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1 Introduction

Computational complexity is aimed at measuring how complex a computational solu-

tion is. There are many ways to measure the complexity of a solution: how hard it is

to understand it, how hard to express it, how long the solution process will take, and

more. The last criterion—time—is most widely taken as the definition of complexity.
This is because the agent that implements an algorithm is usually a computer—and

from a user’s point of view, the most important issue is how long one should wait to

see the solution. However, there are other important measures of complexity, such as

the amount of memory, hardware, information, communication, knowledge, or energy
needed for the solution. Complexity theory is aimed at quantifying these resources

precisely and studying the amounts of them required to accomplish computational

tasks.

This technical sense of the word “complexity” did not take root until the mid-
1960s. Today, complexity theory is not only a vibrant subfield of computer science,

but also has direct or metaphoric impact on other fields such as dynamical systems

∗Preliminary version of a chapter in the forthcoming CRC Handbook of Algorithms and Theory

of Computation.
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and chaos theory. The seed of computational complexity is the formalization of the

concept of an algorithm. Algorithms in turn must be planted in some computa-
tional model , ideally one that abstracts important features of real computing ma-

chines and processes. In this chapter we consider the Turing machine, a computer

model created and studied by the British mathematician Alan Turing in the 1930s

[Turing, 1936]. Chapter 32 will discuss different (and equivalent) ways of formalizing
algorithms.

With the advent of commercial computers in the 1950s and 1960s, when pro-

cessor speed was much lower and memory cost unimaginably higher than today, it
became critical to design efficient algorithms for solving large classes of problems.

Just knowing that a problem was solvable, which had been the main concern of com-

putability theory since the 1930s, was no longer enough. Turing machines provided

a basis for Hartmanis and Stearns [Hartmanis and Stearns, 1965] to formally define
the measures of time complexity and space complexity for computations. The

latter refers to the amount of memory needed to execute the computation. They

defined measures for other resources as well, and Blum [Blum, 1967] found a precise

definition of complexity measure that was not tied to any particular resource or ma-
chine model. Together with earlier work by Rabin [Rabin, 1963], these papers marked

the beginning of computational complexity theory as an important new discipline. A

closely related development was drawn together by Knuth, whose work on algorithms

and data structures [Knuth, 1969] created the field of algorithm design and analysis .
All of this work has been recognized in annual Turing Awards given by the Associa-

tion for Computing Machinery. Hartmanis’ Turing Award lecture [Hartmanis, 1994]

recounts the origins of computational complexity theory and speculates on its future
development.

The power of a computing machine depends on its internal structure as well as on

the amount of time, space, or other resources it is allowed to consume. Restricting

our model of choice, the Turing machine, in various internal ways yields progressively
simpler and weaker computing machines. These machines correspond to a natural

hierarchy of grammars defined and advanced by Chomsky [Chomsky, 1956], which

we describe in Chapter 31. In this chapter we present the most basic computational

models, and use these models to classify problems first by solvability and then by
complexity.

Central issues studied by researchers in computational complexity include the

following.

• For a given amount of resources, or for a given type of resource, what problems
can and cannot be solved?

• What is the relationship between problems requiring essentially the same

amount of the resource or resources? May they be equivalent in some intrinsic

sense?
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• What connections are there between different kinds of resources? Given more

time, can we reduce the demand on memory storage, or vice-versa?

• What general limits can be set on the kind of problems that can be solved when
resources are limited?

The end thrust of Turing’s famous paper [Turing, 1936] was to demonstrate rigor-

ously that several fundamental problems in logic cannot be solved by algorithms at

all. Complexity theory aims to show similar results for many more problems in the

presence of resource limits. Such an unsolvability result, although “bad news” in most
contexts (cryptographic security is an exception), can have practical benefits: it may

lead to alternative models, goals, or solution strategies. As will come out in Chapters

33–34, complexity theory has so far been much more successful at drawing relative
conclusions and relationships between problems than in proving absolute statements

about (un)solvability.

2 Computational Models

Throughout this chapter, Σ denotes a finite alphabet of symbols; unless otherwise

specified, Σ = {0, 1}. Then Σ∗ denotes the set of all finite strings, including the

empty string ǫ, over Σ. A language over Σ is simply a subset of Σ∗.

We use regular expressions in specifying some languages. In advance of the
formal definition to come in Chapter 31, we define them as one kind of “patterns” for

strings to “match.” The basic patterns are ǫ and the characters in Σ, which match

only themselves. The null pattern ∅ matches no strings. Two patterns joined by

“+” match any string that matches either of them. Two or more patterns written in
sequence match any string composed of substrings that match the respective patterns.

A pattern followed by a “∗” matches any string that can be divided into zero or more

successive substrings, each of which matches the pattern—here the “zero” case applies
to ǫ, which matches any starred pattern. For example, the pattern 0(0+1)∗1 matches

any string that begins with a 0 and ends with a 1, with zero or more binary characters

in between. The pattern can be used as a name for the language of strings that match

it. In like manner, the pattern (0∗10∗1)∗0∗ stands for the language of binary strings
that have an even number of 1s. This pattern says that trailing 0s are immaterial to

any such string, and the rest of the string can be broken into zero or more substrings,

each of which ends in a 1 and has exactly one previous 1.

2.1 Finite Automata

The finite automaton (in its deterministic version) was introduced by McCul-

loch and Pitts in 1943 as a logical model for the behavior of neural sys-
tems [McCulloch and Pitts, 1943]. Rabin and Scott introduced the nondetermin-

istic finite automaton (NFA) in [Rabin and Scott, 1959], and showed that NFAs
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Figure 1: A finite automaton.

are equivalent to deterministic finite automata, in the sense that they recognize
the same class of languages. This class of languages, called the regular lan-

guages, had already been characterized by Kleene [Kleene, 1956] and Chomsky and

Miller [Chomsky and Miller, 1958] in terms of regular expressions and regular gram-
mars, which will be described formally in Chapter 31.

In addition to their original role in the study of neural nets, finite automata

have enjoyed great success in many fields such as the design and analysis of se-

quential circuits [Kohavi, 1978], asynchronous circuits [Brzozowski and Seger, 1994],
text-processing systems [Lesk, 1975], and compilers. They also led to the design of

more efficient algorithms. One excellent example is the development of linear-time

string-matching algorithms, as described in [Knuth et al, 1977]. Other applications

of finite automata can be found in computational biology [Searls, 1993], natural lan-
guage processing, and distributed computing [Lynch, 1996].

A finite automaton, pictured in Figure 1, A finite automaton consists of

an input tape and a finite control . The input tape contains a finite string of input

symbols, and is read one symbol at a time from left to right. The finite control is
connected to an input head that reads each symbol, and can be in one of a finite

number of states . The input head is one-way, meaning that it cannot “backspace”

to the left, and read-only, meaning that it cannot alter the tape. At each step, the

finite control may change its state according to its current state and the symbol read,
and the head advances to the next tape cell. In an NFA there may be more than one

choice of next state in a step. Figure 1 also shows the second step of a computation

on an input string beginning aabab . . . When the input head reaches the right end of
the input tape, if the machine is in a state designated “final” (or “accepting”), we

say that the input string is accepted ; else we say it is rejected . The following is the

formal definition.

Definition 2.1 A nondeterministic finite automaton (NFA) is a quintuple
(Q,Σ, δ, q0, F ), where

• Q is a finite set of states ;
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• Σ is a finite set of input symbols ;

• δ, the state transition function, is a mapping from Q× Σ to subsets of Q;

• q0 ∈ Q is the start state of the NFA;

• F ⊆ Q is the set of final states .

If δ maps |Q| × Σ to singleton subsets of Q, then we call such a machine a deter-

ministic finite automaton (DFA).

Note that a DFA is treatable as a special case of an NFA, where the next state is

always uniquely determined by the current state and the symbol read. On any input

string x ∈ Σ∗, a DFA follows a unique computation path, starting in state q0. If the

final state in the path is in F , then x is accepted , and the path is an accepting path.
An NFA, however, may have multiple computation paths on the same input x. It is

useful to imagine that when an NFA has more than one next state, all options are

taken in parallel, so that the “super-computation” is a tree of branching computation

paths. Then the NFA is said to accept x if at least one of those paths is an accepting
path.

Remarks: The concept of a nondeterministic automaton, and especially the notion

of acceptance, can be nonintuitive and confusing at first. We can, however, explain

them in terms that should be familiar, namely those of a solitaire game such as
“Klondike.” The game starts with a certain arrangement of cards, which we can

regard as the input, and has a desired “final” position—in Klondike, when all the

cards have been built up by suit from ace to king. At each step, the rules of the game

dictate how a new arrangement of cards can be reached from the current one—and
the element of nondeterminism is that there is often more than one choice of move

(otherwise the game would be little fun!). Some positions have no possible move,

and lose the game. Most crucially, some positions have moves that unavoidably lead

to a loss, and other moves that keep open the possibility of winning. Now for a
given position, the important analytical question is, “Is there a way to win?” The

answer is yes so long as there is at least one sequence of moves that ends in a (or the)

desired final position. For the starting position, this condition is much the same as
for an input to be accepted by an NFA. (Practically speaking, some winnable starting

positions may give so many chances to go wrong along the way that a player may have

little chance to find a winning sequence of moves. That, however, is beside the point

in defining which positions are winnable. If one can always (efficiently!) answer the
yes/no question of whether a given position is winnable, then one can always avoid

losing moves—and win—so long as the start position is winnable to begin with.)

In any event, the set of strings accepted by a (deterministic or nondeterministic)

finite automaton M is denoted by L(M). When we say that M accepts a language
L, we mean that M accepts all strings in L and nothing else, i.e. L = L(M). Two

machines are equivalent if they accept the same language.
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Figure 2: An NFA accepting 0(0 + 1)∗1.

Nondeterminism is capable of modeling many important situations other than

solitaire games. Concurrent computing offers some examples. Suppose a device or

resource (such as a printer or a network interface) is controllable by more than one
process. Each process could change the state of the device in a different way. Since

there may be no way to predict the order in which processes may be given control in

any step, the evolution of the device may best be regarded as nondeterministic.

Sometimes a state change can occur without input stimulus. This can be modeled
by allowing an NFA to make ǫ-transitions , which change state without advancing the

read head. Then the second argument of δ can be ǫ instead of a character in Σ, and

these transitions can even be nondeterministic, for instance if δ(q0, ǫ) = {q1, q2}. It is
not hard to see that by suitable “lookahead” on states reachable by ǫ-transitions , one
can always convert such a machine into an equivalent NFA that does not use them.

Example 2.1 We design an NFA to accept the language 0(0 + 1)∗1. Recall that

this regular expression defines those strings in {0, 1}∗ that begin with a 0 and end
with a 1. A standard way to draw finite automata is exemplified by Figure 2. As a

convention, each circle represents a state, and an unlabeled arrow points to the start

state (here, state “a”). Final states such as “c” have darker (or double) circles. The

transition function δ is represented by the labeled edges. For example, δ(a, 0) = {b},
and δ(b, 1) = {b, c}. When a transition is missing, such as on input 1 from state “a”

and on both inputs from state “c”, the transition is assumed to lead to an implicit

non-accepting “dead” state, which has transitions to itself on all inputs. In a DFA

such a dead state must be included when counting the number of states, while in an
NFA it can be left out.

The machine in Figure 2 is nondeterministic since from “b” on input 1 the machine

has two choices: stay at “b” or go to “c”. Figure 3 gives a DFA that accepts the

same language. The DFA has four, not three, states, since a dead state reached by
an initial ‘1’ is not shown.

Example 2.2 The DFA in Figure 4 accepts the language of all strings in {0, 1}∗ with
an even number of 1’s, which has the regular expression (0∗10∗1)∗0∗.

Example 2.3 For a final example of a regular language, we introduce a general

“tiling problem” to be discussed further in Chapter 32, and then strip it down to a
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Figure 3: A DFA accepting 0(0 + 1)∗1.
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Figure 4: A DFA accepting (0∗10∗1)∗0∗.

simpler problem. A tile is a unit-sized square divided into four quarters by joining

two diagonals. Each quarter has a color chosen from a finite set C of colors. Suppose
you are given a set T of different types of tiles, and have an unlimited supply of each

type. A k × n rectangle is said to be tiled using the tiles in T if the rectangle can be

filled with exactly kn unit tiles (with no overlaps) such that at every edge between

two tiles, the quarters of the two tiles sharing that edge have the same color. The tile
set T is said to tile an entire plane if the plane can be covered with tiles subject to the

color compatibility stated above. As a standard application of König’s infinity lemma

(for which see [Knuth, 1969], Chapter 2, p. 381), it can be shown that the entire plane

can be tiled with a tile set T if and only if all finite integer sided rectangles can be
tiled with T . We will see in Chapter 32 that the problem of whether a given tile set

T can tile the entire plane is unsolvable. Chapter 32 will also say more about the

meaning and implications of this tiling problem.

Here we will consider a simpler problem: Let k be a fixed positive integer. Given a
set T of unit tiles, we want to know whether T can tile an infinite strip of width k. The

answer is yes if T can tile any k×n rectangle for all n. It turns out that this problem

is solvable by an efficient algorithm. One way to design such an algorithm is based
on finite automata. We present the solution for k = 1 and leave the generalization

for other values of k as an exercise. Number the quarters of each tile as in Figure 5.

Given a tile set T , we want to know whether for all n, the 1×n rectangle can be tiled

using T .
To use finite automata, we define a language that corresponds to valid tilings.

Define Σ, the input alphabet, to be T , the tile set. Each tile in T can be described

by a 4-tuple [A,B, P,Q] where A, B, P , and Q are (possibly equal) members of the
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Figure 5: Numbering the quarters of a tile.

color set C. Next we define a language L over Σ to be the set of strings T1T2...Tn such
that (i) each Ti is in Σ, and (ii) for each i, 1 ≤ i ≤ n− 1, Ti’s third-quadrant color is

the same as Ti+1’s first-quadrant color. These two conditions say that T1T2...Tn is a

valid 1× n tiling.
We will now informally describe a DFA ML that recognizes the language L.

Basically, ML “remembers” (using the current state as the memory) the relevant

information—for this problem, it need only remember the third-quadrant color Q of

the most recently seen tile. Suppose the DFA’s current state is Q. If the next (input)
tile is [X, Y,W, Z], it is consistent with the last tile if and only if Q = X. In this

case, the next state will be W . Otherwise, the tile sequence is inconsistent, so ML

enters a “dead state” from which it can never leave and rejects. All other states of

ML are accepting states. Then the infinite strip of width 1 can be tiled if and only
if the language L accepted by ML contains strings of all lengths. There are standard

algorithms to determine this property for a given DFA.

The next three theorems show the satisfying result that all the following language

classes are identical:

• the class of languages accepted by DFAs;

• the class of languages accepted by NFAs;

• the class of languages generated by regular expressions.

• the class of languages generated by the right-linear, or Type-3, grammars, which

are formally defined in Chapter 31 and informally used here.

This class of languages is called the regular languages.

Theorem 2.1 For every NFA, there is an equivalent DFA.

Proof. An NFA might look more powerful since it can carry out its computation

in parallel with its nondeterministic branches. But since we are working with a
finite number of states, we can simulate an NFA M = (Q,Σ, δ, q0, F ) by a DFA

M ′ = (Q′,Σ, δ′, q′0, F
′), where

• Q′ = {[S] : S ⊆ Q};

• q′0 = [{q0}];
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• δ′([S], a) = [S ′] = [∪ql∈Sδ(ql, a)];

• F ′ is the set of all subsets of Q containing a state in F .

Here square brackets have been placed around sets of states to help one view these

sets as being states of the DFA M ′. The idea is that whenever M ′ has read some
initial segment y of its input x, its current state equals the set of states q such that

M has a computation path reading y that leads to state q. When all of x is read, this

means that M ′ is in an accepting state if and only if M has an accepting computation

path. Hence L(M) = L(M ′). �

Example 2.4 Example 2.1 contains an NFA and an equivalent DFA accepting the

same language. In fact the above proof provides an effective procedure for converting

an NFA to a DFA. Although each NFA can be converted to an equivalent DFA, the
resulting DFA may require exponentially many more states, since the above procedure

may assign a state for every eligible subset of the states of the NFA. For any k > 0,

consider the language Lk = {x | x ∈ {0, 1}∗ and the kth letter from the right of x is

a 1}. An NFA of k + 1 states (for k = 3) accepting Lk is given in Figure 6. Now we
claim that any DFA M accepting Lk needs a separate state for every possible value

y ∈ {0, 1}k of the last k bits read. Take any distinct y1, y2 ∈ {0, 1}k and let i be a

position in which they differ. Let z = 0k−i. Then M must accept one of the strings

y1z, y2z and reject the other. This is possible only if the state M is in after processing
y1 (with z to come) is different from that after y2, and thus M needs a different state

for each string in {0, 1}k. The 2k required states are also sufficient, as the reader may

verify.

The remaining results of this section point forward to the formal-language models

defined in Chapter 31. The point of including them here is to show the power of the

finite automaton model. Regular expressions have been defined above, while a regular

grammar over Σ consists of a set V of variable symbols, a starting variable S ∈ V ,
and a set P of substring-rewrite rules of the forms A → cB, A → ǫ, or A → c, where

A,B ∈ V and c ∈ Σ.

Theorem 2.2 A language L is generated by a regular grammar if and only if L is

accepted by an NFA.

9

Proof. Let L be accepted by an NFA M = (Q,Σ, δ, q0, F ). We define an

equivalent regular grammar G = (Σ, V, S, P ) by taking V = Q with S = q0, adding
a rule qi → cqj whenever qj ∈ δ(qi, c), and adding rules qj → ǫ for all qj ∈ F .

Then the grammar simulates computations by the NFA in a direct manner, giving

L(G) = L(M).

Conversely, suppose L is the language of a regular grammar G = (Σ, V, S, P ). We
design an NFA M = (Q,Σ, δ, q0, F ) by taking Q = V ∪ {f}, q0 = S, and F = {f}.
To define the δ function, we have B ∈ δ(A, c) iff A → cB. For rules A → c,

δ(A, c) = {f}. Then L(M) = L(G)—if this is not clear already, the treatment of
grammars in Chapter 31 will make it so. �

Theorem 2.3 A language L is specified by a regular expression if and only if L is

accepted by an NFA.

Proof Sketch. Part 1. We inductively convert a regular expression to an NFA

that accepts the same language as follows.

• The pattern ǫ converts to the NFA Mǫ = ({q},Σ, ∅, q, {q}), which accepts only

the empty string.

• The pattern ∅ converts to the NFA M∅ = ({q},Σ, ∅, q, ∅), which accepts no
strings at all.

• For each c ∈ Σ, the pattern c converts to the NFA Mc = ({q, f},Σ, δ(q, c) =
{f}, q, {f}), which accepts only the string c.

• A pattern of the form α + β, where α and β are regular expressions that (by

induction hypothesis) have corresponding NFAs Mα and Mβ, converts to an
NFA M that connects Mα and Mβ in parallel: M includes all the states and

transitions of Mα and Mβ and has an extra start state q0, which is connected

by ǫ-transitions to the start states of Mα and Mβ.

• A pattern of the form α · β, where α and β have the corresponding NFAs Mα

and Mβ, converts to an NFA M that connects Mα and Mβ in series: M includes
all the states and transitions of Mα and Mβ and has extra ǫ-transitions from

the final states of Mα to the start state of Mβ. The start state of M is that of

Mα, while the final states of M are those of Mβ.

• A pattern of the form α∗, where α has the corresponding NFA Mα, converts to
an NFA M that figuratively feeds Mα back into itself. M includes the states

and transitions of Mα, plus ǫ-transitions from the final states of Mα back to its

start state. This state is not only the start state of M but the only final state

of M as well.
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Figure 7: Converting an NFA to a regular expression.
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Figure 8: The reduced NFA.

Part 2. We now show how to convert an NFA to an equivalent regular expres-

sion. The idea used here is based on [Brzozowski and McCluskey, 1963]; see also

[Brzozowski and Seger, 1994] and [Wood, 1987].
Given an NFA M , add a new final state t, and add ǫ-transitions from each old

final state of M to t. Also add a new start state s with an ǫ-transition to the old start

state of M . The idea is to eliminate all states p other than s and t as follows. To

eliminate a state p, we eliminate each arc coming in to p from some other state q as
follows: For each triple of states q, p, q′ as shown in Figure 7(a), add the transition(s)

shown in Figure 7(b). (Note that if p does not have a transition leading back to p,

then β = β∗ = ǫ.) After we have considered all such triples, we can delete state p

and transitions related to p. Finally, we obtain Figure 8, and the final α is a regular
expression for L(M). �

The last three theorems underline the importance of the class of regular lan-

guages, since it connects to notions of automata, grammars, patterns, and much else.
However, regular languages and finite automata are not powerful enough to serve

as our model for a modern computer. Many extremely simple languages cannot be

accepted by DFAs. For example, L = {xx | x ∈ {0, 1}∗} cannot be accepted by a

DFA. To show this, we can argue similarly to the “Lk” languages in Example 2.4
that for any two strings y1 = 0m1 and y2 = 0n1 with n 6= m, a hypothetical DFA

M would need to be in a different state after processing y1 from that after y2, be-

cause with z = 0m1 it would need to accept y1z and reject y2z. However, in this

case we would conclude that M needs infinitely many states, contradicting the def-
inition of a finite automaton. Hence the language L is not regular. Other ways to

prove assertions of this kind include so-called “pumping lemmas” or a direct argu-

ment that some strings y contain more information than a finite state machine can

remember [Li and Vitányi, 1993]. We refer the interested readers to Chapter 31 and
textbooks such as [Hopcroft and Ullman, 1979], [Gurari, 1989], [Wood, 1987], and

11

[Floyd and Beigel, 1994].

One can also try to generalize the DFA to allow the input head to move backwards
as well as forwards, in order to review earlier parts of the input string, while keeping

it read-only. However, such “two-way DFAs” are not more powerful—they can be

simulated by normal DFAs. The point of departure for a more-powerful model is to

allow the machine to write on its tape and later review what it has written. Then the
tape becomes a storage medium, not just a sequence of events to react to. This ability

to write down intermediate results for future reference makes DFAs into full-blown

general-purpose computers.

2.2 Turing Machines

A Turing machine (TM), pictured in Figure 9, consists of a finite control , an infinite
tape divided into cells, and a read/write head on the tape. The finite control can be

in any one of a finite set Q of states. Each cell can contain one symbol from the

tape alphabet Γ, which contains the input alphabet Σ and a special character B called

the blank . Γ may contain other characters besides B and those in Σ, but most often
Σ = {0, 1} and Γ = {0, 1, B}. We refer to the two directions on the tape as left and

right , and abbreviate them by L and R. At any time, the head is positioned over a

particular cell that it is said to scan. Initially, the head scans a distinguished cell on

the tape called the start cell, the finite control is in the start state q0, and all cells
contain B except for a contiguous finite sequence of cells, extending from the start

cell to the right, that contain characters in Σ. These cells hold the input string x; in

case x = ǫ the whole tape is blank. The machine is said to begin its computation on
input x at time 0, and computation unfolds in discrete time steps numbered 1, 2, . . .

In any step, contingent on its current state and the character being scanned, the

device is allowed to perform one the following two basic operations:

1. write a symbol from the tape alphabet Γ into the scanned cell, or

2. shift the head one cell left or right.

Then it may change its internal state in the same step. The allowed actions of a
particular machine are specified by a finite set δ of instructions . Each instruction

has the form (q, c, d, r) with q, r ∈ Q, c ∈ Γ, and either d ∈ Γ or d ∈ {L,R}. This

means that if the machine is in state q scanning character c on the tape, it may either

change c to d (if d ∈ Γ) or move its head (if d ∈ {L,R}), and it enters state r. Either
c = d or q = r is allowed. (Many texts use an alternate formalism in which both

basic operations may be performed in the same step, so that instructions have the

form (q, c, d, D, r) with q, r ∈ Q, c, d ∈ Γ, and D ∈ {L,R}, sometimes adding the

Figure 9: A Turing machine.
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option D = S of keeping the head stationary. The differences do not matter for our

purposes.)
If for every combination of q and c there is at most one instruction (q, c, d, r) that

the machine can execute, then the machine is deterministic. Otherwise, the machine

is nondeterministic. In order for computations to possibly halt, there must be some

combinations q, c for which δ has no instruction (q, c, d, r). If a computation reaches
such a state q while scanning c, the device is said to halt . Then if q is designated as a

final state, we say the machine accepts its input string x; if q is not a final state, we

say that the machine rejects the input. We adopt the convention that there is only
one final state labeled qf , and that qf is also a halting state, meaning that there is

no instruction (q, c, d, r) with source state q = qf at all.

Definition 2.2 A Turing machine is a 7-tuple M = (Q,Σ,Γ, δ, B, q0, qf), where

each of the components has been described above.

Given an input x, a deterministic Turing machine M carries out a uniquely deter-

mined succession of operations, which may or may not terminate in a finite number

of steps. If it terminates, then the output M(x) is determined to be the longest string
of characters over Σ beginning in the cell in which the head halted and extending to

the right. (If the scanned cell holds B or some other character in Γ \ Σ, then the

output is ǫ.) A function f : Σ∗ → Σ∗ is computable if there is a Turing machine M

such that for all inputs x ∈ Σ∗, M(x) = f(x).
A nondeterministic Turing machine is analogous to an NFA. One may imagine

that it carries out its computation in parallel. The computation may be viewed as

a (possibly infinite) tree, each of whose nodes is labeled by a configuration of the

machine. A configuration specifies the current state q, the position of the tape head,
and the contents of the tape, including the character c currently being scanned. Each

node has as many children as there are different instructions (q, c, ·, ·) to execute,

and each child is the configuration that results from executing the corresponding

instruction. The root of the tree is the starting configuration of the machine. If
any of the branches terminates in the final state qf , we say the machine accepts the

input. Note that this is the same “benefit of all doubt” criterion for acceptance that

we discussed above for NFAs. Note also that a deterministic Turing machine always
defines a “tree” with a single branch that forms a simple (possibly infinite) path.

A language L is said to be recursively enumerable (r.e.) if there is a Turing

machine M such that L = {x : M accepts x}. Furthermore, if M is total ; i.e., if

every computation of M on every input x halts, then L(M) is recursive. These
terms reflect an important correspondence between languages and functions. For

any language L ⊆ Σ∗, define the characteristic function fL by fL(x) = 1 of x ∈ L,

f(x) = 0 otherwise. Then a language L is recursive if and only if fL is computable—

and computable functions were originally defined with regard to formalisms that used
recursion. Note that having L be acceptable by a Turing machineM is not enough for
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fL to be computable, because there may be inputs x /∈ L for which the computation

of M on x never halts.
Conversely, given a function f : Σ∗ → Σ∗, and letting # be a new input symbol

not in Σ, one can define the language Lf = {x#y : y is an initial segment of f(x)}.
Recognizing Lf allows one to find successive bits of the value f(x). Hence it is com-

mon in the field to identify function problems with language problems and concentrate
on the latter. A language can also be identified with a property of strings and with

the associated decision problem “given a string x, does x have the property?” For

instance, the problem of deciding whether a given number is prime is identifiable
with the language of (binary string encodings of) prime numbers. The problem is

decidable if the associated language is recursive, and a total Turing machine accept-

ing the language is said to decide the problem. The term “decidable language” is a

synonym for “recursive language,” and “recursive function” is a synonym for “com-
putable function.” A Turing machine M that does not halt on all inputs computes a

partial recursive function (whose domain is a proper subset of Σ∗), and L(M) is a

partially decidable language (or problem, or property). Any problem or language

that is not decidable by a Turing machine is called undecidable, and any (partial or
total) function that is not computable by a Turing machine is called uncomputable.

Now when we say that a Turing machine M ′ simulates another Turing machine

M , we usually mean more than saying they accept the same language or compute

the same (partial) function. Usually there is some overt correspondence between
computations of M and those of M ′. This is so in the simulations claimed by the

following theorem, which says that many variations in the basic machine model do

not alter the notion of computability.

Theorem 2.4 All the following generalizations of Turing machines can be simulated

by the one-tape deterministic Turing machine model defined in Definition 2.2, with

tape alphabet {0, 1, B}.

• enlarging the tape alphabet Γ;

• adding more tapes;

• adding more read/write heads or other access points on each tape;

• having two- or higher-dimensional grids in place of tapes, where the head may

move to any adjacent grid cell;

• allowing nondeterminism.

Extra tapes after the input tape are called worktapes provided they allow read-
write access. A two-tape Turing machine, or alternately a one-tape machine with two

heads, has instructions with six components: current state, two characters read by

the heads, two head actions, next state. Although these generalizations do not make
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a Turing machine compute more, they do make Turing machines more efficient and

easier to program. Many more variants of Turing machines have been studied and
used in the literature.

Of all the simulations in Theorem 2.4, the last one needs special comment. A

nondeterministic computation branches like a tree. The easiest way for a determinis-

tic Turing machine to simulate it is by traversing the tree in a breadth-first manner,
which is the same as trying all possibilities at any step with nondeterministic choices.

However, even if there are at most two choices at any step, simulating n steps of the

NTM could take on the order of 2n steps by the DTM. Whether a more-efficient sim-
ulation is possible is bound up with the famous “P vs. NP” problem, to be discussed

below and in Chapter 33.

Example 2.5 A DFA can be regarded as the special case of a Turing machine in

which every instruction moves the head right. Turing machines naturally accept more
languages than DFAs can. For example, a Turing machine can accept the non-regular

language L = {xx | x ∈ {0, 1}∗} as follows. Given an input string w ∈ {0, 1}∗:

• First find the middle point. A TM with two tape heads can do this efficiently by

moving one head twice for every move of the other, until the further-advanced
head sees the blank that marks the end of w. This stage can also tell whether

w has even or odd length and immediately reject in the latter case.

• Then check whether the scanned characters match while moving both heads

one cell left until the leftmost head sees the blank to the left of the beginning
of w. If all pairs match, accept , else reject .

For a TM with only one head the strategy is more cumbersome. One way is to use

“alias” characters a for 0 and b for 1, aliasing first the leftmost 0/1 character on the

tape, then the rightmost, then the next-leftmost,. . . until finding the character just
left of middle (if w has even length). Then “un-alias” it and check that the rightmost

aliased character matches it, un-aliasing the latter as well. By looking for cases of

an a or b immediately to the left of an un-aliased 0 or 1, the TM can repeat this

check until all of the left half is compared with the right half. Whereas the two-
head TM needs only 3n/2 steps to decide whether a string w of length n belongs to

L, the one-head TM takes about n2 steps. It is known that n2 steps are necessary

(asymptotically) for any one-head TM to accept the language L (see, for instance,
[Hopcroft and Ullman, 1979] or [Li and Vitányi, 1993]).

Three restrictions of the notion of a Turing machine tape merit special mention.

• A pushdown store (or stack) is a semi-infinite worktape with one head such that

each time the head moves to the left, it erases the symbol scanned previously.

This is a last-in first-out storage.
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• A queue is a semi-infinite work tape with two heads that only move to the

right, the leading head is write-only and the trailing head is read-only. This is
a first-in first-out storage.

• A counter is a pushdown store with a single-letter alphabet, except for a special
bottom-of-stack marker that allows testing the counter for zero. Then a push

increments the counter by one, and a pop decrements it by one.

Example 2.6 A pushdown automaton (PDA) has one read-only input tape and

one pushdown store. A PDA can be identified with a two-tape Turing machine whose
tape-1 head can never move left and whose tape-2 head can move left only while

scanning a blank (combined with a previous step that writes a blank, this simulates

popping the stack).

Pushdown automata have been thoroughly studied because nondeterministic

PDAs accept precisely the class of context-free languages, to be defined in Chap-

ter 31. Various types of PDAs have fundamental applications in compiler design.

The PDA has less power than a Turing machine. For example, L = {xx | x ∈
{0, 1}∗} cannot be accepted by a PDA, but it can be accepted by a Turing machine

as in Example 2.5. However, a PDA is more powerful than a DFA. For example, a

PDA can accept the non-regular language L′ = {0n1n | n ≥ 0} easily: For each initial

0 read, push a 0 onto the stack; then pop a 0 for each 1 read, and accept if and only
if a blank is read after the block of 1s exactly when the stack is empty. Indeed, this

PDA is a counter machine with a single counter.

Two pushdown stores can easily be used to simulate a tape—let one stack represent

the part of the tape currently to the left of the input head, and let the other stack
represent the rightward portion. Much more subtle is the fact that two counters can

simulate a tape; unlike the two-pushdown case this takes exponentially more time.

Finally, a single queue can simulate a tape: send the lead head to the right end so that

it can write the next-step update of the configuration that the trailing head is reading.
This involves encoding the current state of the TM being simulated onto the tape of

the queue machine that is simulating it. Hence a single-queue machine, with the input

initially resting in the queue, is as powerful as a Turing machine, although it may
require the square of the running time. For comparisons of powers of pushdown stores,

queues, counters, and tapes, see [van Emde Boas, 1990] and [Li and Vitányi, 1993].

Much more important is the fact that there are single Turing machines that are

capable of simulating any Turing machine. Formally, a universal Turing machine
U takes an encoding 〈M,w〉 of a (deterministic) Turing machine M and a string w as

input, and simulates M on input w. U accepts 〈M,w〉 if and only if M accepts w. In-

tuitively, U models a general-purpose computer that takes a “program”M and “data”

w, and executes M on input w. Universal Turing machines have many applications.
For example, the definition of Kolmogorov complexity (see [Li and Vitányi, 1993])

fundamentally relies on them.
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Example 2.7 Let Lu = {〈M,w〉 | M accepts w}. Then Lu is the language accepted

by a universal Turing machine, so it is recursively enumerable. We shall see in Chap-
ter 32, however, that Lu is not recursive. The same properties hold for the language

Lh = {〈M,w〉 : M on input w halts}, which is the language of the so-called Halting

Problem.

2.3 Oracle Turing Machines

In order to study the comparative hardness of computational problems, we often need

to extend the power of Turing machines by adding oracles to them.

Informally, a Turing machine T with an oracle A operates similarly to a normal

Turing machine, with the exception that it can write down a string z and ask whether
z is in the language A. The machine gets the correct yes/no answer from the oracle

in one step, and can branch its computation accordingly. This feature can be used as

often as desired. We now give the definition precisely.

Definition 2.3 An oracle Turing machine is a normal Turing machine T with

an extra oracle query tape, a special state q?, and two distinguished states labeled qy
and qn. Let A be any language over an alphabet Σ. Whenever T enters state q? with

some string z ∈ Σ∗ on the query tape, control passes to state qy if z ∈ A, or to qn if

z /∈ A. The computation continues normally until the next time the machine enters

q?. The machine T with a given choice of oracle A is denoted by TA.

Example 2.8 In Example 2.7, we know that the universal language Lu =
{〈M,w〉 | M accepts w} is not Turing decidable. But if we can use Lu as the oracle

set, there is a trivial oracle TM T such that T with oracle Lu decides Lu. T simply

copies its input x onto the query tape and enters q?. If control passes to qy, T accepts;
otherwise from qn it rejects.

For something less trivial, suppose we have Lh = {〈M,w〉 : M on input w halts}
as the oracle set. Given a (non-oracle) Turing machine M , there is a standard way

to modify M to the code of an equivalent Turing machine M ′ in which the accepting
state qf is the only place where M ′ can halt. This is done by making every other

combination q, c where M might halt send control to an extra state that causes an

infinite loop. Thus M ′ halts on w if and only if M accepts w. Now design an oracle

Turing machine T ′ that on any input x of the form 〈M,w〉 (rejecting if x does not
have the form) writes x′ = 〈M ′, w〉 on the query tape and enters q?, accepting if

control goes to qy and rejecting from qn. Then T ′ with oracle set Lh decides whether

x ∈ Lu, since x ∈ Lu ⇐⇒ x′ ∈ Lh. This is a simple case where an oracle for one

problem helps one decide a different problem.

A language A is Turing-reducible to a language B, written A ≤T B, if there is
an oracle Turing machine that with oracle B decides A. For example, we have just

shown that Lu ≤T Lh. The important special case in which the oracle TM T makes
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exactly one query, accepting from qy and rejecting from qn, gets its own notation:

A ≤m B. Equivalently, A ≤m B if there is a computable function f such that for all
x ∈ Σ∗, x ∈ A ⇐⇒ f(x) ∈ B. The function f represents the computation done by

T prior to making the sole query. This case is called a many-one reduction (hence

the subscript “m”) for the arcane historical reason that f need not be a one-to-one

function. The term “many-one reduction” is standard now. The above example
actually shows that Lu ≤m Lh. It is not hard to show that also Lh ≤m Lu, so that

the Halting Problem and the membership problem for a universal Turing machine are

many-one equivalent .

2.4 Alternating Turing Machines

Turing machines can be naturally generalized to model parallel computation. A
nondeterministic Turing machine accepts an input if there exists a move sequence

leading to acceptance. We can call any nondeterministic state entered along this

sequence an existential state. We can naturally add another type of state, a universal

state. When a machine enters a universal state, the machine will accept if and only if
all moves from this state lead to acceptance. These machines are called alternating

Turing machines.

Let us describe the computation of alternating Turing machines formally and pre-

cisely. An alternating Turing machine is simply a nondeterministic Turing machine
with the extra power that some states can be universal. A configuration of an al-

ternating Turing machine A has the same form as was described for a deterministic

Turing machine, namely:

(current state, tape contents, head positions).

We write
α ⊢ β

if, in one step, A can move from configuration α to configuration β. A configuration

with current state q is accepting if

• q is an accepting state (i.e., q = qf ); or

• q is existential, and there exists an accepting configuration β such that α ⊢ β;

or

• q is universal, and or each configuration β such that α ⊢ β, β is an accepting

configuration.

This definition may seem circular, but by working backwards from configurations
with qf in the current-state field, one may verify that it inductively defines the set of

accepting configurations in a natural manner. Then A accepts an input x if its initial
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configuration (with current state q0, x on the input tape, heads at initial positions)

is accepting.
Alternating Turing machines were first proposed by [Chandra, et al, 1981] for the

purpose of modeling parallel computation. In order to allow sub-linear computation

times, a random-access model is used to read the input. When in a special “read”

state, the alternating Turing machine is allowed to write a number in binary which
is then interpreted as the address of a location on the input tape, whose symbol is

then read in unit time. By using universal states to relate different branches of the

computation, one can effectively read the whole input in as little as logarithmic time.
Just as a nondeterministic Turing machine is a model for solitaire games, an

alternating Turing machine is a model for general two-person games. Alternating

Turing machines have been successfully used to provide a theoretical foundation of

parallel computation as well as to establish the complexity of various two person
games. For example, a chess position with White to move can be modeled from

White’s point of view as a configuration α whose first component is an existential

state. The position is winning if there exists a move for White such that the resulting

position β is winning. Here β with Black to move has a universal state q, and is a
winning position (for White) if and only if either Black is checkmated (this is the

base case q = qf) or for all moves by Black to a position γ, γ is a winning position

for White. . . Chapter 34, Sections 5–6, will demonstrate the significance of games for

time and space complexity, to which we now turn.

3 Time and Space Complexity

With Turing machines, we can now formally define what we mean by time and
space complexity. The formal investigation by [Hartmanis and Stearns, 1965] and

[Blum, 1967] in the 1960’s marked the beginning of the field of computational com-

plexity.

An important point with space complexity is that a machine should be charged
only for those cells it uses for calculation, and not for read-only input, which might

be provided on cheaper non-writable media such as CD-ROM or accessed piecemeal

over a network. Hence we modify the Turing machine of Figure 9 by making the tape

containing the input read-only, and giving it one or more worktapes.

Definition 3.1 Let M be a Turing machine. If for all n, every sequence of legal

moves on an input x of length n halts within t(n) steps, we say that M is of time
complexity t(n). Similarly, if every such sequence uses at most s(n) worktape cells,

then M is of space complexity s(n).

Theorem 3.1 Fix a number c > 0, a space bound s(n), and a time bound t(n).

(a) Any Turing machine of s(n) space complexity, using any number of tapes or
grids of any dimension, can be simulated by a Turing machine with a single

(one-dimensional) worktape that has space complexity s(n)/c.
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(b) Any Turing machine of t(n) time complexity can be simulated by a Turing ma-

chine, with the same number and kinds of worktapes, that has time complexity
n+ t(n)/c.

The proof of these so-called linear speed-up theorems involves enlarging the original

TM’s worktape alphabet Γ to an alphabet Γ′ large enough that one character in Γ′

can encode a block of c consecutive characters on a tape of the original machine (see
[Hopcroft and Ullman, 1979]). The extra “n+” in the time for part (b) is needed

to read and translate the input into the “compressed” alphabet Γ′. If we think of

memory in units of bits the idea that this saves space and time is illusory, but if

we regard the machine with Γ′ as having a larger word size, the savings make sense.
Definition 3.1 is phrased in a way that applies also to nondeterministic and alternating

TMs, and the two statements in Theorem 3.1 hold for them as well.

In Theorem 3.1, if s(n) ≥ n, then we do not need to separate the input tape

from the worktape(s). For any Turing machine M of linear space complexity, part (a)
implies that we can simulate M by a one-tape TM M ′ that on any input x uses only

the cells initially occupied by x (except for one visit to the blank cell to the right of

x to tell where x ends). Then M ′ is called a linear bounded automaton.

The main import and convenience of Theorem 3.1 is that one does not need to use
“O()-notation” to define complexity classes: space complexity O(s(n)) is no different

from space complexity s(n), and similarly for time. As we shall see, it is not always

possible to reduce the number of tapes and run in the same time complexity, so
researchers have settled on Turing machines with any finite number of tapes as the

bench model for time complexity.

Definition 3.2 • DTIME[t(n)] is the class of languages accepted by multi-tape

deterministic TMs in time t(n);

• NTIME[t(n)] is the class of languages accepted by multi-tape nondeterministic

TMs in time t(n);

• DSPACE[s(n)] is the class of languages accepted by deterministic TMs in space

s(n);

• NSPACE[s(n)] is the class of languages accepted by multitape nondeterministic

TMs in space O(s(n));

• P is the complexity class
⋃

c∈N DTIME[nc];

• NP is the complexity class
⋃

c∈N NTIME[nc];

• PSPACE is the complexity class
⋃

c∈N DSPACE[nc];

• ATIME[s(n), t(n)] is the class of languages accepted by alternating Turing ma-
chines operating simultaneously in time t(n) and space s(n).
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Example 3.1 In Example 2.5 we demonstrated how the language L = {xx | x ∈
{0, 1}∗} can be decided by a Turing machine. We gave a two-head, one-tape TM
running in time 3n/2, and it is easy to design a two-tape, one-head-per-tape TM that

executes the same strategy in time 2n. Theorem 3.1 says that by using a larger tape

alphabet, one can push the time down to (1 + ǫ)n for any fixed ǫ > 0. However, our

basic one-tape, one-head Turing machine model can do no better than time on the
order of n2.

Example 3.2 Any multi-tape, multi-head Turing machine, not just the one accept-

ing L in the last example, can be simulated by our basic one-tape, one-head model in

at most the square of the original’s running time. For example, a two-tape machine

M with tape alphabet Γ can be simulated by a one-tape machine M ′ with a Γ′ large
enough to encode all pairs of characters over Γ. Then M ′ can regard its single tape

as having two “tracks,” one for each tape of M . M ′ also needs to mark the locations

of the two heads of M , one on each track—this can be facilitated by adding more

characters to Γ′. Now to simulate one step of M , the one-tape machine M ′ must use
its single head to update the computation at the two locations with the two head

markers. If M runs in time t(n), then the two head markers cannot be more than

t(n) cells apart. Thus to simulate each step by M , M ′ moves its head for at most

t(n) distance. Hence M ′ runs in time at most t(n)2.

The simulation idea in Example 3.2 does not work if M uses two- or higher-

dimensional tapes, or a more-general “random-access” storage (see the next section).
However, a one-tape M ′ can be built to simulate it whose running time is still no

worse than a polynomial in the time of M . It is important to note that our basic one-

tape deterministic Turing machine is known to simulate all of the extended models we

offer above and below—except nondeterministic and alternating TMs—with at most
polynomial slowdown. This is a key point in taking the class P, defined as above in

terms of Turing machine time, as the benchmark for which languages and functions

are considered feasibly computable for general computation. (See Chapter 33 for
more discussion of this point.) Polynomial time for nondeterministic Turing machines

defines the class NP. Interestingly, polynomial space for nondeterministic TMs does

equal polynomial space for deterministic TMs [Savitch, 1970], and polynomial time

for alternating TMs equals the same class, namely PSPACE.

Example 3.3 All of the basic arithmetical operations—plus, minus, times, and

division—belong to P. Given two n-digit integers x and y, we can easily add or
subtract them in O(n) steps. We can multiply or divide them in O(n2) steps using

the standard algorithms learned in school. Actually, by grouping blocks of digits in

x and y and using some clever tricks one can bring the time down to O(n1+ǫ) bit-

operations for any desired fixed ǫ > 0, and the asymptotically fastest method known
takes time O(n logn loglogn) [Schönhage and Strassen, 1971]. Computing xy is tech-

nically not in P because the sheer length of the output may be exponential in n, but
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if we measure time as a function of output length as well as input length, it is in P.

However, the operation of factoring a number into primes, which is a kind of inverse
of multiplication, is commonly believed not to belong to P. The language associated

to the factoring function (refer to “Lf” before Theorem 2.4 above) does belong to

NP.

Example 3.4 There are many other important problems in NP that are not known
to be in P. For example, consider the following “King Arthur” problem, which is

equivalent to the problem called Hamiltonian Circuit in Chapter 34. King Arthur

plans to have a round table meeting. By one historical account he had 150 knights,

so let n = 150. It is known that some pairs of knights hate each other, and some do
not. King Arthur’s problem is to arrange the knights around the table so that no pair

of knights who sit side by side hate each other. King Arthur can solve this problem

by enumerating all possible permutations of n knights. But even at n = 150, there
are 150! permutations. All the computers in the whole world, even if they started

a thousand years ago and worked non-stop, would still be going on today, having

examined only a tiny fraction of the 150! permutations. However, this problem is in

NP because a nondeterministic Turing machine can just guess an arrangement and
verify the correctness of the solution—by checking if any two neighboring knights are

enemies—in polynomial time. It is currently unknown if every problem in NP is also

in P. This problem has a special property—namely, if it is in P then every problem

in NP is also in P.

The following relationships are true:

P ⊆ NP ⊆ PSPACE.

Whether or not either of the above inclusions is proper is one of the most funda-
mental open questions in computer science and mathematics. Research in computa-

tional complexity theory centers around these questions. The first step in working on

these questions is to identify the hardest problems in NP or PSPACE.

Definition 3.3 Given two languages A and B over an alphabet Σ, a function f :

Σ∗ → Σ∗ is called a polynomial-time many-one reduction from A to B if

(a) f is polynomial-time computable, and

(b) for all x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

One also writes A ≤p
m B.

The only change from the definition of “many-one reduction” at the end of Sec-

tion 2.3 is that we have inserted “polynomial-time” before “computable.” There is
also a polynomial-time version of Turing reducibility as defined there, which gets the

notation A ≤p
T B.
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Definition 3.4 A language B is called NP-complete if

1. B is in NP;

2. for every language A ∈ NP, A ≤p
m B.

In this definition, if only the second item holds, then we say the language B

is NP-hard . (Curiously, while “NP-complete” is always taken to refer by default

to polynomial-time many-one reductions, “NP-hard” is usually extended to refer
to polynomial-time Turing reductions.) The upshot is that if a language B is

NP-complete and B is in P, then NP = P. An NP-complete language is in this

sense a hardest language in the class NP. Working independently, Cook [Cook, 1971]

and Levin [Levin, 1973] introduced NP-completeness, and Karp [Karp, 1972] further
demonstrated its importance. PSPACE and other classes also have complete lan-

guages.

Chapters 33 and 34 of this Handbook develop the topics of this section in much

greater detail. We also refer the interested reader to the textbooks [Yap, 1997],
[Hopcroft and Ullman, 1979], [Wood, 1987], [Lewis and Papadimitriou, 1981] and

[Floyd and Beigel, 1994].

4 Other Computing Models

Over the years, many alternative computing models have been proposed. Un-

der reasonable definitions of running time for these models, they can all be sim-

ulated by Turing machines with at most a polynomial slow-down. The reference
[van Emde Boas, 1990] provides a nice survey of various computing models other

than Turing machines. We will discuss a few such alternatives very briefly and refer

our readers to Chapter 48 and [van Emde Boas, 1990] for more information.

4.1 Random Access Machines

The Random Access Machine [Cook and Reckhow, 1973] consists of a finite control

where a program is stored, several arithmetic registers, and an infinite collection of
memory registers R[1], R[2], . . . All registers have an unbounded word length. The

basic instructions for the program are LOAD, STORE, ADD, MUL, GOTO, and

conditional-branch instructions. The LOAD and STORE commands can use indirect

addressing. Compared to Turing machines, this appears to be a closer but more
complicated approximation of modern computers. There are two standard ways for

measuring time complexity of the model:

• The Unit-cost RAM: Here each instruction takes one unit of time, no matter

how big the operands are. This measure is convenient for analyzing many
algorithms.
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• The Log-cost RAM: Here each instruction is charged for the sum of the lengths

of all data manipulated by the instruction. Equivalently, each use of an integer
i is charged log i time units, since log i is approximately the length of i. This is

a more realistic model, but sometimes less convenient to use.

Log-cost RAMs and Turing machines can simulate each other with polynomial

overheads. The unit-cost assumption becomes unrealistic when the MUL instruction
is used repeatedly to form exponentially large numbers. Taking MUL out, however,

makes the unit-cost RAM polynomially equivalent to the Turing machine as well.

4.2 Pointer Machines

Pointer machines were introduced by [Kolmogorov and Uspenskii, 1958] in 1958 and

in modified form by Schönhage in the 1970s. Schönhage called his form the “storage

modification machine” [Schönhage, 1980], and both forms are sometimes named for
their authors. We informally describe Schönhage’s form here here. A pointer ma-

chine is similar to a RAM, but instead of having an unbounded array of registers

for its memory structure, it has modifiable pointer links that form a ∆-structure. A
∆-structure S, for a finite alphabet ∆ of size k, is a finite directed graph in which

each node has k out-edges labeled by the k symbols in ∆. Every node also has a cell

holding an integer, as with a RAM. At every step of the computation, one node of S

is distinguished as the center , which acts as a starting point for addressing. A word
w ∈ ∆∗ addresses the cell of the node formed by following the path of pointer links se-

lected by the successive characters in w. Besides having all the RAM instructions, the

pointer machine has various instructions and rules for moving its center and redirect-

ing pointer links, thus modifying the storage structure. Under the log-cost criterion,
pointer machines are polynomially equivalent to RAMs and Turing machines. There

are many interesting studies on the precise efficiency of the simulations among these

models, and we refer to the reader to the survey [van Emde Boas, 1990] as a center

for further pointers on them.

4.3 Circuits and Nonuniform Models

A Boolean circuit is a finite, labeled, directed acyclic graph. Input nodes are nodes
without ancestors; they are labeled with input variables x1, . . . , xn. The internal nodes

are labeled with functions from a finite set of Boolean operations such as {AND, OR,

NOT} or {NAND}. The number of ancestors of an internal node is precisely the
number of arguments of the Boolean function that the node is labeled with. A node

without successors is an output node. The circuit is naturally evaluated from input

to output: at each node the function labeling the node is evaluated using the results

of its ancestors as arguments. Two cost measures for the circuit model are

• depth: the length of a longest path from an input node to an output node.
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• size: the number of nodes in the circuit.

These measures are applied to a family {Cn | n ≥ 1} of circuits for a particu-
lar problem, where Cn solves the problem of size n. Subject to the uniformity

condition that the layout of Cn be computable given n (in time polynomial in

n), circuits are (polynomially) equivalent to Turing machines. Chapters 33 and

48 give full presentations of circuit complexity, while [van Emde Boas, 1990] and
[Karp and Ramachandran, 1990] have more details and pointers to the literature.

5 Defining Terms

alternating Turing machine: a generalization of a nondeterministic Turing ma-
chine. In the latter, every state can be called an existential state since the machine

accepts if one of the possible moves leads to acceptance. In an alternating Turing

machine there are also universal states, from which the machine accepts only if all
possible moves out of that state lead to acceptance.

algorithm: a finite sequence of instructions that is supposed to solve a particular

problem.

complexity class NP: the class of languages that can be accepted by a nondeter-
ministic Turing machine in polynomial time.

complexity class P: the class of languages that can be accepted by a deterministic

Turing machine in polynomial time.

complexity class PSPACE: the class of languages that can be accepted by a Turing
machine in polynomial space.

computable function: a function that can be computed by an algorithm—

equivalently, by a Turing machine.

decidable problem/language: a problem that can be decided by an algorithm—
equivalently, whose associated language is accepted by a Turing machine that halts

for all inputs.

deterministic: permitting at most one next move at any step in a computation.

finite automaton or finite-state machine: a restricted Turing machine where the
head is read-only and shifts only from left to right.

(formal) language: a set of strings over some fixed alphabet.

Halting Problem: the problem of deciding whether a given program (or Turing
machine) halts on a given input.

many-one reduction: a reduction that maps an instance of one problem into an

equivalent instance of another problem.

nondeterministic: permitting more than one choice of next move at some step in a
computation.

NP-complete language: a language in NP such that every language in NP can be

reduced to it in polynomial time.
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oracle Turing machine: a Turing machine with an extra oracle tape and three

extra states q?, qy, qn. When the machine enters q?, control goes to state qy if the
oracle tape content is in the oracle set; otherwise control goes to state qn.

partial recursive function: a partial function computed by a Turing machine that

need not halt for all inputs.

partially decidable problem: one whose associated language is recursively enu-
merable. Equivalently, there exists a program that halts and outputs 1 for every

instance having a yes answer, but is allowed not to halt or to halt and output 0 for

every instance with a no answer.
polynomial time reduction: a reduction computable in polynomial time.

program: a sequence of instructions that can be executed, such as the code of a

Turing machine or a sequence of RAM instructions.

pushdown automaton: a restricted Turing machine where the tape acts as a push-
down store (or a stack), with an extra one-way read-only input tape.

recursive language: a language accepted by a Turing machine that halts for all

inputs.

recursively enumerable (r.e.) language: a language accepted by a Turing ma-
chine.

reduction: a computable transformation of one problem into another.

regular language: a language which can be described by some right-linear/regular

grammar (or equivalently by some regular expression).
time/space complexity: a function describing the maximum time/space required

by the machine on any input of length n.

Turing machine: a simplest formal model of computation consisting a finite-state
control and a semi-infinite sequential tape with a read-write head. Depending on the

current state and symbol read on the tape, the machine can change its state and

move the head to the left or right. Unless otherwise specified, a Turing machine is

deterministic.
Turing reduction: a reduction computed by an oracle Turing machine that halts

for all inputs with the oracle used in the reduction.

uncomputable function: a function that cannot be computed by any algorithm—

equivalently, not by any Turing machine.
undecidable problem/language: a problem that cannot be decided by any

algorithm—equivalently, whose associated language cannot be recognized by a Turing

machine that halts for all inputs).

universal Turing machine: a Turing machine that is capable of simulating any
other Turing machine if the latter is properly encoded.
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Further Information
The fundamentals of the theory of computation, automata theory, and formal
languages can be found in Chapters 31–33 and in many text books includ-

ing [Floyd and Beigel, 1994, Gurari, 1989, Harel, 1992, Hopcroft and Ullman, 1979,

Lewis and Papadimitriou, 1981, Wood, 1987, Yap, 1997, Sipser, 1997]. One central

focus of research in this area is to understand the relationships between different
resource complexity classes. This work is motivated in part by some major open

questions about the relationships between resources (such as time and space) and the

role of control mechanisms (such as nondeterminism or randomness). At the same

time, new computational models are being introduced and studied. One recent model
that has led to the resolution of a number of interesting problems is the interactive

proofs (IP) model. IP is defined in terms of two Turing machines that communicate

with each other. One of them has unlimited power and the other (called the verifier)

is a probabilistic Turing machine whose time complexity is bounded by a polyno-
mial. The study of IP has led to new ways to encrypt information as well as to the

proof of some unexpected results about the difficulty of solving NP-hard problems

(such as coloring, clique etc.) even approximately. See Chapter 35, sections 3 and 5.

Another new model is the quantum Turing machine, which can solve in polynomial
time some problems such as factoring that are believed to require exponential time

on any hardware that follows the laws of “classical” (pre-quantum) physics. There

are also attempts to use molecular or cell-level interactions as the basic operations of
a computer.

The following annual conferences present the leading research work in computation

theory: ACM Annual Symposium on Theory of Computing (STOC), IEEE Sympo-

sium on the Foundations of Computer Science (FOCS), IEEE Conference on Compu-
tational Complexity (CCC, formerly Structure in Complexity Theory), International

Colloquium on Automata, Languages and Programming (ICALP), Symposium on

Theoretical Aspects of Computer Science (STACS), Mathematical Foundations of

Computer Science (MFCS), and Fundamentals of Computation Theory (FCT). There
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are many related conferences in the following areas: computational learning theory,

computational geometry, algorithms, principles of distributed computing, computa-
tional biology, and database theory. In each case, specialized computational models

and concrete algorithms are studied for a specific application area. There are also

conferences in both pure and applied mathematics that admit topics in computa-

tion theory and complexity. We conclude with a partial list of major journals whose
primary focus is in theory of computation: Journal of the ACM , SIAM Journal

on Computing, Journal of Computer and System Sciences , Information and Com-

putation, Theory of Computing Systems (formerly Mathematical Systems Theory),
Theoretical Computer Science, Computational Complexity, Journal of Complexity,

Information Processing Letters , International Journal of Foundations of Computer

Science, and Acta Informatica.
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