finite nonempty set called the terminal alphabet. The elements of ¥
are called the terminals.

2. V is a finite nonempty set disjoint from 3. The elements of V' are called the
nonterminals or variables.

3. S € V is a distinguished nonterminal called the start symbol.
4. P is a finite set of productions (or rules) of the form
a—f

where o € (BUV)*V(ZUV)* and § € (BUV)*, i.e. ais a string of terminals and
nonterminals containing at least one nonterminal and fJ is a string of terminals
and nonterminals.

EXAMPLE 2.6 Let G = ({0,1},{S,T,0,1},S, P), where P contains the following
productions

or
o)
SI
0

~ QO _H nn »n
RN

_>

As we shall see, the grammar G can be used to describe the set {0"1"|n > 1}.

EXAMPLE 2.7 Let Gy = ({0, 1,2}, {S, A}, S, P), where P contains the following pro-
ductions

S
S
2A A2
0A 01
1A — 11

05A2

€

L1 Ll

This grammar G5 can be used to describe the set {0"1"2" > n > 0}.

ExXAMPLE 2.8 To construct a grammar G3 to describe English sentences, one might
let the alphabet X comprise all English words rather than letters. V' would contain
nonterminals that correspond to the structural components in an English sentence,
such as <sentence>, <subject>, <predicate>, <noun>, <verb>, <article>, and so
on. The start symbol would be <sentence>. Some typical productions are:

<sentence> — <subject><predicate>
<subject> — <noun>
<predicate> — <verb><article><noun>
<noun> — mary
<noun> — algorithm
<verb> — wrote

<article> — an

The rule <sentence> — <subject><predicate> models the fact that a sentence can
consist of a subject phrase and a predicate phrase. The rules <noun> — mary and
<noun> — algorithm mean that both “mary” and “algorithm” are possible nouns.
This approach to grammar, stemming from Chomsky’s work, has influenced even
elementary-school teaching.

To explain how a grammar represents a language, we need the following concepts.

DEFINITION 2.5 Let (X,V, S, P) be a grammar. A sentential form of G is any
string of terminals and nonterminals, i.e. a string over X U V.

DEFINITION 2.6 Let (X,V, S, P) be a grammar, and let 71, 2 be two sentential forms
of G. We say that 7, directly derives 7, written v; = o, if 11 = car, v = o7,
and o — [is a production in P.

For example, the sentential form 00S11 directly derives the sentential form
000711 in grammar Gy, and A2A2 directly derives AA22 in grammar Go.

DEFINITION 2.7 Let 71 and ¥2 be two sentential forms of a grammar G. We say that
v derives 7o, written v; =* 79, if there exists a sequence of (zero or more) sentential
forms o4, ..., 0, such that

Y1 = 01 = = 0p = V2.

The sequence v, = 01 = -+ = 0, = 72 is called a derivation of v, from ~;.

For example, in grammar Gy, S =* 0011 because
S= 0T =01 = 051=051=00I1= 00{1= 0011
and in grammar Ga, S =* 001122 because
S = 0542 = 00SA2A2 = 00A2A2 = 001242 = 0011422 = 001122.

Here the left-hand side of the relevant production in each derivation step is underlined
for clarity.

DEFINITION 2.8 Let (X,V,S, P) be a grammar. The language generated by G, de-
noted by L(G), is defined as

L(G) = {z|lz € ", 8 =" z}.
The words in L(G) are also called the sentences of L(G).

Clearly, L(G1) contains all strings of the form 01", n > 1, and L(G3) contains all
strings of the form 0"1"2" n > 0. Although only a partial definition of G5 is given, we
know that L(G3) contains sentences like “mary wrote an algorithm” and “algorithm
wrote an algorithm,” but does not contain strings like “an wrote algorithm.”

Formal grammars were introduced as such by [Post, 1943], and had antecedents
in work by Thue and others. However, the study of their rigorous use in describing
formal (and natural) languages did not begin until the mid-1950s [Chomsky, 1956].
In the next section, we consider various restrictions on the form of productions in a
grammar, and see how these restrictions can affect its power to represent languages.
In particular, we will show that regular languages and pattern languages can all be
generated by grammars under different restrictions.

3 Hierarchy of Grammars

Grammars can be divided into four classes by gradually increasing the restrictions on
the form of the productions. Such a classification is due to Chomsky [Chomsky, 1956,
Chomsky, 1963] and is called the Chomsky hierarchy.

DEFINITION 3.1 Let G = (X,V, S, P) be a grammar.

1. G is also called a Type-0 grammar or an unrestricted grammar.

2. G is a Type-1 or context-sensitive grammar if each production o« — § in P
satisfies || < |8]. By “special dispensation,” we also allow a Type-1 grammar
to have the production S — €, provided S does not appear on the right-hand
side of any production.

3. G is a Type-2 or context-free grammar if each production o — 3 in P satisfies
|a] = 1; i.e., « is a single nonterminal.

4. (G is a Type-3 or right-linear or regular grammar if each production has one
of the following three forms:

A—=cB, A—ec, A—e

where A, B are nonterminals (with B = A allowed) and ¢ is a terminal.

The language generated by a Type-i grammar is called a Type-i language, 1 =
0,1,2,3. A Type-1 language is also called a context-sensitive language (CSL),
and a Type-2 language is also called a context-free language (CFL). The “special
dispensation” allows a CSL to contain €, and thus allows one to say that every CFL
is also a CSL. Many sources allow “right-linear” grammars to have productions of the
form A — xB, where z is any string of terminals, and/or exclude one of the forms
A — ¢, A — ¢ from their definition of “regular” grammar (perhaps allowing S — ¢
in the latter case). Regardless of the choice of definitions, every Type-3 grammar
generates a regular language, and every regular language has a Type-3 grammar; we
have proved this using finite automata in Chapter 30. Stated in other words:

THEOREM 3.1 The class of Type-3 languages and the class of regular languages are
equal.

The grammars G and G3 given in the last section are context-free and the gram-
mar Go is context-sensitive. Now we give some examples of unrestricted and right-
linear grammars.

ExaMPLE 3.1 Let G4 = ({0,1},{S,A,0,I,T}, S, P), where P contains

S — AT

A — 04O A — 1A
00 — 00 o1 — 10
10 — 0f 11 — 11
or — 0T IT — 1T
A — ¢ T — ¢

Then G, generates the set {zx|z € {0,1}*}. To understand how this grammar works,
think of the nonterminal O as saying, “I must ensure that the right half gets a terminal
0 in the same place as the terminal 0 in the production A — 0AO that introduced
me.” The nonterminal I eventually forces the precise placement of a terminal 1 in the
right-hand side in the same way. The nonterminal 7" makes sure that O and I place
their 0 and 1 on the right-hand side rather than prematurely. Only after every O
and I has moved right past any earlier-formed terminals 0 and 1 and been eliminated
“in the context of” T', and the production A — € is used to signal that no additional
O or I will be introduced, can the endmarker T be dispensed with via T"— €. For
example, we can derive the word 0101 from S as follows:

S = AT = 0AOT = 01AIOT = 0110T = 01107 = 010/7 = 01017 = 0101.

Only the productions A — ¢ and T" — € prevent this grammar from being Type-1.
The interested reader is challenged to write a Type-1 grammar for this language.

EXAMPLE 3.2 We give a right-linear grammar G5 to generate the language repre-
sented by the regular expression in Example 2.2, i.e., the set of all nonempty binary
strings beginning and ending with the same bit. Let G5 = ({0,1},{S,0,1}, S, P),
where P contains

S — 00 S — 11
S — 0 S — 1
0O — 00 0O — 10
I — 0] I — 11
0O — 0 I — 1

Here O means to remember that the last bit must be a 0, and 1 similarly forces the
last bit to be a 1. Note again how the grammar treats the words 0 and 1 as special
cases.

Every regular grammar is a context-free grammar, but not every context-free
grammar is context-sensitive. However, every context-free grammar G can be trans-
formed into an equivalent one in which every production has the form A — BC' or
A — ¢, where A, B, and C are (possibly identical) variables, and ¢ is a terminal. If
the empty string is in L(G), then we can arrange to include S — € under the same

10

“special dispensation” as for CSLs. This form is called Chomsky normal form
[Chomsky, 1963], where it was used to prove the case i = 1 of the next theorem. The
grammar (1 in the last section is an example of a context-free grammar in Chomsky
normal form.

THEOREM 3.2 For each i = 0,1,2, the class of Type-i languages properly contains
the class of Type-(i + 1) languages.

The containments are clear from the above remarks. For the proper containments,
we have already seen that {0"1"|n > 0} is a Type-2 language that is not regu-
lar, and Chapter 32 will show that the language of the Halting Problem is Type-
0 but not Type-1. One can prove by a technique called “pumping” that the
Type-1 languages {0"1"2"|n > 0} and {zz|r € {0,1}*} are not Type-2. See
[Hopcroft and Ullman, 1979] for this, and for a presentation of the algorithm for
converting a context-free grammar into Chomsky normal form.

The four classes of languages in the Chomsky hierarchy have also been completely
characterized in terms of Turing machines (see Chapter 30) and natural restrictions
on them. We mention this here to make the point that these characterizations show
that these classes capture fundamental properties of computation, not just of formal
languages. A linear bounded automaton is a possibly-nondeterministic Turing ma-
chine that on any input x uses only the cells initially occupied by z, except for one
visit to the blank cell immediately to the right of x (which is the initially-scanned
cell if z = €). Pushdown automata may also be nondeterministic and were likewise
introduced in Chapter 30.

THEOREM 3.3

(a) The class of Type-0 languages equals the class of languages accepted by Turing
machines.

(b) The class of Type-1 languages equals the class of languages accepted by linear
bounded automata.

(¢) The class of Type-2 languages equals the class of languages accepted by pushdown
automata.

(d) The class of Type-8 languages equals the class of languages accepted by finite
automata.

Proof. (a) Given a Type-0 grammar G, one can build a nondeterministic
Turing machine M that accepts L(G) by having M first write the start symbol S
of G on a second tape. M always nondeterministically chooses a production and
chooses a place (if any) on its second tape where it can be applied. If and when the

11

second tape becomes an all-terminal string, M compares it to its input, and if they
match, M accepts. Then L(M) = L(G), and by Theorem 2.4 of Chapter 30, M can
be converted into an equivalent deterministic single-tape Turing machine.

For the reverse simulation of a TM by a grammar we give full details. Given any
TM My, we may modify My into an equivalent TM M = (Q,%,T, 4, B, g, qs) that
has the following five properties: (i) M never writes a blank; (ii) M when reading a
blank always converts it to a non-blank symbol on the current step; (iii) M begins
with a transition from ¢ that overwrites the first input cell (remembering what it
was) by a special symbol A that is never altered; (iv) M never re-enters state gy or
moves left of A; and (v) whenever M is about to accept, M moves left to the A, where
it executes an instruction that moves right and enters a distinguished state ¢.. In
state ¢, it overwrites any non-blank character by a special new symbol # and moves
right; when it hits the blank after having #-ed out the rightmost non-blank symbol
on its tape, M finally goes to ¢y and accepts.

Given M with these properties, take V = {S, A, } U (Q x T)U (T'\ X). A single
symbol in @ x T' is written using square brackets; e.g. [¢,¢] means that M is in
state ¢ scanning character c¢. The grammar G has the following productions, which
intuitively can simulate any accepting computation by M in reverse:

(1) S — ASo; So— #S0 | [ge, #I;

(2) [r,d] = [q,], for all instructions (g, ¢,d,r) € § with ¢,r € Q and ¢,d € T
(3) c|r, B] = [q,c]A, for all (¢,¢, R,T) € 6;

(4) c[r,d] — [q,c]d, for all (¢,c,R,r) € dand d €T, d # B;

(5) [r,dlc — d]g,¢], for all (g,¢,L,r)€dandd €T, d+# B;

(6) [qo,¢] — ¢ for all ¢ € 2, and

(7) A—e.

For all x € L(M), G can generate x by first using the productions in (1) to lay
down a # for every cell used during the computation, using the productions (2)-
(5) to simulate the computation in reverse, using (6) to restore the first bit of z
(blank if = €) one step after having eliminated the nonterminal A, and using (7) to
erase each A marking an initially-blank cell that M used. Conversely, the only way
G can eliminate A and reach an all-terminal string is by winding back an accepting
computation of M all the way to state gy scanning the first cell. Hence L(G) = L(M).

(b) If the given TM Mj is a linear bounded automaton, then we can patch the last
construction to eliminate the productions in (3) and (7), yielding a context-sensitive
grammar G. To do this, we need to make M postpone its one allowed visit to the
blank cell after the input until the last step of an accepting computation. To do

12

this, we make M nondeterministically guess which bit of its input = is the last one,
and overwrite it by an immutable right endmarker $ the same way it did with A on
the left. Then we arrange that from state g., M will accept only if it sees a blank
immediately to the right of the $, meaning that its initial guess delimited exactly the
true input z. (Technically this needs another state ¢..) Now M never even scans a
blank in the middle of an accepting computation, and we can delete the productions
in (3) as well as (7). Moreover, if M, accepts €, we can add the production S — e
allowed by the “special dispensation” for context-sensitive grammars above.

Going the other way, if the grammar G in the first paragraph of this proof is
context-sensitive, then the resulting TM M uses only O(n) space, and can be con-
verted to an equivalent linear bounded automaton by Theorem 3.1 of Chapter 30.

(¢c) Given a context-free grammar G, we may assume that G is in Chomsky normal
form. We can build a nondeterministic PDA M whose initial moves lay down a
bottom-of-stack marker A and the start symbol S of G, and go to a “central” state q.
For every production of the form A — BC in G, M has moves that pop the stack if A
is uppermost and push C' and then B, returning to state ¢. For every production of
the form A — ¢, M can pop an uppermost A from its stack if the currently-scanned
input symbol is ¢; then it moves its input head right. If G has the production S — ¢
as a special case, then M can pop the initial S. A computation path accepts if and
only if the stack gets down to A precisely when M reaches the blank at the end of its
input . Then accepting paths of M on an input x are in 1-1 correspondence with
leftmost derivations (see below) of z in G, so L(M) = L(G).

Going from a PDA M to an equivalent CFG G is much trickier, and is covered
well in [Hopcroft and Ullman, 1979).

(d) This has been proved in Chapter 30, Theorem 2.2.

Since {zz|z € {0,1}*} is a pattern language, we know from discussions above that
the class of pattern languages is not contained in the class of context-free languages.
It is contained in the class of context-sensitive languages, however.

THEOREM 3.4 Ewvery pattern language is context-sensitive.

This was proved by showing that every pattern language is accepted by a linear
bounded automaton [Angluin, 1980], whereupon it is a corollary of Theorem 3.3(b).

Given a class of languages, we are often interested in the so called closure properties
of the class.

DEFINITION 3.2 A class of languages is said to be closed under a particular operation
(such as union, intersection, complementation, concatenation, or Kleene closure) if
eevery application of the operation on language(s) of the class yields a language of
the class.

13

Closure properties are often useful in constructing new languages from existing lan-
guages, and for proving many theoretical properties of languages and grammars. The
closure properties of the four types of languages in the Chomsky hierarchy are summa-
rized below. Proofs may be found in [Harrison, 1978], [Hopecroft and Ullman, 1979,
or [Gurari, 1989]; the closure of the CSLs under complementation is the famous
Immerman-Szelepcsényi Theorem, which is treated in Chapter 33, Section 2.5.

THEOREM 3.5

1. The class of Type-0 languages is closed under union, intersection, concatenation,
and Kleene closure, but not under complementation.

2. The class of context-free languages is closed under union, concatenation and
Kleene closure, but not under intersection or complementation.

3. The classes of context-sensitive and regular languages are closed under all of
the five operations.

For example, let Ly = {0m1"2°|m = n}, Ly = {0™1"2°|n = p}, and L3 =
{0m1"2°|m = norn = p}. Now L; is the concatenation of the context-free lan-
guages {0"1"|n > 0} and 2*, so L; is context-free. Similarly Lo is context-free. Since
L3 = L1 UL, Ljis context-free. However, intersecting Ly with L, gives the language
{0™1"2P|m = n = p}, which is not context-free.

We will look at context-free grammars more closely in the next section and intro-
duce the concepts of parsing and ambiguity.

4 Context-free Grammars and Parsing

From a practical point of view, for each grammar G = (X, V, S, P) representing some
language, the following two problems are important:

1. Membership problem: Given a string over 3, does it belong to L(G)?

2. Parsing problem: Given a string in L(G), how can it be derived from S?

The importance of the membership problem is quite obvious—given an English
sentence or computer program, we wish to know if it is grammatically correct or
has the right format. Solving the membership problem for context-free grammars
is an integral step in the lexical analysis of computer programs, namely the stage
of decomposing each statement into tokens, prior to fully parsing the program. For
this reason, the membership problem is also often referred to as lexical analysis (cf.
[Drobot, 1989]). Parsing is important because a derivation usually brings out the

14

“meaning” of the string. For example, in the case of a Pascal program, a derivation
of the program in the Pascal grammar tells the compiler how the program should be
executed. The following theorem qualifies the decidability of the membership problem
for the four classes of grammars in the Chomsky hierarchy. Proofs of the first assertion
can be found in [Chomsky, 1963, Harrison, 1978, Hopcroft and Ullman, 1979], while
the second assertion is treated below. Decidability and time complexity were defined
in Chapter 30.

THEOREM 4.1 The membership problem for Type-0 grammars is undecidable in gen-
eral, but it is decidable given any context-sensitive grammar. For context-free gram-
mars the problem is decidable in polynomial time, and for reqular grammars, linear
time.

Since context-free grammars play a very important role in describing computer
programming languages, we discuss the membership and parsing problems for context-
free grammars in more detail in this and the next section. First, let us look at
another example of a context-free grammar. For convenience, let us abbreviate a set
of productions

A= ay,...,A—> a,

with the same left-hand side nonterminal as
A= ay]...|ay.

EXAMPLE 4.1 We construct a context-free grammar Gy for the set of all valid real-
number literals in Pascal. In general, a real constant in Pascal has one of the following
forms:

m.n, meq, m.neq,

where m, q are signed or unsigned integers and n is an unsigned integer. Let X
comprise the digits 0-9, the decimal point ‘.’, the + and — signs, and the e for
scientific notation. Let the set V of variables be {S, M, N, D} and let the set P of
the productions be:

S — M.N|MeM|M.NeM
M — N|+N|-N

N — DNI|D

D

s 0[1[213]4/5/7|8|9

Then the grammar generates all valid Pascal real values (allowing redundant leading
0s). For instance, the value 12.3e-4 can be derived via

S=M.NeM = N.NeM = DN.NeM = 1IN.NeM = 1D.NeM =

12.NeM = 12.DeM = 12.3eM = 12.3e — N = 12.3e-D = 12.3e4

15

Figure 1: The derivation tree for 12.3e — 4.

Perhaps the most natural representation of derivations in a context-free grammar
is a derivation tree or a parse tree. Every leaf of such a tree corresponds to
a terminal (or to €), and every internal node corresponds to a nonterminal. If A
is an internal node with children By, ..., B,, ordered from left to right, then A —
By --- B, must be a production. The concatenation of all leaves from left to right
yields the string being derived. For example, the derivation tree corresponding to the
above derivation of 12.3e-4 is given in Figure 1. Such a tree also makes possible the
extraction of the parts 12, 3 and -4, which are useful in the storage of the real value
in a computer memory.

DEFINITION 4.1 A context-free grammar G is ambiguous if there is a string x €
L(G) that has two distinct derivation trees. Otherwise G is unambiguous.

Unambiguity is a very desirable property because it promises a unique interpreta-
tion of each sentence in the language. It is not hard to see that the grammar Gg for
Pascal real values and the grammar G defined in Example 2.6 are both unambiguous.
The following example shows an ambiguous grammar.

EXAMPLE 4.2 Consider a grammar G7 for all valid arithmetic expressions that are
composed of unsigned positive integers and symbols +, %, (,). For convenience, let us
use the symbol n to denote any unsigned positive integer—it is treated as a terminal.
This grammar has the productions

S — T+S|S+T|T

16

® @
e LI
oo & &

® © (2)

(2

~— N N S

®
P
T
(3

Figure 2: Different derivation trees for the expression 1 + 2 % 3 + 4.

T — F+T|TxF|F
F — nl(9)

Two possible different derivation trees for the expression 1 4+ 2 * 3 4+ 4 are shown in
Figure 2. Thus G7 is ambiguous. The left tree means that the first addition should
be done before the second addition, while the right tree says the opposite.

Although in the above example different derivations/interpretations of any ex-
pression always result in the same value because the operations addition and multi-
plication are associative, there are situations where the difference in the derivation
can affect the final outcome. Actually, the grammar G can be made unambiguous
by removing the redundant productions S — T+ S and T' — F'xT. This corresponds
to the convention that a sequence of consecutive additions or multiplications is al-
ways evaluated from left to right. Deleting the two productions does not change the
language of strings generated by G7, but it does fix unique interpretations of those
strings.

It is worth noting that there are context-free languages that cannot be generated
by any unambiguous context-free grammar. Such languages are said to be inherently
ambiguous. An example taken from [Hopcroft and Ullman, 1979] (where this fact is
proved) is

{0™1™2"3"/m,n > 0} U {0™1"2"3™|m,n > 0}.

The reason is that every context-free grammar G must yield two parse trees for some
strings of the form x = 0"1"2"3", where one tree intuitively expresses that x is a

17

(s

member of the first set of the union, and the other tree expresses that x is in the
second set.

We end this section by presenting an efficient algorithm for the mem-
bership problem for context-free grammars, following the treatment in
[Hopcroft and Ullman, 1979]. The algorithm is due to Cocke, Younger, and
Kasami, and is often called the CYK algorithm. Let G = (X,V,S,P) be a
context-free grammar in Chomsky normal form.

EXAMPLE 4.3 If we use the algorithm in [Hoperoft and Ullman, 1979] to convert the
grammar G, from Example 4.2 into Chomsky normal form, we are led to introduce
new “alias variables” A, B, C, D for the operators and parentheses, and “helper vari-
ables” Sy,T1,Ts, F1, F5 to break up the productions in G7 with right-hand-sides of

‘ length > 2 into length-2 pieces. The resulting grammar is:

S = TS|ST|Fi\T|TF)|CS|n
T, — TA

T, — AT

T — FRT|TF|CS|n
P — FB

F, — BF

F — n|CS;

S1 — SD

A = +

B — x

C = (

D —)

While this grammar is much less intuitive to read than G7, having it in Chomsky
normal form facilitates the description and operation of the CYK algorithm.

Now suppose that =z = ay---a, is a string of n terminals that we want to test
for membership in L(G). The basic idea of the CYK algorithm is a form of dynamic
programming. For each pair ¢, j, where 1 < ¢ < j < n, define a set X;; CV by

Xw' = {A|A =% ;- - aj}.

Then z € L(G) if and only if S € X;,,. The sets X ; can be computed inductively in
ascending order of j —i. It is easy to figure out X;; for each i since X;; = {A|A —
a; € P}. Suppose that we have computed all X; ; where j —¢ < d for some d > 0. To
compute a set X, ;, where j —¢ = d, we just have to find all the nonterminals A such
that there exist some nonterminals B and C' satisfying A — BC € P and for some

18

Table 1: An example execution of the CYK algorithm.

0OJoJoJiJr1]1
j—=
1]2]3]4]5]6
1J0 S
2 0 S|T
i|3 o|s|T
L[4 I
5 I
6 I

k,i<k<j,BeX;rand C € Xpi1;. A rigorous description of the algorithm in a
Pascal-style pseudocode is given below.

Algorithm CYK(z =a; - - a,)
1. for i < 1 ton do
2. X;i < {A|A — a; € P}
3. ford+ 1ton—1do
4. fori+ 1ton—ddo
3. Xiiva <0
6. fort < 0tod—1do

7. Xiiva < Xiiva U {A|A — BC € P for some B € X;;; and C €
Xi+t+1,i+d})

Table 1 shows the sets X;; for the grammar G; and the string x = 000111. In
this run it happens that every X ; is either empty or a singleton. The computation
proceeds from the main diagonal toward the upper-right corner.

We now analyze the asymptotic time complexity of the CYK algorithm . Step
2 is executed n times. Step 5 is executed Y- {n —d = (n— 1)(n —1+n — (n —
1))/2 = n(n — 1)/2 = O(n?) times. Step 7 is repeated for Y7_1 d(n — d) = O(n?)
times. Therefore, the algorithm requires asymptotically O(n?®) time to decide the
membership of a string length n in L(G), for any grammar G in Chomsky normal
form.

19

5 DMore Efficient Parsing for Context-free Gram-
mars

The CYK algorithm presented in the last section can be easily extended to solve
the parsing problem for context-free grammars: In step 7, we also record a produc-
tion A — BC and the corresponding value of ¢ for any nonterminal A that gets
added to X ;14. Thus a derivation tree for « can be constructed by starting from the
nonterminal S in X;, and repeatedly applying the productions recorded for appro-
priate nonterminals in appropriate sets X; ;. However, the cubic running time of this
algorithm is generally too high for parsing applications. In practice, with compila-
tion modules thousands of lines long, people seek grammars in other forms besides
Chomsky’s that permit parsing in linear or nearly-linear time.

Before we present some of these forms, we discuss parsing strategies in general.
Parsing algorithms fall into two basic types, called top-down parsers and bottom-
up parsers. As indicated by their names, a top-down parser builds derivation trees
from the top (root) to the bottom (leaves), while a bottom-up parser starts from the
leaves and works up to the root. Although neither method is good for handling all
context-free grammars, each provides efficient parsing for many important subclasses
of the context-free grammars, including those used in most programming languages.

We will only consider unambiguous grammars. To simplify the description of the
parsers, we will assume that each string to be parsed ends with a special delimiter
$ that does not appear anywhere else in the string. This assumption makes the
detection of the end of the string easy in a left-to-right scan. The assumption does
not put any serious restriction on the range of languages that can be parsed—the $
is just like the end-of-file marker in a real input file. The following definition will be
useful.

DEFINITION 5.1 A derivation from a sentential form to another is said to be leftmost
(or rightmost) if at each step the leftmost (or rightmost, respectively) nonterminal
is replaced.

For example, Example 4.3 gave a leftmost derivation of the word 12.3e-4 in the
grammar GGg. For a given word x, leftmost derivations are in 1-1 correspondence with
derivation trees, since we can find the leftmost derivation specified by a derivation tree
by tracing the tree down from the root going from left to right. Rightmost derivations
are likewise in 1-1 correspondence with derivation trees. Hence in an unambiguous
context-free grammar, every derivable string has a unique leftmost derivation and a
unique rightmost derivation. The parsing methods considered next find one or the
other.

20

5.1 Top-down Parsing

An important member of the top-down parsers is the LL parser (see
[Aho, Sethi and Ullman, 1985, Drobot, 1989]). Here, the first “L” means scanning
the input from left to right, and the second means leftmost derivation. In other
words, for any input string x, the parser intends to find the sequence of productions
used in the leftmost derivation of x.

Let G = (%,V, 5, P) be a context-free grammar. A parsing table T for G has
rows indexed by members of V' and columns indexed by members of ¥ and $. Each
entry T[A, ¢] is either blank or contains one or more productions of the form A — a.
Here we will suppose that G allows the construction of a parsing table 7" such that
every non-blank entry T[A, ¢] contains only one production. Then the LL parser for
G is a device very similar to a pushdown automaton as described in Chapter 30.
The parser has an input buffer, a pushdown stack, a parsing table, and an output
stream. The input buffer contains the string to be parsed followed by the delimiter $.
The stack contains a sequence of terminals or nonterminals, with another delimiter
that marks the bottom of the stack. Initially, the input pointer points to the first
symbol of the input string, and the stack contains the start nonterminal S on top of
#. Figure 77 illustrates schematically the components of the parser. As usual, the
input pointer will only move to the right, while the stack pointer is allowed to move
up and down.

The parser is controlled by an algorithm that behaves as follows. At any instant
of time, the algorithm considers the symbol X on top of the stack and the current
input symbol ¢ pointed by the input pointer, and makes one of the following moves.

1. If X is a nonterminal, the algorithm consults the entry T[X, a] of the parsing
table T'. If the entry is blank, the parser halts and states that the input string
x is not in the language L(G). If not, the entry is a production of the form
X — Yy ---Y,. Then the algorithm replaces the top stack symbol X with the
string Y7 - - - Y% (with Y] on top), and outputs the production.

2. If X is a terminal, X is compared with ¢. If X = ¢, the algorithm pops X off
the stack and shifts the input pointer to the next input symbol. Otherwise, the
algorithm halts and states that « ¢ L(G).

3. If X = #, then provided ¢ = §, the algorithm halts and declares the successful
completion of parsing. Otherwise the algorithm halts and states that « ¢ L(G).

Intuitively, the parser reconstructs the derivation of a string x = ay---a, as
follows. Suppose that the leftmost derivation of x is

S=n=nN=""=%>%N1=> = Tm =271,

21

Table 2: An LL parsing table for grammar Gs.

NONTER- INPUT SYMBOL
MINAL | n |+ E [() E |
S S =TS S =TS
S S"—=+S S'—e| S e
T T — FT’ T — FT’
T T — ¢ T — T T —we|T —¢
F F—n F—(5)

where each +; is a sentential form. Suppose, moreover, that the derivation step
~i = 71 is the result of applying a production X — Yj---Yj. This means that
~v; = aX 8 for some string « of terminals and sentential form 3. Since no subsequent
derivation will change o, this string must match a leading substring a; - - - a; of for
some j. In other words, v; = a1 ---a; X8 and v;41 = a1+ - a;Y1 - - - Y 8. Suppose that
the parser has successfully reconstructed the derivation steps up to ;. To complete
the derivation, the parser must transform the tail end of v; into aj;;---a,. Thus,
it keeps the string X5 on the stack and repeatedly replaces the top stack symbol
(i.e., replaces the leftmost nonterminal) until a; 41 appears on top. At this point, a;4
is removed from the stack, and the remainder of the stack must be transformed to
match a;j12 - - - a,. The procedure is repeated until all the input symbols are matched.

The following example illustrates the parsing table for a simple context-free gram-
mar, and how the parser operates.

ExXaMPLE 5.1 Consider again the language of valid arithmetic expressions from Ex-
ample 4.2, where an ambiguous grammar Gz was given that could be made unam-
biguous by removing two productions. Let us remove the ambiguity in a different
way. The new grammar is called G and has the following productions

S = 15

S" = +S|e

T — FT

T — «T|e

F — n|(9)
It is easy to see that grammar Gy is unambiguous. A parsing table for this grammar
is shown in Table 2. We will discuss how such a table can be constructed shortly.

To demonstrate how the parser operates, consider the input string (n + n) * n.
Table 3 shows the content of the stack, the remaining input symbols, and the output
after each step. If we trace the actions of the parser carefully, we see that the sequence
of productions it outputs constitutes the leftmost derivation of (n +n) * n.

22

Table 3: The steps in the LL parsing of (n + n) * n.

[STACK | INPUT | OUTPUT |
S# | (n+n)*n$
TS'# | (n+n)*n$ | S — TS
FT'S'# | n+n)*n$ | T — FT'
(S)T'S'# | (m+n)*xn$ | FF — (95)
S)T'S'# | n+n)x«n$
TSYT'S'# | n+n)*xn$ | S — TS
FT'S"T'S'# | n+n)*n$ | T — FT’
nT'SNT'S'# | n+n)x«n$ | F—n
T’S’)T’S’ +n) * n$
SNT'S'# +n)*n$ | T — ¢
+S8)T'S'# +n)xn$ | ' — +S5
S)T'S'# n) * n$
TSNT'S'# n)+n$ | 5 = TS
FT'ST'S'# n)*«n$ | T — FT’
nT' ST S'# n)xn$ | F —n
T'ST'S'#) % n$
SNT'S'# Yxn$ | T — ¢
VT'S'# Yxn$ | T — ¢
T'S'# *n$
*T'S'# sn$ | T — «T
TS'4 n$
FT'S'# n$ | T = FT’
nT’S'# n$ | F—n
TS/ $| T e
S'# $15 —e€
$

23

Now we turn to the question of how to construct an LL parser for a given grammar
G = (X,V,S,P). It suffices to show how to compute the entries T[A, ¢|, where
A€ Vand c € ZU{$}. We first need to introduce two functions FIRST () and
FOLLOW (A). The former maps a sentential form to a terminal or €, and the latter
maps a nonterminal to a terminal or $.

DEFINITION 5.2 For each sentential form a € {£ U V}*, and for each nonterminal
AeV,

FIRST(a) = {ceX |forsome e {ZUV}, a="cf} U {e|a="¢}
FOLLOW(A) = {ce X |forsomea,f e {ZUV}" S="aAcs}
U {$]for some a € {EUV}", S="aAl.

Intuitively, for any sentential form «, FIRST () consists of all the terminals that
appear as the first symbol of some sentential form derivable from «. The empty string
e is included in FIRST («) as a special case if « derives e. On the other hand, for any
nonterminal A, FOLLOW (A) consists of all the terminals that immediately follow
an occurrence of A in some sentential form derivable from the start symbol S. The
end delimiter $ is included in FOLLOW (A) as a special case if A appears at the end
of some sentential form derivable from S.

Algorithms for computing the FIRST() and FOLLOW/() functions are fairly
straightforward and can be found in [Aho, Sethi and Ullman, 1985, Drobot, 1989).
It turns out that to construct the parsing table for a grammar G, we only need to
know the values of FIRST («) for those sentential forms « appearing on the right-hand
sides of the productions in G.

EXAMPLE 5.2 The following illustrate the functions FIRST(«) and FOLLOW (A)
for the grammar Gg described in the above example. For the former, only those
sentential forms appearing on the right-hand sides of the productions in Gy are con-
sidered.

FIRST(TS") = {(,n}
FIRST(+S) = {+}

FIRST(FT') = {(,n}
FIRST(+T) = {x}

FIRST((S)) = {(}
FIRST(n) = {n}
FIRST(e) = {e}

FOLLOW(S) = {),$}

24

FOLLOW (S')

FOLLOW(T) = {+,),$}
FOLLOW(T') = {+,).$}
FOLLOW(F') = {x+,).$}

= {3}

Given the functions FIRST («) and FOLLOW (A) for a grammar G, we can easily
construct the LL parsing table T[A, ¢] for G. The basic idea is as follows. Suppose
that A — « is a production and ¢ € FIRST(«). Then, the parser will replace A
with a when A is on top of the stack and ¢ is the current input symbol. The only
complication occurs when a may derive €. In this case, the parser should still replace
A with « if the current input symbol is a member of FOLLOW (A). The detailed
algorithm is given below.

Algorithm LL-Parsing-Table(G = (£, V, S, P))
1. Initialize each entry of the table to blank.
2. for each production A — « in P do
3. for each terminal a € FIRST («) do
add A = ato T[A, d;
if e € FIRST (o) then
for each terminal or delimiter a € FOLLOW (A) do

N ov e

add A = « to T[A, a] ;

The above algorithm can be applied to any context-free grammar to produce a
parsing table. However, for some grammars the table may have entries containing
multiple productions. Multiply-defined entries in a parsing table, however, would
present our parsing algorithm with an unwelcome choice. It would be possible for
it to make a wrong choice and incorrectly report a string as not being derivable,
and backtracking to the last choice to try another would blow up the running time
unacceptably.

EXAMPLE 5.3 Recall that we could make the grammar G7 of Example 4.2 unam-
biguous by deleting two unnecessary productions. The resulting grammar, which we
call Gy, has the following productions:

S — S+TT
T — TxF|F
F — n|(9)

25

It is easy to see that both FIRST(S + T) and FIRST(T) contain the terminal n.
Hence, the entry T[S, n] of the parsing table is multiply defined, so this table is not
well-conditioned for LL parsing.

A context-free grammar whose parsing table has no multiply-defined entries is
called an LL(1) grammar. Here, the “1” signifies the fact that the LL parser uses
one input symbol of lookahead to decide its next move. For example, Gg is an LL(1)
grammar, while Gy is not. It is easy to show that our LL parser runs in linear time
for any LL(1) grammar.

What can we do for grammars that are not LL(1), such as G¢? The first idea is
to extend the LL parser to use more input symbols of lookahead. In other words, we
will allow the parser to see the next several input symbols before it makes a decision.
For one more symbol of lookahead, this requires expanding the parsing table to have
a column for every pair of symbols in ¥ (plus $ as a possible second symbol), but so
doing may separate and/or eliminate multiply-defined entries in the original parsing
table. The FIRST() and FOLLOW () functions have to be modified to take two (or
more) lookahead symbols into consideration. For any constant & > 1, a grammar is
said to be an LL(k) grammar if its parsing table using k lookahead symbols has no
multiply defined entries. For example, the grammar G; given in Example 2.6 is not
LL(1), but it is LL(2).

Although LL(k) grammars form a larger class than LL(1) grammars, there are
still grammars that are not LL(k) for any constant k. The grammar G; and Gy are
examples. The texts [Aho, Sethi and Ullman, 1985, Drobot, 1989] provide several
techniques for dealing with non-LL(k) grammars, such as grammar transformations
and backtracking. When backtracking is used, the parsing process is often called
recursive-descent parsing, and can be very time consuming due to the use of many
recursive calls.

5.2 Bottom-up Parsing

The most popular bottom-up parsing technique is LR parsing. Here, the “I.” again
means scanning the input from left to right, while the “R” means constructing the
rightmost derivation. For any input string x, the LR parser scans = from left to right
and tries to find the reverse of the sequence of productions used in the rightmost
derivation of x. It turns out that in bottom-up parsing rightmost derivations are
easier to deal with than leftmost derivations. LR parsing is especially attractive in
practice for many reasons summarized in [Aho, Sethi and Ullman, 1985]: (i) it can
handle virtually all programming language constructs; (ii) it has very efficient imple-
mentations; (iii) it is more powerful than LL parsing; and (iv) it detects syntactic
errors quickly. The principal drawback of the method is that constructing an LR
parser is very involved. Fortunately, there exist efficient algorithms that can auto-
matically generate LR parsers from certain context-free grammars. Because of space

26

limitations, we describe only the operation of an LR parser here, and refer the reader
to [Aho, Sethi and Ullman, 1985] for the construction of such a parser.

Similar to an LL parser, an LR parser has an input buffer, a pushdown stack, a
parsing table, and an output stream, and is controlled by an algorithm that is the same
for all LR parsers. The input string is again assumed to have an end delimiter §. At
any time during parsing, the stack stores a string of the form ¢, X;ngm—1 - - - X1qo (with
go at bottom), where each X; is a grammar symbol (i.e., a terminal or nonterminal
of the grammar involved) and ¢; is a state symbol. The number of distinct states
is finite, and each state symbol intends to summarize the information contained in
the stack below it. The combination of the state on top of the stack and the current
input symbol are used to index the parsing table and determine the move of the
parser. It will be seen that the state symbols subsume all information in the grammar
symbols, and a real parser omits the latter. However, we retain the grammar symbols
Xi, ..., X,, to make our illustration easier to follow, and for consistency with previous
examples.

The parsing table consists of two parts: a parsing action function ACTION (¢, ¢),
which maps a state and an input symbol to a move, and a function GOTO(gq, X),
which maps a state and a grammar symbol to a state. For each state ¢ and each
input symbol ¢, the value of the function ACTION (q,c) can be one of the following:

1. shift,
2. reduce by A — «, where A — « is a production in the grammar,
3. accept, and

4. blank.

The algorithm controlling the LR parser operates as follows. Suppose that the
state on top of the stack is ¢ and the current input symbol is ¢. It consults
ACTION (g, ¢) and makes one of the four types of moves as below.

1. If ACTION (g, ¢) = shift, the parser pushes the string GOTO(q, ¢)c on the stack
and shifts its input pointer to the next input symbol.

2. If ACTION(q,¢) = reduce by A — «, the parser applies the produc-
tion A — « as follows. Let k = |a|, and let the current stack con-
tent be ¢nXm@m-_1---X1qo. The parser first pops the top 2k symbols
Gms Xy -+ s Gm—k+1, Xm—k+1 Off the stack. It then consults GOTO(gm—x, A) and
pushes the string GOTO(¢,—k, A)A onto the stack, resulting in a stack with
content GOTO(gm—k, A) Agm—1Xm—k - - - X1go. The parser also outputs the pro-
duction A — a.

It is always guaranteed in the above that X,, ;i1 - X, = .

27

3. If ACTION (q,a) = accept, the parser successfully terminates.

4. If ACTION(q,a) = blank, the parser terminates and declares that the input
string is not a member of the language.

Intuitively, the LR parser reconstructs the rightmost derivation of a string z =
ai -+ - ay as follows. Suppose that the rightmost derivation of x is

S=N=>nN="=%=%1=> = Tm=71,

where each ; is a sentential form. Furthermore, suppose that the derivation step
i = Yir1 is the result of applying a production A — Yj---Y;. This means that
v = aAz for some sentential form o = Xj---X; and string z of terminals, and
Yir1 = Yy Yez = X1 - - X3Yq - - Yz Since no subsequent derivation will change
z, this string must match a trailing substring a; - - - a,, of x for some j. In other words,
vi=X1-- X Aa; - -a, and v = Xy - XY - Yiag - ap.

Suppose that the parser has successfully reconstructed the derivation steps in
reverse from -, back to v;41. At this point, the stack must be holding a string of the
form

QenYn - @ V10X - 1. X1qo,

where h < k and qq, q1, . . - @4+ are some states, and the input pointer is pointing at
@j+h—r- Moreover, it must be that Y11 = ajin—p,...,Yr = a;—1. To recover v;, the
parser consults the state g, on top of stack and the current input symbol a;p—.
It then shifts the h — &k input symbols a;4r—i,...,a;—1 and h — k appropriate state
symbols onto the stack. It also advances the input pointer to a;. Then, the parser
reduces the string Y7 - - - Y}, to the nonterminal A by replacing the top 2k stack symbols
with A and an appropriate state symbol.

The above shift-and-reduce process is repeated until the sentential form vy = S is
obtained. For this reason, the LR parser is sometimes called a shift-reduce parser.

Clearly, the state symbols stored on the stack play a key role in dictating the
actions of the parser. Below we first give an example of LR parsing tables and show
exactly how the parser operates on a specific input. Then we will briefly sketch how
the states are chosen for a grammar and what they represent.

EXAMPLE 5.4 Consider again the unambiguous grammar Gy given in Example 5.3.
For convenience, let us number the productions as follows.

1 S - S+7T

(2) S = T

3) T = TxF

4 T — F

(5) F - n

6) F — (9)
28

Table 4: The function ACTION (g, ¢) for the unambiguous grammar Gg.

[STATE[[n [+ [* [C [) [S |

0 | shf shf

1 shf acc
2 p2 | shf p2 | p2
3 pd | p4 pd | p4
4 | shf shf

5 p6 | p6 p6 | p6
6 | shf shf

7| shf shf

8 shf shf

9 pl | shf pl | pl
10 p3 | p3 p3 | p3
11 pb | pd p5 | pb

Tables 4 and 5 illustrate the functions ACTION (¢, ¢) and GOTO(q, X) for the gram-
mar. In the first table, shf means shift, pi means reduce by production ¢, acc means
accept, and blank means reject. The states are numbered 0,1, ..., 11.

Now we demonstrate how the parser operates on the string (n + n) *n. Table 6
shows the content of the stack, the remaining input symbols, and the output after
each step. It is easy to see that the reverse sequence of the productions in the reduce
steps constitute the rightmost derivation of (n+ n) x n.

There are several techniques for constructing an LR parsing table, such
as simple-LR (SLR), canonical-LR, and lookahead-LR (LALR), as described by
[Aho, Sethi and Ullman, 1985]. In general, these techniques all use states that are
sets of items of the form A — « - 3, where A — a3 is a production and the - marks a
place in the right-hand side. Such items are commonly known as the LR items. Each
item expresses the assertion that the part o has already been obtained by previous
shift /reduce steps and pushed on the stack, and the part 8 is expected to be obtain-
able from the next few input symbols by some shift /reduce steps. Since at any given
time the parser may not be able to predict what input symbols should follow, it has
to maintain a set of LR items to deal with all possibilities.

Again, not all context-free grammars have effective LR parsers. For example, the
grammar with productions

S — 050]151|0|1]e
cannot be handled by LR parsing. This grammar generates the set of all palindromes.

The grammars that have effective LR parsers are called LR grammars. In fact, there

29

Table 5: The function GOTO(g, X) for the unambiguous grammar Gy.

[STATE [n [+ [+ [(]) [S[S[T]F |

05 4 1123
1 6

2 7

3

415 4 81213
5

695 4 913
715 4 10
8 8 11

9 7

10

11

Table 6: The steps in the LR parsing of (n+ n) * n.

STACK INPUT | ACTION
0| (n+n)=*n$ | shift
4(0 | n+n)*n$ | shift
5n4(0 +n) *xn$ | reduce by FF = n
3F4(0 +n) *n$ | reduce by T — F
2T4(0 +n) *n$ | reduce by S = T
854(0 +n) * n$ | shift
6+ 854(0 n) * n$ | shift
5n6 + 854(0) *n$ | reduce by F = n
3F6 + 854(0) *n$ | reduce by T — F
976 + 854(0) *n$ | reduce by S - S+ T
854(0) *n$ | shift
11)854(0 «n$ | reduce by F — (5)
3F0 xn$ | reduce by T'— F
2T0 *n$ | shift
7270 n$ | shift
5n7 x 270 $ | reduce by F — n
10F7 % 2T0 $ | reduce by T — T x F
270 $ | reduce by S — T
150 $ | accept
30

are context-free languages that cannot be represented by any LR grammars. The set
of palindromes is one such language.

6 Defining Terms

ambiguous context-free grammar: a context-free grammar in which some deriv-
able terminal strings have two distinct derivation trees.

bottom-up parsing: a process of building a derivation tree from the leaves up to
the root.

Chomsky normal form: a form of context-free grammar in which every rule has
the form A — BC or A — a, where A, B, C are nonterminals and « is a terminal.

context-free grammar: a grammar whose rules have the form A — 3, where A is
a nonterminal and £ is a string of nonterminals and terminals.

context-free language: a language that can be described by some context-free
grammar.

context-sensitive grammar: a grammar whose rules have the form o — 3, where
a, § are strings of nonterminals and terminals, and || < |5].

context-sensitive language: a language that can be described by some context-
sensitive grammar.

derivation or parsing: a sequence of applications of rules of a grammar that trans-
forms the start symbol into a given terminal string or sentential form.

derivation tree or parse tree: a rooted, ordered tree that describes a particular
derivation of a string with respect to some context-free grammar.

(formal) language: a set of strings over some fixed alphabet.

(formal) grammar: a description of some language, typically consisting of a set of
terminals, a set of nonterminals, a distinguished nonterminal called the start sym-
bol, and a set of rules (or productions) of the form o — (3, which determine which
substrings « of a sentential form can be replaced by some another string 5.

leftmost (or rightmost) derivation: a derivation in which at each step, the leftmost
(respectively, rightmost) nonterminal is rewritten.

LL parsing: a type of top-down parsing in which one reads the input from left to
right in order to reconstruct a leftmost derivation.

LL(k) grammar: a context-free grammar whose LL(k) parsing table has no
multiply-defined entries.

LL(k) parsing: an LL parsing that uses k symbols of lookahead.

LR parsing: a type of bottom-up parsing in which one reads the input from left to
right in order to reconstruct a rightmost derivation in reverse order of steps.

LR grammar: a context-free grammar that has an effective LR parser.

31

membership problem (or lexical analysis): the problem or process of deciding
whether a given string is generated by a given grammar.

parsing problem: the problem of reconstructing a derivation of a given input string
in a given grammar.

regular expression: a description of some language using the operators union,
concatenation, and Kleene closure.

regular language: a language that can be described by some regular expression, or
equivalently, by some right-linear /regular grammar.

right-linear or regular grammar: a grammar whose rules have the form A — ¢B,
A — ¢, or A — €, where A, B are nonterminals, ¢ is a terminal, and € is the empty
string.

sentential form: a string of terminals and nonterminals obtained at some step of a
derivation in a grammar.

top-down parsing: a process of building derivation trees from the top (root) down
to the bottom (leaves).

References

[Aho, Sethi and Ullman, 1985] Aho, A.V., Ullman, J.D. and Sethi, I. 1985. Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley, Reading, MA.

[Angluin, 1980] Angluin, D. 1980. Finding patterns common to a set of strings. Jour-
nal of Computer and System Sciences. 21:46-62.

[Chomsky, 1956] Chomsky, N. 1956. Three models for the description of language.
IRE Trans. on Information Theory. 2(2):113-124.

[Chomsky, 1963] Chomsky, N. 1963. Formal properties of grammars. In Handbook of
Mathematical Psychology Vol. 2, 323-418. John Wiley and Sons, New York.

[Chomsky and Miller, 1958] Chomsky, N. and Miller, G. 1958. Finite-state languages.
Information and Control. 1:91-112.

[Drobot, 1989] Drobot, V. 1989. Formal Languages and Automata Theory. Computer
Science Press, Rockville, MD.

[Floyd and Beigel, 1994] Floyd, R.W. and Beigel, R. 1994. The Language of Ma-
chines: an Introduction to Computability and Formal Languages. Computer Sci-
ence Press, New York.

[Gurari, 1989] Gurari, E. 1989. An Introduction to the Theory of Computation. Com-
puter Science Press, Rockville, MD.

[Harel, 1992] Harel, D. 1992. Algorithmics: The Spirit of Computing. Addison-
Wesley, Reading, MA.

32

[Harrison, 1978] Harrison, M. 1978. Introduction to Formal Language Theory.
Addison-Wesley, Reading, MA.

[Hopcroft and Ullman, 1979] Hopcroft, J. and Ullman, J. 1979. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley, Reading, MA.

[Jiang et al., 1995] Jiang, T., Salomaa, A., Salomaa, K., and Yu, S. 1995. Decision
problems for patterns. Journal of Computer and System Sciences. 50(1):53-63.

[Kleene, 1956] Kleene, S. 1956. Representation of events in nerve nets and finite au-
tomata. In Automata Studies, 3-41. Princeton University Press, NJ.

[Lind and Marcus, 1995] Lind, D. and Marcus, 1995 Symbolic Dynamics, Academic
Press.

[Post, 1943] Post, E. 1943. Formal reductions of the general combinatorial decision
problems. Amer. J. Math. 65:197-215.

[Salomaa, 1966] Salomaa, A. 1966. Two complete axiom systems for the algebra of
regular events. J. ACM. 13(1):158-169.

[Searls, 1993] Searls, D. 1993. The computational linguistics of biological sequences.
In Artificial Intelligence and Molecular Biology. L. Hunter (ed.), MIT Press,
1993, pp. 47-120.

[Wood, 1987] Wood, D. 1987. Theory of Computation. Harper and Row.

Further Information

The fundamentals of formal languages and grammars can be found in many text
books including [Drobot, 1989, Floyd and Beigel, 1994, Gurari, 1989, Harel, 1992,
Harrison, 1978, Hopcroft and Ullman, 1979, Wood, 1987]. The central focus of re-
search in this area has been to find formal grammatical representations of languages
that are very expressive and are yet easy to parse. The research results have greatly
benefited many fields of computer science, including programming languages, com-
piler design, and natural language processing. The preceding chapter presents the
machine model counterparts of regular grammars, context-free grammars, context-
sensitive grammars, and unrestricted grammars, and the next chapter introduces the
concepts of decidability and undecidability, which has a close relation to formal gram-
mars. The following annual conferences present the leading research work in formal
languages and grammars: International Colloquium on Automata, Languages and
Programming (ICALP), ACM Annual Symposium on Theory of Computing (STOC),
IEEE Symposium on the Foundations of Computer Science (FOCS), ACM Sympo-
sium on Principles of Programming Languages (POPL), Symposium on Theoreti-
cal Aspects of Computer Science (STACS), Mathematical Foundations of Computer
Science (MFCS), Fundamentals of Computation Theory (FCT), Foundation of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), and Conference on

33

Developments in Language Theory (DLT). There are many related conferences, in-
cluding Computational Learning Theory (COLT), Colloquium on Trees in Algebra
and Programming (CAAP), and International Conference on Concurrency Theory
(CONCUR), where either specific issues concerning formal grammars are considered
or specialized grammatical systems are studied for a specific application area. We
conclude with a list of major journals that publish papers in formal language the-
ory: Journal of the ACM, SIAM Journal on Computing, Journal of Computer and
System Sciences, Information and Computation, Theory of Computing Systems (for-
merly Mathematical Systems Theory), Theoretical Computer Science, Information
Processing Letters, International Journal of Foundations of Computer Science, and
Acta Informatica.

34

