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1 Introduction

In the last two chapters, we have introduced several important computational models,
including Turing machines and Chomsky’s hierarchy of formal grammars. In this chapter,
we will explore the limits of mechanical computation as defined by these models. We
begin with a list of fundamental problems for which automatic computational solution
would be very useful. One of these is the universal simulation problem: can one design
a single algorithm that is capable of simulating any algorithm? Turing’s demonstration
that the answer is yes [Turing, 1936] supplied the proof for Babbage’s dream of a single
machine that could be programmed to carry out any computational task. We introduce
a simple Turing machine programming language called “GOTO” in order to facilitate our
own design of a universal machine. Next, we describe the schemes of primitive recursion
and µ-recursion , which enable a concise, mathematical description of computable functions
that is independent of any machine model. We show that the µ-recursive functions are the
same as those computable on a Turing machine, and describe some computable functions,
including one that solves a second problem on our list.

The success in solving ends there, however. We show in the last section of this chapter
that all of the remaining problems on our list are unsolvable by Turing machines, and
subject to the Church-Turing thesis, have no mechanical or human solver at all. That is
to say, there is no Turing machine or physical device, no stand-alone product of human
invention, that is capable of giving the correct answer to all—or even most—instances of

these problems. The implication we draw is that in order to solve some important instances
of these problems, human ingenuity is needed to guide powerful computers down the paths
felt most likely to yield the answers. To cite Raymond Smullyan quoting P. Rosenbloom,
the results on unsolvability imply that “man can never eliminate the necessity of using his
own cleverness, no matter how cleverly he tries.”

Almost the first consequence of formalizing computation was that we can formally estab-
lish its limits. Kurt Gödel showed that the process of proof in any formal axiomatic system
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of logic can be simulated by the basic arithmetical functions that computation is made of.
Then he proved that any sound formal system that is capable of stating the grade-school
rules of arithmetic can make statements that are neither provable nor disprovable in the
system. Put another way, every sound formal system is incomplete in the sense that there
are mathematical truths that cannot be proved in the system. Turing realized that Gödel’s
basic method could be applied to computational models themselves, and thus proved the
first computational unsolvability results. Since then problems from many areas, including
group theory, number theory, combinatorics, set theory, logic, cellular automata, dynamical
systems, topology, and knot theory, have been shown to be unsolvable. In fact, proving
unsolvability is now an accepted “solution” to a problem. It is just a way of saying that
the problem is too general for a computer to handle—that supplementary information is
needed to enable a mechanical solution.

Since Turing machines capture the power of mechanical computability, our study will be
based on Turing’s model. In the next section, we describe a Turing machine as a computer
that can run programs written in a very simple language we call the “GOTO Language.”
This formalism is equivalent to Chapter 24’s description of Turing machines using the
standard 7-tuple notation. Our language provides an alternate way to write programs and

makes proofs about Turing machines more intuitive.

2 Computability and a Universal Program

Turing’s notion of mechanical computation was based on identifying the basic steps in any
mechanical computation. He reasoned that an operation such as numerical multiplication
is not primitive, because it can be divided into simpler steps such as using the times-table
on individual pairs of digits, shifting, and adding. Addition itself can be broken down into
simpler steps such as adding the lowest digits, computing the carry, and moving to the next
digit. Turing concluded that the most basic features of mechanical computation are the
ability to read and write on a storage medium, the ability to move about on that medium,
and the ability to make simple logical decisions. Turing chose the storage medium to be a
single linear tape divided into cells. He showed that such a tape could model spatial memory
in three (or any number of) dimensions through the use of indexed co-ordinates. With much
care he argued that human sensory input could be encoded by strings over a finite alphabet
of cell symbols called the tape alphabet . (This bold discretization of sensory experience now
seems a harbinger of the digital revolution that was to follow.) A decision step enables the
computer to exert local control over the sequence of actions. Turing restricted the next
action performed to be in a cell neighboring the one on which the current action occurred,
and showed how non-local actions can be simulated by successions of steps of this kind. He

also introduced an instruction to tell the computer to stop.

In summary, Turing proposed a model to characterize mechanical computation as being
carried out as a sequence of instructions. Our “GOTO” formalism provides the following
five kinds of instructions. Here i stands for a tape symbol and j stands for a line number.
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1 PRINT 0
2 MOVE LEFT

3 IF 1 IS SCANNED GOTO LINE 2
4 PRINT 1
5 MOVE RIGHT
6 IF 1 IS SCANNED GOTO LINE 5
7 PRINT 1
8 MOVE RIGHT
9 IF 1 IS SCANNED GOTO LINE 1
10 STOP

Figure 1: The doubling program in the GOTO language.

PRINT i
MOVE RIGHT
MOVE LEFT
IF i IS SCANNED GOTO LINE j
STOP

When we speak about programs recognizing languages rather than computing functions, we

replace STOP by statements ACCEPT and REJECT, each of which need occur only once
in a program.

A program in this language is a sequence of instructions or “lines” numbered 1 to k. The
input to the program is a string over a designated input alphabet Σ, which we take to be
{0, 1} throughout this chapter. The tape alphabet includes Σ and a special blank character
B representing an empty cell, and may (but need not) contain other symbols. The input
is stored on the tape, with the read head scanning the first symbol (or B if the input is
empty), before the computation begins.

How much memory should we allow the computer to use? Rather than postulate that
the tape is actually infinite—an unrealistic assumption—we prefer here to say that the
tape has expandable boundaries. Initially the input defines the two boundaries of the tape.
Whenever the machine moves left of the left boundary or right of the right boundary, a new
memory cell containing the blank is attached. This convention clarifies what we mean by
saying that if and when the machine halts by reaching the STOP instruction, the “result”
of the computation is the entire content of the tape.

We present an example program written in the GOTO language. This program accom-
plishes the simple task of doubling the number of initial 1s in the input string. Informally,
the program achieves its goal as follows: When it reads a 1, it changes the 1 to a 0, moves

left looking for a new cell, and writes a 1 in that cell. Then it returns rightward to the 0
that marks where it had been, rewrites it as a 1, and moves right to look for more 1s. If it
immediately finds another 1 it repeats the process from line 1, while if it doesn’t, it halts
right there. This program even has a “bug”—it “should” leave strings that do not begin
with a 1 unchanged, but instead it alters them.

The main change from the traditional Turing machine formalism of Chapter 24 is that we
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have replaced “states” by line numbers. A Turing machine of the former kind can always be
simulated in our GOTO language by making blocks of successive lines, themselves divided
into sub-blocks (for each character) that are headed by “IF” statements, carry out the
instructions for each state. Our formalism makes many programs more succinct and closer
to programmers’ experience, and highlights the role of (conditional) GOTO instructions in
setting up loops and enabling statements to be repeated. Despite the popular scorn of goto
statements, this feature is ultimately the most important aspect of programming and can
be found in every imperative-style programming language—at least in the code produced
by the compiler if the language has no goto instruction itself. Indeed, the above example
could be rendered into a structured programming language such as C as follows,

do {
do { PRINT 0; MOVE LEFT; } while (1 is scanned);
PRINT 1;
do MOVE RIGHT; while (1 is scanned);
PRINT 1; MOVE RIGHT; }

while (1 is scanned);

and a C compiler (using a character array tape[i] and ++i, --i for the moves) might
plausibly convert this into something exactly like our GOTO program!

The simplicity of the GOTO language is rather deceptive. As the above example hints,
any program in any known high-level programming language can be converted into an
equivalent GOTO program, under suitable conventions on how inputs and outputs are
represented on the tape. (If the program only reads from the standard input stream and
writes to the standard output stream, then no such conventions are necessary.) There
is strong reason to believe that any mechanical computation of any future kind can be
expressed by a suitable GOTO program. Note, however, that a program written in the
GOTO language need not always halt; i.e., on certain inputs the program may never reach
a STOP instruction. On such inputs we say that the output of the program is undefined .

Now we can give a precise definition of what we mean by an algorithm, attempting to
rule out this last situation. An algorithm is any program written in the GOTO language
that has the additional property of halting on all inputs. Such programs will be called halting
programs, and correspond to “total” deterministic Turing machines in Chapter 24. When
we consider decision problems, which have yes/no answers, halting programs are required
to end their computation with either an ACCEPT or a REJECT statement, on any input.

2.1 Some Computational Problems

We begin by listing a collection of computational problems for which a mechanical solution
can be very helpful. By a mechanical solution, we mean a step-by-step process that takes
into account all possible inputs, and that can be executed without any human assistance
once a certain input is provided. An algorithm is required to work correctly on all instances.

We now list some problems that are fundamental either because they are inherently
important or because they played a historical role in the development of computation theory.
For the first four, P stands for a program in our GOTO language, and x is a string over
the input alphabet, which we fix to be {0, 1}.

4



1. Universal simulation. Given a program P and an input x to P , determine the output
(if any) that P would produce on input x.

2. Halting problem. Given P and x, output 1 (for yes) if P would halt when given input
x, and 0 (for no) if P would not halt.

3. Type-0 grammar membership. Given a type-0 grammar G and a string x, determine
whether x can be derived from the start symbol of G.

4. String compression. Given a string x, find the shortest program P such that when P
is started with empty tape, P eventually halts with x as its output. Here “shortest”
means that the total number of symbols in the program’s instructions is as small as
possible.

5. Tiling. Given a finite set T of tile types, where all tiles of a type are unit squares with
the same four colors on their four edges, determine whether every finite rectangle can
be tiled by T . If k and n are the integer sides of the rectangle, being tiled means that

kn tiles drawn from T can be arranged so that every two tiles that share an edge have
the same color at that edge.

6. Linear programming. Given some number k of linear inequalities in n unknowns,
determine whether there is an assignment of n values to the unknowns that satisfies
all the inequalities.

7. Integer equations. Given k-many polynomial equations in n unknowns, determine
whether there is an assignment of n integers to the unknowns that satisfies all the
equations.

Some remarks about the above problems: A solution to Problem 1 realizes Babbage’s
objective of a single program or machine capable of simulating all programs P . For cases
where P run on x would never halt and produce output, we have left open whether we
require the solution itself to halt and detect this fact—i.e., to be an algorithm. For any such
algorithm to exist, there must be an algorithm to solve Problem 2, which is a yes/no decision
problem. An algorithm for Problem 2 would be a boon to reliable software design, since

it could be used to test whether a given block of code can cause infinite loops. Problem 3
is another decision problem; its solution would be useful for natural-language processing
and much more. Problem 4 is a function-computation problem of central importance in
information theory. For illustration, think of x as a large amount of scientific data for
which we seek a concise theory P that can generate and hence explain it. A famous example
is Kepler’s laws, which explained Tycho Brahe’s voluminous and meticulous observational
data. Problem 4 thus asks whether the heart of science (to paraphrase Occam’s Razor,
“finding the simplest explanation that fits the facts”) can be done automatically on a
computer.

The tiles in Problem 5, which we introduced in detail in Chapter 24, are sometimes
named after Hao Wang, who wrote the first research paper about them [Wang, 1961]. Fig-
ure 2(a) shows an example of a set T of tile types, and Figure 2(b) shows how tiles drawn
from T can be used to tile a 5×5 square area. The tiling problem is not merely an interesting
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(a)

(b)

Figure 2: An example of tiling.

puzzle. It has been an art form pursued by artists from many cultures for centuries. Tiling
problems have deep significance in combinatorics, algebra, and formal languages. Note that
our decision problem does not ask simply whether a given k × n rectangle can be tiled,
but whether—given T—all k × n rectangles can be tiled via T . The full problem of linear
programming adds to Problem 6 a clause saying: if there exist feasible solutions, i.e. assign-
ments that satisfy all the so-called linear constraints, find one that maximizes (or minimizes)
a given objective function (or cost function). This problem has central importance in eco-
nomics, game theory, and operations research. Problem 7 is called Hilbert’s tenth problem,
and was one of twenty-four that David Hilbert posed as challenges for the new century at
the International Congress of Mathematicians in 1900. It goes back two thousand years to
the mathematician Diophantus’ study of these so-called Diophantine equations. Actually,
Hilbert posed the “meta-problem” of finding an algorithm that can solve any Diophantine

equation, or at least tell whether it has a solution.

Recall from Chapter 24 that a decision problem is decidable if it has an algorithm,
and undecidable otherwise. If our program correctly evaluates all instances for which the
answer is “yes,” but may fail to halt on some instances for which the answer is “no,” then the
program is a partial decision procedure, and the problem is partially decidable. A partially

decidable problem, however, is undecidable—unless you can find an algorithm that removes
the word “partially.” Likewise, if our program correctly outputs f(x) whenever f(x) is
defined, but may fail to halt when f(x) is undefined, then the partial function f is partial
computable.

In the remainder of the subsection, we present some simple algorithm design techniques
and sketch how they make progress on solving some of these problems and special cases of
them. These techniques may seem too obvious to warrant explicit description. However,
we feel that such a description will help new readers to appreciate the limits on information

6



processing that make certain problems undecidable.

2.1.1 Table Look-up

For certain functions g it can be advantageous to create a table with one column for inputs
x and one for values g(x), looking up the value in the table whenever an evaluation g(x) is
needed. A function f that is defined on an infinite set such as Σ∗ cannot have its values

enumerated in a finite table in this manner, but sometimes the infinite table for f can be
described in a finite way that constitutes an algorithm for f . Moreover, tables for other
functions g may help the task of computing f , such as the digit-by-digit times-table used
in multiplying integers of arbitrary size. These ideas come into play next.

2.1.2 Bounding the Search Domain

Many solutions to decision problems involve finding a witness that proves a “yes” or “no”
answer for a given instance. The term reflects an analogy to a criminal trial where a key
witness may determine the guilt or innocence of the defendant. Thus the first step in solving
many decision problems is to identify the right kind of witness to look for. For example,
consider the problem of determining whether a given number N is prime. Here a (counter-)
witness would be a factor of N (other than 1 and N itself). If N is composite, it is easy to
prove by simple division that the witness’ claim is correct.

In cases where the given number is prime, a witness of a different kind needs to be
searched for. This search may involve integers larger than N , and trying to summon every
integer sequentially as a witness would violate the requirement of an algorithm to terminate
in finite number of steps. This is often the main challenge in establishing decidability. The
difficulty can be surmounted if, based on the structure of the problem, we can establish

ahead of time an upper bound such that if any witness exists at all, one exists that meets
the bound. Then a sufficient body of potential witnesses can be examined in a finite number
of steps. In the case of composite N , the bound is N itself. For prime N , there is a known
polynomial p such that a witness exists in the numbers between 1 and 2p(n), where n is the
number of digits in N , according to a certain witnessing scheme whose test for correct claims
is easy to compute. This kind of “polynomial size-bounded witnessing scheme” characterizes
the important complexity class NP, and is discussed much further in Chapter 33.

For another example, let us consider the special case of Problem 3 where the given G
is a Type-1 grammar, and we wish to determine whether a given string x can be generated
from the start symbol S of G. A witness in this case can be a sequence of sentential forms
starting from S and ending with x that forms a valid derivation in G. The length of x
imposes a limit on the size of such sentential forms because G has no length-decreasing
productions, and this in turn defines a (much larger) limit on the number of sequences that
need be considered before all possibilities are exhausted. Readers may find the details in a
standard text such as [Hopcroft and Ullman, 1979].

For one more example, consider the full version of the linear programming problem
where one wishes to maximize a linear objective function f over the set of feasible solutions
s. This set may be infinite, and so a table-lookup through all values f(s) cannot be used.
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However, it is possible to reduce the search domain to a finite set as follows. The feasible
solutions form a collection in n-dimensional space (where n is the number of variables plus
the number of constraints) known as a convex polytope. Unless the polytope is empty or
unbounded—cases that can be detected and resolved—the polytope has a finite number
of “corner” points, which are similar to the vertices of a polygon, and which are easily
computed. In this case, it is known that a linear objective function attains its maximum
value at one (or more) of these corner points. Thus we know the problem is decidable via
table-lookup of values at the corner points. In practice, there are intelligent algorithms that
find a maximum-giving corner point after searching (usually) only a small part of this table.

2.1.3 Use of Subroutines

This is more a programming technique than an algorithm design tool. The idea is to use
one program P as a single step in another program Q. Building programs from simpler
programs is a natural way to deal with the complexity of the programmer’s task. A simple
example is using a lookup to the times table as a subroutine in multiplying two integers i
and j. Let us examine this in the context of designing Turing machines, where i and j are
represented on the tape by the string 1i01j (namely, i 1s followed by a 0 and then by j 1s).
The basic idea of our GOTO program is to duplicate the string of i 1s j−1 times, meanwhile

erasing the string 1j bit-by-bit to count the iterations. A little thought reveals that our
earlier GOTO program in Figure 2 can almost be used verbatim as a subroutine to call j−1
times. The only hitch is that the first call would run 2i-many 1s together so that further
calls would duplicate too many 1s. To fix the problem, we introduce a new tape symbol 2,
using two initial steps to convert the tape to 21i01j, and “patch” the subroutine so that it
will not overwrite this 2. The new subroutine can be called by a line “k: IF 2 IS SCANNED
GOTO m,” where m is the number of the first line in the subroutine, and can return control
to the point of call by replacing its STOP instruction by “IF 0 IS SCANNED GOTO k+1.”
Careful writing will ensure that this latter 0 is the one initially separating 1i from 1j. The
remaining details are left to the interested reader, while performing a similar patch without
using a new symbol “2” is left to the obsessive reader. This subroutine mechanism is in fact
no different from the one programmers in BASIC have used for decades.

2.2 A Universal Program

We will now solve Problem 1 by arguing the existence of a program U written in the GOTO
language that takes as input a program P (also written in the GOTO language) and data x
for P , and that produces the same output as P does on input x, if P (x) halts and produces
output at all. The last caveat hints that we shall only achieve a partial solution, formally
showing only that the function U(P, x) = P (x) is partial computable.

For convenience, we assume that all programs written in the GOTO language use the
fixed alphabet {0, 1, B}. Since we have thus far used the full English alphabet for the
notation of our GOTO programs, we must first address the issue of what the formal input
to the program U will look like. This problem can be circumvented by encoding each
instruction using only 0 and 1. The idea of such an encoding should not be mysterious—we
could refer to the 0-1 encoding defined by the ASCII standard, which the terminal used to
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Table 1: Encoding GOTO instructions.

Instruction Code

PRINT i 0001i+1

MOVE LEFT 001
MOVE RIGHT 010

IF i IS SCANNED GOTO j 0111j01i+1

STOP 100

type this chapter has already carried out for these example programs. However, we prefer
the more-succinct encoding defined by Table 1.

To encode an entire program, we simply write down in order (without the line numbers)
the code for each instruction as given in the table. For example, here is the code for the
doubling program shown in Figure 2:

0001001011110110001101001111111011000110100111011100.

Note that the encoded string preserves all the information about the program, so that
one can easily reverse the process to decode the string into a GOTO program. From now

on, if P is a program in the GOTO language, code(P ) will denote its binary encoding.
When there is no confusion, we will identify P and code(P ). We may also assume that all
programs P have a unique STOP instruction that comes last. This convention ensures that
a input string to U of the form w = code(P )x can be parsed into its P and x components.
(When we consider decision problems we will use the code 100 for a unique final ACCEPT
instruction, and assign some other code to REJECT.) Before proceeding further, readers
may test their understanding of the encoding/decoding process by decoding the following
string: 0100111011001001.

The basic idea behind the construction of a universal program is simple, although the
details involved in actually constructing one are substantial. Turing in his original paper
[Turing, 1936] exhibited a universal program in glorious gory detail, while simpler construc-
tions may be found in more-recent sources such as [Robinson, 1991]. Here we will content
ourselves with a sketch that conveys the central ideas.

U has as its input a string w of the form code(P )x. (If U is given an input string not
of this form, it can detect the flaw and immediately stop.) To simulate the computational
steps of P on input x, U divides its tape into two segments, one containing the program
P , and one modeling the contents of the tape of P as it changes with successive moves.
The computation by U consists of a sequence of cycles, each of which simulates one step
by P and is analogous to an REW cycle (for “read-evaluate-write”) in many real computer
systems.

To execute a cycle, U first needs to know the cell that the “virtual” tape head of P
is currently scanning, and the instruction P is currently executing. We can assist U by
extending its own work alphabet to include new “alias” symbols 0′, 1′, B′ for the characters
of P . U maintains the condition that there is exactly one aliased symbol in the “P ” segment
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of its tape that marks the encoding of the current instruction, and exactly one in the other
segment that marks the cell currently scanned by P . For example, suppose that after thirty-
nine steps, P is reading the fourth symbol from the left on its tape containing 01001001.
Then the second tape segment of U after thirty-nine cycles consists of the string 0100′1001.
We can further assist U by adding a symbol ∧ to divide the two segments, although the
unique STOP instruction itself could serve as the divider. The computation by U on an
input w = code(P )x can begin with some steps that prime the first symbol of code(P ),
insert a ∧ before the first symbol of x (caterpillaring x one cell to the right), and prime the
first symbol of x. We may suppose that each cycle by U begins with its own head scanning
the ∧.

At the beginning of a new cycle, U moves its head left to find the current instruction,
and begins decoding it. The only information U needs to retain is which type of instruction
it is, and in the case of a PRINT i or IF i. . . instruction, which character i is involved.
To execute a PRINT i, MOVE RIGHT, or MOVE LEFT instruction, P unprimes the
instruction, primes the next one, and marches down its tape to find the primed cell on its
copy of P ’s tape and execute the action. It is possible that a MOVE LEFT instruction may
bump into the ∧, in which case U makes another call to its “caterpillar” subroutine to move

P ’s tape over, and inserts a B′ for the blank P would scan after that move. The only case
that requires cumbersome action by U is an instruction IF i IS SCANNED GOTO j, when
U finds that P really is scanning character i. Then U needs to find the jth instruction
in the “P ” part of its tape. Because we have used a unary encoding 1j of the required
line number j, it is not too difficult to write a subroutine that counts off the 1s in 1j and
advances an instruction marker each time beginning from line 1, knowing to stop when the
jth instruction has been located. Finally, if the current instruction is STOP, U gleefully
erases P , erases the ∧, and unprimes the scanned symbol, leaving exactly the final output
P (x).

One last refinement is needed to answer the objection that U is using extra tape symbols
0′, 1′, B′,∧ that we have expressly forbidden to GOTO programs. This use can be eliminated
by one more level of encoding. Give each of the seven tape symbols its own three-bit code,
and make U treat blocks of three cells as single cells in the simulation that was described
above. U itself can be programmed to convert its input code(P )x to this encoding before
the first cycle, and to invert it when restoring the final output P (x). Then U is a bona-fide
GOTO program that meets all our requirements. It is even possible to run U on input
code(U)w where w = code(P )x, producing (more slowly) the same output P (x). It is
important to note that the code of U itself is completely independent of any program P
that might be simulated. The code of U itself is not long—a reader with good programming
skill can make it shorter than the prose description we have just given.

Besides solving what was asked for in Problem 1, we have also shown that Problem 2
is partially decidable. Namely, for any “yes”-instance w = code(P )x where P on input x
halts, U on input w will eventually detect that fact—and the slight edit of changing U ’s
own STOP instruction to ACCEPT will make U halt and accept w. However, on a “no”-
instance where P (x) does not halt, our U will blindly follow P and not halt either. The
question is whether we can improve U so that it will detect every case in which P (x) does
not halt, and signal this by executing a REJECT instruction. We will see in Section 5 that
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all the programming skill in the world cannot produce such a U—the halting problem is
undecidable.

Before presenting undecidability, however, we develop a fundamentally different way to
formalize the notion of mechanical computability in the next section.

3 Recursive Function Theory

The main advantage of using the class of µ-recursive functions to define computation is
their mathematical elegance. Proofs about this class can be presented in a rigorous and
concise way, without long prose descriptions or complicated programs that are hard to
verify. These functions need and make no reference to any computational machine model,
so it is remarkable that they characterize “mechanical” computability.

An analogy to the two broad families of programming languages is in order. We have
already discussed how Turing machines and our particular “GOTO” formalism abstract the
essence of imperative programming languages, in which a program is a sequence of opera-
tional commands and the major program structures are subroutines and loops and other
forms of iteration . By contrast, specifications in recursive function theory are declarative,
and the major structures are forms of recursion . “Declarative” means that a function f is
specified by a direct description of the value f(x) on a general argument x, as opposed to
giving steps to compute f(x) on input x. Often this description is recursive, meaning that
f(x) is defined in terms of values f(y) on other (usually smaller) arguments y. Programming
languages built on declarative principles include Lisp, ML, and Haskell, which are known
as functional languages. These languages have recursion syntax that is not greatly different

from the recursion schemes presented here. They also draw upon Church’s lambda calculus,
which can be called the world’s first general programming language. A formal proof of
equivalence between lambda calculus and the Turing machine model (via a programming
language called I) can be found in [Jones 1997], which presents computability theory from
a programming perspective.1

In this section, we will describe this functional approach to computation and code some
simple functions using recursion. Owing to space limitation, we will not present a complete
proof that the class of µ-recursive functions is the same as the class of (partial) computable
functions on a Turing machine. The full proof can be found in standard texts such as
[Sudkamp, 1997]. All the functions we consider have one or more non-negative integers as
arguments, and produce a single non-negative integer value.

Before presenting formal definitions, we qualify the above ideas with a few examples.
Consider first the simple definition of a two-variable linear function by

h(y, z) = z + 2 ∗ y + 1. (1)

1Turing created an addendum to his seminal paper [Turing, 1936] showing that his definition of a (partial)
computable function was equivalent to the one proposed by Church. The lambda calculus uses essentially a
single execution scheme called reduction to govern its computations, and by suitable conditioning one can
make this scheme carry out recursion. Another declarative language, Prolog, also fixes a single execution
scheme that tries to limit the operational decisions the programmer needs to make, and also relies upon
recursion.
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Here h(y, z) is defined with the aid of other functions (here, plus and times) and quantities
(here, 2 and 1) that presumably have already been defined or given. This is an example of
an explicit definition because all entities on the right-hand side are known—in particular,
this definition does not involve recursion. If we rewrite the infix functions + and ∗ in
prefix-function style as “plus” and “times,” the expression becomes

h(y, z) = plus(z, plus(times(2, y), 1)), (2)

and we can glimpse another hallmark of functional languages: function names can be re-
garded as parameters the same way that variable names can. Now consider the somewhat-
similar definition of a one-variable function by

f(x) = f(x − 1) + 2 ∗ (x − 1) + 1, (3)

together with a base case such as f(0) = 0. Here not every quantity on the right-hand side
is known—one must first know f(x−1) to compute f(x). However, this is still “declarative”
insofar as f(x) is defined in terms of known quantities and values f(y) for other (smaller)
arguments y. The reader may check that this is a recursive definition of the squaring
function.

Why use recursion? One reason is that explicit definition by itself is known not to be
powerful enough to capture the essence of mechanical computation. The next two sections
define the two principal schemes of recursion in recursive function theory.

3.1 Primitive Recursive Functions

The class of primitive recursive functions is built up from the following set of basic functions,
which are the only ones we need to pre-suppose are “known”:

1. The successor function S is defined for all x by S(x) = x+ 1.

2. The zero function Z is defined for all x by Z(x) = 0. The constant 0 is also provided

here.

3. For all fixed numbers i and n with 1 ≤ i ≤ n, the projection function pni is defined for
all n-tuples (x1, x2, . . . , xn) by pni (x1, x2, . . . , xn) = xi.

The primitive recursive functions are constructed from the basic functions by applica-
tions of the following two operations. The case n = 0 is allowed in them; a 0-variable
function is the same as a constant, and a 0-tuple is the empty list.

1. Functional composition: Given k-many functions g1, . . . , gk that each take n variables,
and a function h that takes k variables, one can define a function f of n variables by

f(x1, . . . , xn = h(g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gk(x1, . . . , xn)). (4)

If g1, . . . , gk and h are primitive recursive, then f is defined to be primitive recursive.
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2. Primitive recursion: Given a function g that takes n variables, and a function h that
takes n+ 2 variables, one can define a function f of n+ 1 variables by

f(x1, . . . , xn, 0) = g(x1, . . . , xn); (5)

f(x1, . . . , xn, S(y)) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)). (6)

If g and h are primitive recursive, then f is defined to be primitive recursive.

Here (5) is the basis and (6) is the recursion step. It is conventional to call x1, . . . , xn
the parameters and y the recursion variable. From a computational viewpoint, the scheme
is easy to interpret. Given integer values for variables x1, . . . , xn and z, how can we eval-
uate f(x1, . . . , xn, z)? We start building a table T in which each row y contains the value

of f(x1, . . . , xn, y). The basis step gives us the top row via T [0] = f(x1, . . . , xn, 0) =
g(x1, . . . , xn). Whenever we have filled a row y, we can fill the next row via the recursion
step, via T [y + 1] = f(x1, . . . , xn, S(y)) = h(x1, . . . , xn, y, T [y]). As soon as row z is filled,
using y such that z = S(y), we are done. The point is that provided g and h are computable,
the function f is also computable. Functional composition likewise preserves computabil-
ity. Moreover, since the basic functions are all total and produce non-negative values, every
function that we can build up in this manner is also total and produces non-negative values.

Definition 3.1 A function is said to be primitive recursive if it can be built up from the
successor, zero and projection functions by a finite number of applications of composition
and primitive recursion.

Example 3.1 To show how the scheme of primitive recursion models the informal recursion
defining the function f of one variable (so we have n = 0) in equation (3), take “g()” to
be the constant 0, and take h to be the two-variable function h(y, z) = z + 2y + 1, which
happens to be our example of “explicit definition” in (1). Then we have f(0) = 0 and

f(S(y)) = h(y, f(y)) = f(y) + 2 ∗ y + 1.

With “x − 1” in place of “y” and “x” in place of “S(y),” this is the same as (3). We will
return to this notational difference later.

As the prefix form (2) indicates, h itself can be built up via functional composition from
the plus and times functions. It is interesting to see how the usual functions of arithmetic

can themselves be constructed from the rather Spartan basis we have been given. To begin
with, the constants 1, 2, . . . are formally introduced by functional composition, with “g1()”
as the constant 0 and “h” as the successor function, via 1 = S(0), 2 = S(1) = S(S(0)),
3 = S(2), and so on.

Example 3.2 Addition . Take g(x) = x and h(x, y, z) = S(z). Formally, g is the basis
function p11, and h is the functional composition of the successor function with p33. Then
primitive recursion gives us plus(x, 0) = g(x) = x and

plus(x, S(y)) = h(x, y, plus(x, y)) = S(plus(x, y)) = S(x + y) = x+ y + 1,

as we would demand. Hence this formal definition of plus correctly computes addition, and
we may use the standard “+” notation in the formal examples that follow.
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Example 3.3 Multiplication . Take g(x) = 0 and h(x, y, z) = x+ z. Formally, g is the zero
function (of one variable rather than the constant zero), and h is the functional composition
of plus with the two functions p31 and p33 (so k = 2 here). Then primitive recursion gives us
times(x, 0) = g(x) = 0 and

times(x, S(y)) = h(x, y, times(x, y)) = x+ times(x, y) = x ∗ (y + 1),

again as we would demand. Hence this formal definition of times correctly computes mul-
tiplication. Note that we had to go to some length (of making h a function of 3 variables)
so that our definition exactly agrees with the formal requirements in equation (6).

Example 3.4 Exponentiation. Take g(x) = 1 and h(x, y, z) = x ∗ z. Formally, g is the
one-variable function that always outputs 1 and is defined by composing S and the zero
function Z, while h is the same as in Example 3.3 but with times in place of plus. Then
primitive recursion gives us exp(x, 0) = g(x) = 1 (note that even 00 equals 1) and

exp(x, S(y)) = h(x, y, exp(x, y)) = x ∗ exp(x, y) = xy+1.

Once again the correctness of this definition for all values of x and y is easy to verify, via a
simple proof by induction that follows the recursion.

It is now straightforward to omit some of the formal apparatus and write the definitions

more succinctly. For instance, the last example becomes

exp(x, 0) = 1

exp(x, y + 1) = x ∗ exp(x, y).

This resembles a program one would actually write, especially in a language like C that
does not provide exponentiation as a built-in operator.

At this point the alert reader, noting the way our schemes all involve non-negative
numbers, will first wonder how on earth we can ever define subtraction this way. The key

is that the syntax of primitive recursion allows us to define a function P (y) that computes
“proper subtraction by 1,” and then use P to define proper subtraction itself. The word
“proper” here means that any negative value is replaced by 0, in order to maintain our
restriction to the non-negative numbers. The definitions are

P (0) = 0

P (S(y)) = y

sub(x, 0) = x

sub(x, S(y)) = P (sub(x, y))

For P we took h(y, z) = y, i.e. h = p21, and for sub we took h(y, z) = P (z). To trace this
out, sub(3, 2) = P (sub(3, 1)) = P (P (sub(3, 0)) = P (P (3)) = P (2) = 1, and sub(2, 3) =
P (P (P (2))) = P (0) = 0, which is the “proper” value.
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Second, the reader may have felt uncomfortable defining functions in terms of “S(y)”
rather than “y.” For example, the primitive recursion for the factorial function, with 0!
standardly defined to be 1, gives us

fact(0) = 1 | fact(y+1) = (y+1)*fact(y);

here “|” separates the base and recursion cases. This would actually be valid syntax in
the programming language ML except that “fact(y+1)” is an illegal function header. The
syntax of ML forces one to write it this way:

fact(0) = 1 | fact(y) = y*fact(y-1);

this is literally the example used in many texts. To make the formal equation (6) for
primitive recursion reflect the syntax of programming languages, we can use P in place of
S to change it to

f(x1, . . . , xn, y) = h(x1, . . . , xn, y, f(x1, . . . , xn, P (y))), (7)

and alternately make the middle argument of h be P (y) instead of y. Either way, one
might then expect to be able to recover the function S by defining it in terms of P and
the other two basis functions, just as we defined P in terms of S above. However, this is
impossible—one could never define any increasing functions at all. This curious asymmetry
partly explains why primitive recursion was defined the way it is. Nevertheless, if S as
well as P is provided in the basis, then one can use the modified definition and obtain
exactly the same class of primitive recursive functions. For instance, addition is definable
by plus(x, 0) = x | plus(x, y) = S(plus(x, P (y))), and so on. Hence primitive recursion is
for the most part exactly what ML and other functional languages do.2

Finally, the reader may wonder what has become of functions defined on strings. A
string over an alphabet Σ can always be identified with its number in the standard lexico-
graphic enumeration of Σ∗, with ǫ corresponding to 0. Then a string function f : Σ∗ → Σ∗

can be called primitive recursive if the corresponding numerical function (of one variable)
is primitive recursive. For instance, the function that appends a ‘1’ to a binary string x
corresponds to 2x+2. Cutting the other way, under some transparent encoding of negative

and rational and complex numbers (etc.) by strings, one can extend the concept of prim-
itive recursion to define addition and multiplication and nearly all familiar mathematical
functions in their full generality. The meaning and proof of the following statement should
now be clear; full detail can be found in [Sudkamp, 1997].

Theorem 3.1 Every primitive recursive function is computable by a Turing machine.

2Primitive recursion has its counterpart in imperative languages as well, aside from the fact that most
of them support recursion directly. The “table T [y]” computation above shows how primitive recursion can
be simulated by a simple for-loop for y = 0 to z do. . . end that fixes its bounds and never alters y in the
loop body. A theorem [Meyer and Ritchie] in programming languages states that the primitive recursive
functions are exactly the total functions computable by programs that use only if-then-else and simple nested
for-loops.
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The converse is false, however. A famous example of a computable total function that
is not primitive recursive is Ackermann’s function ; this and other examples may be found
in [McNaughton, 1993]. To obtain all computable functions we need to introduce one more
scheme of recursion—at the inevitable cost, however, of opening a Pandora’s box of functions
that are no longer total.

3.2 µ-Recursive Functions

We will add a new operation called minimalization that does not preserve totality. Again
we restrict numerical arguments to be non-negative integers.

Definition 3.2 A possibly-partial function f of n variables is defined by µ-recursion
from a function g of n+ 1 variables, written

f(x1, . . . , xn) = µy.g(x1, . . . , xn, y),

if whenever f(x1, . . . , xn) is defined, it equals the least number y such that g(x1, . . . , xn, y) =
1. If f(x1, . . . , xn) is undefined, there must be no y such that g(x1, . . . , xn, y) = 1. The
class of µ-recursive functions is the class of all functions that can be built up from
the successor, zero, and projection functions by the operations of composition, primitive
recursion, and µ-recursion.

The computation of f(x1, . . . , xn) that is implicit in Definition 3.2 can be described
by building a table as before. First fill in the row T [0] = g(x1, . . . , xn, 0), then T [1] =
g(x1, . . . , xn, 1), and so on. If and when one finds a y whose value T [y] equals 1, halt and
output y. The “if” is the big difference from the algorithm for primitive recursion, because
if g(x1, . . . , xn, y) never takes the value 1, this procedure will never halt. This procedure
is called an unbounded search . Compared another way to primitive recursion, µ-recursion
increments its recursion variable rather than decrement it.

There is nothing special about “= 1” here: zero or any other constant could be used
instead. Our use of 1 suggests the special case in which g is a total function that takes
on only the values 0 and 1. Then we can regard its output as a Boolean truth value,
with 1 = true and 0 = false, and call g a predicate. The class of µ-recursive functions
is not changed under the restriction that g be a predicate. Then we can read the syntax
“µy.g(x1, . . . , xn, y)” in English as “the least y such that g(x1, . . . , xn, y) is true.” From
all this we can see that whereas primitive recursion corresponds to a for loop, µ-recursion

corresponds to a while loop, with g(. . .) as the test condition.

Example 3.5 Partial square-root function. Define the predicate g(x, y) to hold if and only
if x = y2. Then the function f defined for all x by f(x) = µy.g(x, y) computes the square
root of x when x is a perfect square. When x is not a perfect square, however, the recursion
is undefined, so f is a partial recursive function.

Example 3.6 Linear programming. The standard simplex algorithm uses a while loop
that executes a basic pivot step until a predicate expressing optimality holds. Hence the
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function that embodies the solution to a linear programming problem is µ-recursive. In point
of fact, because a bound on the number of polytope corner points is explicitly definable from
the problem instance, the same function can be computed via a simple for loop, so it is
primitive recursive. However, the former method is usually much faster.

Part (a) of the next theorem expresses the fact that while loops, together with if-then-

else, suffice to make a general-purpose programming language. Part (b) is the gist of the
famous theorem, credited in various forms to various sources, that at most one while loop
is needed in any program.

Theorem 3.2 (a) A (partial) function is µ-recursive if and only if it is a Turing-
computable (partial) function.

(b) Moreover, given any Turing machine T , we can find a primitive recursive function u
and a primitive recursive predicate t such that for all x, T (x) = u(µy.t(x, y)).

In the standard proof of part (b), the predicate t(x, y) is designed to hold if and only if y
encodes the sequence of configurations of a halting computation of T on input x, and the

function u picks off the output from the final configuration. To complete the proof of (a), all
one needs to show is that given a Turing machine that computes g in Definition 3.2, one can
build a Turing machine that computes f . This is done by following the unbounded-search
procedure sketched above.

The corresponding theorem for formal languages also merits mention here. In Chapter 24
we defined the characteristic function of a language L to be the function fL defined for all
x by fL(x) = 1 if x ∈ L, fL(x) = 0 if x /∈ L. This is simply the predicate corresponding
to membership in L. The partial characteristic function still takes the value 1 when x ∈ L,
but is undefined when x /∈ L.

Theorem 3.3 (a) A language is recursive if and only if its characteristic function is
µ-recursive.

(b) A language is r.e. if and only if its partial characteristic function is µ-recursive.

Part (a) explains how the term “recursive” became applied to languages and predicates as
a synonym for “decidable.” It is important to recall that not all languages L accepted by
Turing machines have computable characteristic functions (i.e., are decidable); unless we
find a Turing machine accepting L that halts for all inputs, all we know is that the partial
characteristic function of L is (partial-) computable. Before proceeding to undecidable
languages, we take time to interpret these two theorems and others presented in the two
previous chapters.

4 Equivalence of Computational Models and the Church-

Turing Thesis

In Chapter 24 we introduced various machine models, the most important of which is the
Turing machine. In Chapter 25 we introduced the grammar hierarchy of Chomsky, of
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which the most powerful was the Type-0 grammar. Here we have presented the purely
mathematical model of µ-recursive functions. Although these models were defined over
different domains for different purposes, they are all equivalent in a precise technical sense—
they all define the same class of computable functions and decidable languages, and the same
class of partial computable functions and partially decidable languages.

We can summarize all this by saying that Turing machines, type-0 grammars, and µ-
recursive functions have the same problem-solving power.

This equivalence extends to vastly many other computational models, of which we men-
tion a few:

(1) Cellular Automata. Cellular automata are intended to model the evolution of a colony
of micro-organisms. Each cell is a deterministic finite automaton that receives its input
in discrete time steps from neighboring cells, so that its current state is defined by its
own previous state and the previous states of its neighbors. All the cells execute the
same DFA. There are different schemes for specifying the representation of the input
to a cellular automaton and its output. But under any reasonable scheme, the largest
class of problems that can be solved on cellular automata coincides with the class of
solvable problems on a Turing machine.

(2) String-Rewriting Systems A string-rewriting system is similar to a grammar. The
main difference is that there are no non-terminals. Let the input alphabet be Σ. The
production rules of a rewriting system T will be of the form α → β where α and
β are strings over Σ. One can apply such a rule by replacing any occurrence of α
in a string by β. T is defined as a finite set of rewrite rules, along with a finite set
of initial strings. The language generated by T is defined as the set of strings that
can be obtained from an initial string by applying the rewrite rules a finite number
of times. The systems proposed before 1930 by Thue and Post fall roughly into this
category. It turns out that the class of string-rewriting languages is the same as the
r.e. languages (see [Book, 1993]).

(3) Tree-Rewriting Systems. These are similar to string-rewriting systems except that
the local edits are done on subtrees of a tree, and rules may have more than one
argument. The subtrees typically represent terms in algebraic or logical expressions
that are being operated on. Under reasonable schemes for encoding numbers or strings

by trees, all known tree-rewriting systems generate r.e. languages or compute partial
recursive functions. Church’s λ-calculus and most formal systems of logic fall into
this category.

(4) Extensions of Turing’s Model. As mentioned in Chapter 24, one can also create
numerous modifications to the basic Turing machine model, such as having multi-
dimensional tapes or binary trees with MOVE UP, MOVE DOWN LEFT, and MOVE
DOWN RIGHT instructions (the latter are tantamount to having random-access to
stored values), allowing nondeterminism or alternation, making computation proba-
bilistic (see Chapter 29, Section 2), and so on. All of these machines compute the
same functions as the simple one-tape Turing machine.
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(5) Random-Access Machines and High-Level Programming Languages. These can be
mentioned in tandem because a RAM, as described in Chapter 24, is just an idealiza-
tion of assembly or machine language. Every high-level language yet devised can be
compiled into some machine language. Even the standard Java Virtual Machine is
little more than a RAM, with some added handling of class objects via pointers that
is not unlike the workings of a pointer machine, and some hooks to enable the host
system to control physical devices and network communications. Without excessive
effort one can extend the construction of a universal Turing machine in Section 2 to
handle the case where P is a RAM program rather than a GOTO program. The
registers of P can be simulated on the tape by adding one more tape symbol # and
using strings of the form #i#j#, where i is the register’s number and j is its contents.
As stated in Chapter 24, Section 4, this simulation is even fairly efficient. Hence all

these high-level languages have the same problem-solving power as the lowly one-tape
Turing machine.

The convergence of so many disparate formal models on the same class of languages or
functions is the main evidence for the assertion that they all exactly capture the informal
notion of what is mechanically or humanly computable. This assertion is called theChurch-

Turing thesis. In one form, it asserts that every problem that is humanly solvable is
solvable by a Turing machine. Put more precisely, any cognitive process that a human
being could or will ever use to distinguish certain numbers or strings as “good” defines
an r.e. language—and if it also would determine that any other given number or string is
“bad,” it defines a recursive language. An extension of the thesis claims that no one will
ever design a physical device to compute functions that are not µ-recursive. The Church-
Turing thesis is not a mathematical conjecture and is not subject to mathematical proof; it
is not even clear whether the extension is resolvable scientifically.

5 Undecidability

The Church-Turing thesis implies that if a language is undecidable in the formal sense
defined above, then the problem it represents is really, humanly, physically undecidable.
The existence of languages that are not even partially decidable can be established by
a counting argument: Turing machines can be counted 1, 2, 3, . . ., but the mathematician

Georg Cantor proved that the totality of all sets of integers cannot be so counted. Hence
there are sets left over that are not accepted, let alone decided, by any program. This
argument, however, does not apply to languages or problems that one can state, since
these are also countable. The remarkable fact is that many easily-stated problems of high
practical relevance are undecidable. This section shows that the five remaining problems
on our list in Section 2.1, namely 2–5 and 7, are all unsolvable.

5.1 Diagonalization and Self-reference

Undecidability is inextricably tied to the concept of self-reference, and so we begin by
looking at this perplexing and sometimes paradoxical concept. The simplest examples of
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self-referential paradox are statements such as “This statement is false” and “Right now I
am lying.” If the former statement is true, then by what it says, it is false; and if false, it is
true. . . The idea and effects of self-reference go back to antiquity; a version of the latter “liar”
paradox ascribed to the Cretan poet Epimenides even found its way into the New Testament,
Titus 1:12–13. For a more-colorful example, picture a barber of Seville hanging out an
advertisement reading, “I shave those who do not shave themselves.” When the statement
is applied to the barber himself, we need to ask: Does he shave himself? If yes, then he is
one of those who do shave themselves, which are not the people his statement says he shaves.
The contrary answer no is equally untenable. Hence the statement can be neither true nor
false (it may be good ad copy), and this is the essence of the paradox. Such paradoxes have
made entry into modern mathematics in various forms. We will present some more examples
in the next few paragraphs. Many variations on the theme of self-reference can be found in

the books of the logician and puzzlist Raymond Smullyan, including [Smullyan, 1978] and
[Smullyan, 1992].

Berry’s paradox concerns English descriptions of natural numbers. For example, the
number 24 can be described by many different phrases: “twenty-four,” “six times four,”
“four factorial,” etc. We are interested in the shortest of such descriptions, namely one(s)

having the fewest letters. Here, “two dozen” beats all of the above. Clearly there are
(infinitely) many positive integers whose shortest descriptions require one hundred letters
or more. (A simple counting argument can be used to show this. The set of positive
integers is infinite, but the set of positive integers with English descriptions of fewer than
one hundred letters is finite.) Let D denote the set of positive integers that do not have
English descriptions of fewer than one hundred letters. Thus D is not empty. It is a
well-known fact in set theory that any nonempty subset of positive integers has a smallest
integer. Let x be the smallest integer in D. Does x have an English description of fewer
than one hundred letters? By the definition of the set D and x, the answer is yes: such
a description of x is, “the smallest positive integer that cannot be described in English in
fewer than one hundred letters.” This is an absurdity because the quoted part of the last
sentence is clearly a description of x, and it contains fewer than one hundred letters.

Russell’s paradox similarly turns on issues in defining sets. In formal mathematics, we
can perfectly easily describe “the set of all sets that do not include themselves as elements”
by the definition S = {x|x /∈ x}. The question “Is S ∈ S?” leads to a real conundrum.
This also resembles the barber paradox, with “/∈” read as “does not shave.” This paradox
forced the realization that the formal notion of a set , and importantly the formal rules that
apply to sets, do not and cannot apply to everything that we informally regard as being a
“set.”

Our last example is a charming paradox named for the mathematician William Zwicker.
Consider the collection of all two-person games that are normal in the sense that every play
of the game must end after a finite number of moves. Tic-tac-toe is normal since it always
ends within nine moves, while chess is normal because the official “fifty move rule” prevents
games from going on forever. Now here is hypergame. In the first move of hypergame, the
first player calls out a normal game—and then the two players go on to play that game, with
the second player making the first move. Now we need to ask, “Is hypergame normal?” If
yes, then it is legal for the first player to call out “hypergame!”—since it is a normal game.

20



By the rules, the second player must then play the first move of hypergame—and this move
can be calling out “hypergame!” Thus the players can keep saying “hypergame” without
end, but this contradicts the definition of a normal game. On the other hand, suppose
hypergame is not normal. Then in the first move, player 1 cannot call out hypergame and
must call a normal game instead—so that the infinite move sequence given above is not
possible and hypergame is normal after all!

Let us try to implement Zwicker’s paradox. To play hypergame, we need a way of for-
malizing and encoding the rules of a game as a string x, and we need a decision procedure
isNormal(x) to tell if the game is normal. Then the rules of hypergame are easily formal-
ized: pick a string x, verify isNormal(x), and play game x. Let h be the string encoding of
these rules. Now we get a real contradiction when isNormal(h) is run. We must conclude
that either (i) our formalization of games is inadequate or inconsistent, or (ii) a decision
procedure isNormal simply cannot exist. Now (i) is the way out for Russell’s paradox with
“sets” in place of “games.” For computation , however, we know that our formalization is
adequate and consistent—and hence we will be faced with conclusions of type (ii), namely
that our corresponding computational problems are unsolvable.

Before showing how the above paradoxes can be modified and ingrained into our prob-
lems, we need to review the 0-1 encoding of GOTO programs from Section 2.2, including
the conventions that ACCEPT has the same code 100 as STOP for programs that accept
languages, and that such an ACCEPT statement be last and unique. We may assign the
code 101 to REJECT, which may appear anywhere. If a binary string x encodes a program

P , it is easy to decode x into P , and we may identify x with P . If x does not encode a legal
GOTO program, this fact is easy to detect. Then we may choose to treat x as an alternate
code for the trivial GOTO program that consists of a single REJECT statement.

Now we can define the so-called “diagonal language” Ld as follows:

Ld = {x | x is a GOTO program that does not accept the string x} (8)

This language consists of all programs in the GOTO language that do not halt in the
ACCEPT statement when given their own encoding as input—they may either REJECT or
not halt at all on that input. For example, consider x = 01111101101100, which encodes a
program that accepts any string beginning with 1 and rejects any string beginning with 0.
Then x ∈ Ld since the program does not accept 01111101101100. Note the self-reference in
(8). Although the definition of Ld seems artificial, its importance will become clear when
we use it to show the undecidability of other problems. First we prove that Ld is not even
accepted by any Turing machine, let alone decided by one.

Theorem 5.1 Ld is not recursively enumerable.

Proof. Suppose for the sake of contradiction that Ld is r.e. Then there is a GOTO
program that accepts Ld—call it P . Now what does P do on input x = code(P )? If P
accepts x, then x is not in Ld, but this contradicts L(P ) = Ld. But if P does not accept
x, then x is in Ld, and this also contradicts L(P ) = Ld. Hence a program P such that
L(P ) = Ld cannot exist, and so Ld is not r.e.
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The definition of Ld is motivated by Russell’s paradox, reading “/∈” as “does not accept.”
Whereas in Russell’s paradox we had to conclude that S is not a set , here we conclude that
Ld is not a Turing-acceptable set.

We can similarly carry over Zwicker’s paradox by treating a given string x as formally
defining “Game-x” as follows: The first player decodes x into a GOTO program P , and
then tries to choose some string x′ in the language L(P ). If L(P ) is empty, in particular if x
decodes to the trivial program “1. REJECT” as stipulated above, then the game ends then

and there. But if the first player finds such an x′, then the second player must play the same
way with x′. Then we can say that x is normal if every play of Game-x must terminate (by
reaching a GOTO program that accepts the empty language) in a finite number of steps.
Finally define LZ to be the set of normal strings. By applying the reasoning from Zwicker’s
paradox, one can imitate the above proof to show that LZ is not recursively enumerable.

5.2 Reductions and More Undecidable Problems

Recall from Chapter 24 (section 2.3) the notion of Turing reducibility. This is because a
language L1 is Turing reducible to L2 if there is a halting Turing machine for language L1

using an oracle for language L2. If L1 is reducible to L2 and L2 is decidable, then so is L1.
Basically, one can replace queries to oracles by executing a halting computation for L2. The
contrapositive of this statement can be used to show undecidability. If L1 is undecidable,
then so is L2. We will first express Problem (2) as a language:

LU = {code(P )111x : P accepts the string x}.

Thus LU takes as input a program in GOTO, and a binary string x, and accepts the
encoded pair (P, x) if and only if P accepts x. (Note 111 is used as a separator between
P and x.) The universal program presented in Section 2.2 accepts the language LU hence

it is recursively enumerable. We will show that LU is not recursive. First, we will show a
simple fact about recursive languages.

Theorem 5.2 Recursive languages are closed under complement.

Proof. Let P be a GOTO program for language L. The program P ′ obtained by
interchanging the ACCEPT and REJECT instructions is easily seen to accept the language
L̄. This standard trick works to complement the computations of most of the deterministic
devices (such as DFA).

Now we show that LU is not recursive.

Theorem 5.3 LU is not recursive.

Proof. Consider the language L′

U = {x| x when interpreted as a GOTO program
accepts its own encoding}. Obviously, L′

U = L̄d. Since Ld is not recursively enumerable,
it is not recursive. (Recall that the set of recursive languages is a subset of recursively
enumerable languages.) By the above theorem, L′

U is not recursive. Finally, note that L′

U

can be reduced to LU as follows: Given an algorithm for LU , we can construct an algorithm
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for L′

U as follows: Let P be an algorithm for LU . To construct an algorithm for L′

U simply
note the connection between the two problems. An input string x belongs to L′

U if and only
if x111x belongs to LU . Thus, a simple copy program (similar to one presented in Section
2) can be first used to convert the input x into x111x. Move the scanning head back to
the leftmost character of the first copy of x. Now simply run the program P . Note that
the program P ′ described above is being constructed using only P , not x. This reduction
shows that LU is not recursive.

Next we consider problem 3 in our list. Earlier we showed that a special case of this
problem (when the input is restricted to type-1 grammar) is totally solvable. It is not
hard to see that the general problem is partially solvable. (To see this, suppose there is a
derivation for a string x starting from S, the start symbol of the grammar. Suppose the
length of one such derivation is k. A program can try all possible derivations of length 1,
2, etc. until it succeeds. Such a program will always halt on strings x generated by the
grammar G. Thus the language

L0 = {G#x : G is a type-0 grammar and x can be generated by G}

is recursively enumerable. A standard result from formal language theory
[Hopcroft and Ullman, 1979] is that for every Turing machine M , there is a type-0 grammar
G such that L(M) = T (G). This conversion from M to G is the reduction that shows that
the language L0 is not recursive.

The string compression problem, numbered 4 on our list, is not a decision problem, but
reduction techniques can still be used to show that it is unsolvable. We refer the reader to
[Li and Vitányi, 1997] for details.

By a fairly elaborate reduction (from Ld), it can be shown that tiling problem 5 in our

list is also not partially decidable. We will not do it here and refer the interested reader
to [Harel, 1992]. But we would like to point out how the undecidability result can be
used to infer a result about aperiodic tilings. This deduction is interesting because the
result appears to have some deep implications and is hard to deduce directly. We need the
following discussion before we can state the result. A different way to pose the tiling problem
is whether a given set of tiles can tile an entire plane in such a way that all the adjacent
tiles have the same color on the meeting quarter. (Note that this question is different from
the way we originally posed it: Can a given set of tiles tile any finite rectangular region?
Interstingly, the two problems are identical in the sense that the answer to one version is
“yes” if and only if it is “yes” for the other version.) Call a tiling of the plane periodic if
one can identify a k × k square such that the the entire tiling is made by repeating this
k× k square tile. Otherwise, call it aperiodic. Consider the question: Is there a (finite) set
of unit tiles that can tile the plane, but only aperiodically? The answer is “yes” and can be
deduced from the total undecidability of the tiling problem. Suppose the answer is “no”.
Then, for any given set of tiles, the entire plane can be tiled if and only if the plane can be
tiled periodically. But such a periodic tiling can be found, if one exists, by trying to tile a
k× k region for successively increasing values of k. This process will eventually succeed (in
a finite number of steps) if the tiling exists. This would make the tiling problem partially
decidable, which contradicts the total undecidability of the problem. This means that the

assumption that the entire plane can be tiled if and only if some k × k region can be tiled
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is wrong. Thus there must exist a finite set of tiles that can tile the entire plane, but only
aperiodically.

We conclude with a brief remark about problem 7 in our list. After many years of
effort by several mathematicians and computer scientists (including Davis and Robinson),
Matiyasevich found an effective way to transform a given Turing machine T into a set of
equations in variables x, y1, . . . , ym such that for any x, T on input x halts if and only
if the other m variables can be set to solve the equations. This reduction shows that
Hilbert’s tenth problem is undecidable. Details behind this reduction can be found in
[Floyd and Beigel, 1994].

6 Defining Terms

Decision Problem: A computational problem with a yes/no answer. Equivalently, a
function whose range consists of two values {0, 1}.

Decidable Problem: A decision problem that can be solved by a GOTO program that
halts on all inputs in a finite number of steps. For emphasis, the equivalent term totally
decidable problem is used. The associated language is called recursive.

Partially Decidable Problem: A decision problem that can be solved by a GOTO
program that halts (and outputs ACCEPT) on all yes-instances. The program may or may
not halt on no-instances. Equivalently, the collection of yes-instance strings forms a type-0
language. (See Chapter 25.)

Recursively Enumerable Language: Same as partially decidable language.

µ-Recursive Function: A function that is a basic function (Zero, Successor or Projection),
or one that can be obtained from other µ-recursive functions using composition and µ-
recursion.

Recursive Language: A language that can be accepted by a GOTO program that halts
on all inputs. The associated problem is called decidable.

Solvable Problem: A computational problem that can be solved by a halting GOTO

program. The problem may have a non-binary output.

Totally Undecidable Problem: A problem that cannot be solved by a GOTO program.
Equivalently, one for which the set of yes instance strings is not a type-0 language.

Undecidable Problem: A decision problem that is not (totally) decidable. It could be
partially decidable or totally undecidable.

Universal Turing Machine: A Turing machine that can simulate any other Turing ma-
chine.

Unsolvable Problem: A computational problem that is not solvable. The associated
function is called an uncomputable function.
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Further Information

The fundamentals of computability can be found in many books including the
classic texts [Rogers, 1967, Davis, 1958, Minsky, 1967]. More-recent books on
automata and formal languages have also devoted at least a few chapters
to computability [Floyd and Beigel, 1994, Gurari, 1989, Harel, 1992, Harrison, 1978,
Hopcroft and Ullman, 1979, Sipser, 1996, Wood, 1987]. Early work on computability was
motivated by a quest to address profound questions about the basis of logical reasoning,
mathematical proofs, and automatic computation. Various formalisms discussed in this
chapter were proposed at around the same time, and soon thereafter, their equivalence
was tested. Thus, in a short time, the Church-Turing thesis took deep roots. Subsequent
work has focussed on whether certain problems are decidable or not. Another direction

of research has been to make finer distinctions among unsolvable problems by introducing
degrees of unsolvability. Recursive function theory and lambda calculus also led to the
development of functional programming languages, such as Lisp, Scheme, Haskell, and ML.
Computability theory is also closely related to logic, formal deductive systems, and com-
plexity theory. Logic and deductive systems are of interest to philosophers and researchers
in artificial intelligence, as well as to computation theorists. Although there are no journals
devoted exclusively to computability, many theory journals (such as those listed at the end
of the last two chapters) publish papers on this topic. In addition, the journal Annals of
Pure and Applied Logic publishes papers on logic and computability.
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